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Construction of Boolean Valued Model

In the following steps it will be discussed briefly that how a Boolean valued
model is constructed and in which sense it becomes a model of ZFC. Let
V be a standard model of ZFC.

1 Let us take a complete Boolean algebra, B = 〈B,∧,∨,⇒,∗ , 0, 1〉.
2 For any ordinal α we define,

V(B)
α = {x : Func(x) ∧ ran(x) ⊆ B ∧ ∃ξ < α(dom(x) ⊆ V

(B)
ξ )}

3 Using the above we get a Boolean valued model as,

V(B) = {x : ∃α(x ∈ V(B)
α )}
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4 Extend the language of classical ZFC by adding a name
corresponding to each element of V(B), in it.

5 Associate every formula of the extended language with a value of B
by the map J.K. First we give the algebraic expressions which
associate the two basic well-formed formulas with values of B. For
any u, v in V(B),

Ju ∈ vK =
∨

x∈dom(v)

(v(x) ∧ Jx = uK)

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK)
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6 Then for any sentences σ and τ of the new language we define,

Jσ ∧ τK = JσK ∧ JτK
Jσ ∨ τK = JσK ∨ JτK

Jσ → τK = JσK⇒ JτK
J¬σK = JσK∗

J∀xϕ(x)K =
∧

x∈V(B)

Jϕ(x)K

J∃xϕ(x)K =
∨

x∈V(B)

Jϕ(x)K

7 A sentence σ will be called valid in V(B) or V(B) will be called a model
of a sentence σ if JσK = 1. It will be denoted as V(B) |= σ.
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8 Then we have the following celebrated result:

Theorem

For any complete Boolean algebra B, V(B) |= ZFC, i.e., all the classical
logic axioms and ZFC axioms are valid in V(B).
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Reasonable Implication Algebra-Valued Models

The construction of Boolean-valued models of ZFC was generalized by
reasonable implication algebra-valued models of classical and non-classical
set theories.

Theorem

If A is a deductive reasonable implication algebra and D is any designated
set then V(A) |=D NFF-ZF−.

A three-valued deductive reasonable implication algebra PS3 was
produced, whose logic is non-classical, in particular paraconsistent. Hence,
as an application of the above theorem, we get V(PS3) |=D NFF-ZF, i.e.,
V(PS3) becomes a model of non-classical set theory.
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Failure of Leibniz’s Law in V(PS3)

Let us define a class relation ∼ in V(PS3) as u ∼ v iff V(PS3) |= u = v ,
where u, v ∈ V(PS3).

It can be proved that ∼ is an equivalence relation
and hence we have the quotient space V(PS3)/ ∼.

Question: How effective this quotient space is?
Answer: Not much, as V(PS3) does not satisfy the Leibniz’s law of
indiscernibility of identicals:

∀x∀y
(
(x = y ∧ ϕ(x))→ ϕ(y)

)
(LLϕ)

for all formulas ϕ(x).
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MTV-Algebra

Definition

Let A = (A,∧,∨,⇒,∗ , 1, 0) be an algebra and D be a designated set on
A. We say that (A,D) is an MTV-algebra if

(i) (A,∧,∨, 1, 0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =

{
0, if a 6= 0 and b = 0;
1, otherwise;

a∗ =


0, if a = 1;
a, if a ∈ D \ {1};
1, if a /∈ D.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 8 / 14



MTV-Algebra

Definition

Let A = (A,∧,∨,⇒,∗ , 1, 0) be an algebra and D be a designated set on
A. We say that (A,D) is an MTV-algebra if

(i) (A,∧,∨, 1, 0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =

{
0, if a 6= 0 and b = 0;
1, otherwise;

a∗ =


0, if a = 1;
a, if a ∈ D \ {1};
1, if a /∈ D.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 8 / 14



MTV-Algebra

Definition

Let A = (A,∧,∨,⇒,∗ , 1, 0) be an algebra and D be a designated set on
A. We say that (A,D) is an MTV-algebra if

(i) (A,∧,∨, 1, 0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =

{
0, if a 6= 0 and b = 0;
1, otherwise;

a∗ =


0, if a = 1;
a, if a ∈ D \ {1};
1, if a /∈ D.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 8 / 14



MTV-Algebra

Definition

Let A = (A,∧,∨,⇒,∗ , 1, 0) be an algebra and D be a designated set on
A. We say that (A,D) is an MTV-algebra if

(i) (A,∧,∨, 1, 0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =

{
0, if a 6= 0 and b = 0;
1, otherwise;

a∗ =


0, if a = 1;
a, if a ∈ D \ {1};
1, if a /∈ D.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 8 / 14



MTV-Algebra

Definition

Let A = (A,∧,∨,⇒,∗ , 1, 0) be an algebra and D be a designated set on
A. We say that (A,D) is an MTV-algebra if

(i) (A,∧,∨, 1, 0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =

{
0, if a 6= 0 and b = 0;
1, otherwise;

a∗ =


0, if a = 1;
a, if a ∈ D \ {1};
1, if a /∈ D.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 8 / 14



The J·KPA-Assignment Function

Let (A,D) be an MTV-algebra. We replace the usual assignment function
J·K by a new assignment function J·KPA, where the algebraic expressions of
both the assignment functions are same except the expressions of the
atomic formulas with equality: for any u, v ∈ V(A),

Ju = vKPA =
∧

x∈dom(u)

(
(u(x)⇒ Jx ∈ vKPA) ∧ (Jx ∈ vK∗PA ⇒ u(x)∗)

)
∧

∧
y∈dom(v)

(
(v(y)⇒ Jy ∈ uKPA) ∧ (Jy ∈ uK∗PA ⇒ v(y)∗)

)
.
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MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP , where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x ↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 11 / 14



MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP , where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x ↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 11 / 14



MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP ,

where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x ↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 11 / 14



MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP , where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x ↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 11 / 14



MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP , where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x ↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 11 / 14



MTV-Algebra-Valued Models

For any MTV-algebra (A,D) and any sentence ϕ, we say that ϕ is valid in
V(A, J·KPA), denoted by V(A, J·KPA) |=D ϕ iff JϕKPA ∈ D.

Question: Does V(A, J·KPA) |=D ZF hold for any MTV algebra (A,D)?
Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D ZFP , where

ZFP := ZF− Axiom of Extensionality + ExtensionalityP ,

where ExtensionalityP is the following sentence:

∀x∀y∀z
(
((z ∈ x ↔ z ∈ y) ∧ (¬ z ∈ x↔ ¬ z ∈ y))→ x = y

)
.

S. Tarafder (St. Xavier’s College, Kolkata) Quotient Models . . . 12 / 14



Quotient Models

Theorem

For any MTV-algebra (A,D), V(A, J·KPA) |=D LLϕ, for all formula ϕ.

As usual, we define a class relation ∼ in a MTV-algebra-valued model
V(A) as u ∼ v iff V(A, J·KPA) |=D u = v , where u, v ∈ V(A). It can be
proved that ∼ is an equivalence relation and hence we have the desired
quotient space V(A)/∼.

Theorem

For any MTV-algebra (A,D), V(A)/∼ |= ZFP .
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Thank You...
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