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Semiconcept and Protoconcept [3]

Definition

K := (G ,M,R) be a context and A ⊆ G ,B ⊆ M.

A′ := {m ∈ M | for all g ∈ G (g ∈ A =⇒ gRm)},
B ′ := {g ∈ G | for all m ∈ M(m ∈ B =⇒ gRm)}.

(A,B) a semiconcept of K if and only if A′ = B or B ′ = A.

(A,B) a protoconcept of K if and only if A′′ = B ′.

H(K) : The set of all semiconcepts of K.

P(K) : The set of all protoconcepts of K.

A partial order relation ≤ defined on P(K): (A,B) ≤ (C ,D) if and only if A ⊆ C and
D ⊆ B, for all (A,B), (C ,D) ∈ P(K).

H(K) ⊆ P(K).
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Algebra of Protoconcepts and Semiconcepts [3]

The following operations are defined on P(K). For (A1,B1) and (A2,B2) in P(K),

(A1,B1) u (A2,B2) := (A1 ∩ A2, (A1 ∩ A2)
′
)

(A1,B1) t (A2,B2) := ((B1 ∩ B2)
′
,B1 ∩ B2)

¬(A,B) := (G \ A, (G \ A)
′
)

y(A,B) := ((M \ B)
′
,M \ B)

> := (G , φ)

⊥ := (φ,M).

P(K) := (P(K),t,u,¬, y,>,⊥) : The algebra of protoconcepts.

H(K) := (H(K),t,u,¬, y,>,⊥) : The algebra of semiconcepts.

For all x , y ∈ P(K): x ≤ y if and only if x u y = x u x and x t y = y t y .
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Double Boolean algebra [3]

Definition (2)

A double Boolean algebra (dBa) D := (D,t,u,¬, y,>,⊥) is an abstract algebra which satisfies all the
following equations:

1a. (x u x) u y = x u y

2a. x u y = y u x

3a. x u (y u z) = (x u y) u z

4a. ¬(x u x) = ¬x
5a. x u (x t y) = x u x

6a. x u (y ∨ z) = (x u y) ∨ (x u z)

7a. x u (x ∨ y) = x u x

8a. ¬¬(x u y) = x u y

1b. (x t x) t y = x t y

2b. x t y = y t x

3b. x t (y t z) = (x t y) t z

4b. y(x t x) =yx

5b. x t (x u y) = x t x

6b. x t (y ∧ z) = (x t y) ∧ (x t z)

7b. x t (x ∧ y) = x t x

8b. yy(x t y) = x t y

x ∨ y := ¬(¬x u ¬y), and x ∧ y :=y(yxtyy), for all x , y ∈ D.

Prosenjit Howlader and Mohua Banerjee (IITK) Double Boolean Algebras with Operators March 7, 2021 5 / 17



Double Boolean algebra [3]

Definition (2)

A double Boolean algebra (dBa) D := (D,t,u,¬, y,>,⊥) is an abstract algebra which satisfies all the
following equations:

1a. (x u x) u y = x u y

2a. x u y = y u x

3a. x u (y u z) = (x u y) u z

4a. ¬(x u x) = ¬x
5a. x u (x t y) = x u x

6a. x u (y ∨ z) = (x u y) ∨ (x u z)

7a. x u (x ∨ y) = x u x

8a. ¬¬(x u y) = x u y

1b. (x t x) t y = x t y

2b. x t y = y t x

3b. x t (y t z) = (x t y) t z

4b. y(x t x) =yx

5b. x t (x u y) = x t x

6b. x t (y ∧ z) = (x t y) ∧ (x t z)

7b. x t (x ∧ y) = x t x

8b. yy(x t y) = x t y

x ∨ y := ¬(¬x u ¬y), and x ∧ y :=y(yxtyy), for all x , y ∈ D.

Prosenjit Howlader and Mohua Banerjee (IITK) Double Boolean Algebras with Operators March 7, 2021 5 / 17



Double Boolean algebra [3]

Definition (2)

A double Boolean algebra (dBa) D := (D,t,u,¬, y,>,⊥) is an abstract algebra which satisfies all the
following equations:

1a. (x u x) u y = x u y

2a. x u y = y u x

3a. x u (y u z) = (x u y) u z

4a. ¬(x u x) = ¬x
5a. x u (x t y) = x u x

6a. x u (y ∨ z) = (x u y) ∨ (x u z)

7a. x u (x ∨ y) = x u x

8a. ¬¬(x u y) = x u y

1b. (x t x) t y = x t y

2b. x t y = y t x

3b. x t (y t z) = (x t y) t z

4b. y(x t x) =yx

5b. x t (x u y) = x t x

6b. x t (y ∧ z) = (x t y) ∧ (x t z)

7b. x t (x ∧ y) = x t x

8b. yy(x t y) = x t y

x ∨ y := ¬(¬x u ¬y), and x ∧ y :=y(yxtyy), for all x , y ∈ D.
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Double Boolean Algebra.

Continuation Of definition (2)

9a. x u ¬x = ⊥
10a. ¬⊥ = > u>
11a. y⊥ = >

9b. xtyx = >
10b. y> = ⊥ t⊥
11b. ¬> = ⊥

12. (x u x) t (x u x) = (x t x) u (x t x).

A dBa D is called pure, if for all x ∈ D either x u x = x or x t x = x .

a relation v is defined on D as follows. For any x , y ∈ D,
x v y if and only if x u y = x u x and x t y = y t y .

v is shown to be a quasi-order on D.
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Double Boolean Algebra[3]

Notation

For x ∈ D,

xu := x u x and Du := {x ∈ D | xu = x}.
xt := x t x and Dt := {x ∈ D | xt = x}.

Du := (Du,u,∨,¬,⊥,¬⊥) is a Boolean algebra.

Dt := (Dt,t,∧, y,>, y>) is a Boolean algebra.

The power set Boolean algebra of G is isomorphic to P(K)u.

For A(⊆ G ), A→ (A,A′).

The power set Boolean algebra of M is anti-isomorphic to P(K)t.

For B(⊆ M)→ (B ′,B).
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Ba −→ full complex algebra based on Kripke frame −→ Bao.

dBa−→?full complex algebra based on “Kripke context”−→?dBao.
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Approximation Spaces [4]

Approximation space is introduced by Pawlak [1].

Approximation spaces: (W ,E ), where W is a set and E a binary relation on W .

For x ∈W , E (x) := {y ∈W : xEy}.
The lower and upper approximations of any A(⊆W ):

AE := {x ∈W such that E (x) ⊆ A}.
A
E

:= {x ∈W such that E (x) ∩ A 6= ∅}.

Proposition

A = ((Ac))c ,A = ((Ac))c .

W = W .

A ∩ B = A ∩ B,A ∪ B = A ∪ B.

A ⊆ B implies that A ⊆ B,A ⊆ B.
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Kripke Context

J Saquer and J.S.Deogun [2] introduced the relations E1,E2 on the set G of objects and
the set M of properties of a given context K = (G ,M, I ), as follows.

For g1, g2 ∈ G , g1E1g2 if and only if I (g1) = I (g2).

For m1,m2 ∈ M, m1E2m2 if and only if I−1(m1) = I−1(m2).

Definition

A Kripke context based on a context K := (G ,M, I ) is a triple KC := ((G ,R), (M,S), I ),
where R,S are relations on G and M respectively.

The Kripke context based on K, KC := ((G ,E1), (M,E2), I ),
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Motivation for Double Boolean Algebra with Operators

KC = ((G ,R), (M,S), I ), K = (G ,M, I ).

For the Kripke frame (G ,R),

−R : P(G)→ P(G) defined as −R(A) := AR for all A ∈ P(G).

(P(G),∩,∪,c ,G , ∅,−R) is a Boolean algebra with operators.

For the Kripke frame (M,S),

−S : P(M)→ P(M) defined by −M(B) := BS for all B ∈ P(M).

(P(M),∩,∪,c ,M, ∅,−s) is a Boolean algebra with operators.

f : P(G )→ P(K)u given by f (A) := (A,A′) for all A ∈ P(G ).

g : P(M)→ P(K)t given by g(B) := (B ′,B) for all B ∈ P(M).
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Operators

Based on the relations R and S , unary operators fR , fS on the set P(K) are defined as
follows. For any (A,B) ∈ P(K),

fR((A,B)) := (AR , (AR)′),

fS((A,B)) := ((BS)′,BS).

The operators, dual to fR , fS .

f δR (x) := ¬fR(¬x) = (A
R
, (A

R
)′).

f δS (x) :=yfS(yx) = (B
S′
,B

S
).
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Double Boolean Algebra with Operators

Definition

A double Boolean algebra with operators (dBao) is a structure O := (D,t,u,¬, y,>,⊥, I ,C )

such that

(D,t,u,¬, y,>,⊥) is a dBa.

I ,C are monotonic operators on D such that for all x , y ∈ D the following are satisfied.

1a I (x u y) = I (x) u I (y)

2a I (¬⊥) = ¬⊥
3a I (x u x) = I (x)

1b C (x t y) = C (x) t C (y)

2b C (y>) =y>
3b C (x t x) = C (x)

Any Boolean algebra with operator(Bao) is a dBao.
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Example of a dBao

Theorem

Let KC := ((G ,R), (M,S), I ) be a Kripke context based on the context K := (G ,M, I ).
Then P+(KC) := (P(K),t,u,¬, y,>,⊥, fR , fS) is a dBao.

We call P+(KC) the full complex algebra of the Kripke context KC.

Any subalgebra of P+(KC) is called a complex algebra of KC.

The definitions of fR , fS could also be given on the set H(K) of semiconcepts.

H+(KC) is an example of a pure dBao (a dBao based on a pure dBa).
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Future Work

Representation results related to dBao and pure dBao.

Modal systems corresponding to dBao and pure dBao can be formulated.

The algebraic semantics and a semantics based on the class of Kripke contexts.
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