Quotient Models in a Class of Non-Classical Set Theories

Sourav Tarafder

St. Xavier's College, Kolkata

Joint work with S. Jockwich Martinez and G. Venturi 9th Indian Conference on Logic and its Applications March 5, 2021

1 Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \lor, \Rightarrow, *, 0, 1 \rangle$.

- **(**) Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \vee, \Rightarrow, *, 0, 1 \rangle$.
- 2 For any ordinal α we define,

$$\mathsf{V}_{\alpha}^{(\mathbb{B})} = \{x: \operatorname{Func}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \xi < \alpha(\operatorname{dom}(x) \subseteq \mathsf{V}_{\xi}^{(\mathbb{B})})\}$$

- **1** Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \vee, \Rightarrow, *, 0, 1 \rangle$.
- 2 For any ordinal α we define,

$$\mathsf{V}_{\alpha}^{(\mathbb{B})} = \{ x : \operatorname{Func}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \xi < \alpha(\operatorname{dom}(x) \subseteq \mathsf{V}_{\xi}^{(\mathbb{B})}) \}$$

Using the above we get a Boolean valued model as,

$$\mathsf{V}^{(\mathbb{B})} = \{ x : \exists \alpha (x \in \mathsf{V}_{\alpha}^{(\mathbb{B})}) \}$$

- Extend the language of classical ZFC by adding a name corresponding to each element of V^(B), in it.
- Associate every formula of the extended language with a value of B by the map [.]. First we give the algebraic expressions which associate the two basic well-formed formulas with values of B. For any u, v in V^(B),

$$\llbracket u \in v \rrbracket = \bigvee_{x \in \operatorname{dom}(v)} (v(x) \land \llbracket x = u \rrbracket)$$

$$\llbracket u = v \rrbracket = \bigwedge_{x \in \operatorname{dom}(u)} (u(x) \Rightarrow \llbracket x \in v \rrbracket) \land \bigwedge_{y \in \operatorname{dom}(v)} (v(y) \Rightarrow \llbracket y \in u \rrbracket)$$

() Then for any sentences σ and τ of the new language we define,

$$\begin{bmatrix} \sigma \land \tau \end{bmatrix} = \begin{bmatrix} \sigma \end{bmatrix} \land \begin{bmatrix} \tau \end{bmatrix}$$
$$\begin{bmatrix} \sigma \lor \tau \end{bmatrix} = \begin{bmatrix} \sigma \end{bmatrix} \lor \begin{bmatrix} \tau \end{bmatrix}$$
$$\begin{bmatrix} \sigma \lor \tau \end{bmatrix} = \begin{bmatrix} \sigma \end{bmatrix} \lor \begin{bmatrix} \tau \end{bmatrix}$$
$$\begin{bmatrix} \sigma \to \tau \end{bmatrix} = \begin{bmatrix} \sigma \end{bmatrix}^*$$
$$\begin{bmatrix} \forall x \varphi(x) \end{bmatrix} = \bigwedge_{x \in \mathsf{V}^{(\mathbb{B})}} \begin{bmatrix} \varphi(x) \end{bmatrix}$$
$$\begin{bmatrix} \exists x \varphi(x) \end{bmatrix} = \bigvee_{x \in \mathsf{V}^{(\mathbb{B})}} \begin{bmatrix} \varphi(x) \end{bmatrix}$$

• A sentence σ will be called *valid* in $V^{(\mathbb{B})}$ or $V^{(\mathbb{B})}$ will be called a model of a sentence σ if $[\![\sigma]\!] = 1$. It will be denoted as $V^{(\mathbb{B})} \models \sigma$.

Then we have the following celebrated result:

Theorem

For any complete Boolean algebra \mathbb{B} , $V^{(\mathbb{B})} \models \operatorname{ZFC}$, *i.e.*, all the classical logic axioms and ZFC axioms are valid in $V^{(\mathbb{B})}$.

The construction of Boolean-valued models of $\rm ZFC$ was generalized by reasonable implication algebra-valued models of classical and non-classical set theories.

The construction of Boolean-valued models of $\rm ZFC$ was generalized by reasonable implication algebra-valued models of classical and non-classical set theories.

Theorem

If \mathbb{A} is a deductive reasonable implication algebra and D is any designated set then $V^{(\mathbb{A})} \models_D NFF-ZF^-$.

The construction of Boolean-valued models of $\rm ZFC$ was generalized by reasonable implication algebra-valued models of classical and non-classical set theories.

Theorem

If \mathbb{A} is a deductive reasonable implication algebra and D is any designated set then $V^{(\mathbb{A})} \models_D NFF-ZF^-$.

A three-valued deductive reasonable implication algebra PS_3 was produced, whose logic is non-classical, in particular paraconsistent. Hence, as an application of the above theorem, we get $\mathsf{V}^{(\mathrm{PS}_3)}\models_D\mathrm{NFF}\text{-}\mathrm{ZF}$, i.e., $\mathsf{V}^{(\mathrm{PS}_3)}$ becomes a model of non-classical set theory.

Let us define a class relation \sim in V^(PS₃) as $u \sim v$ iff V^(PS₃) $\models u = v$, where $u, v \in V^{(PS_3)}$.

3

• • = • • = •

Let us define a class relation \sim in V^(PS₃) as $u \sim v$ iff V^(PS₃) $\models u = v$, where $u, v \in V^{(PS_3)}$. It can be proved that \sim is an equivalence relation and hence we have the quotient space V^(PS₃)/ \sim .

Let us define a class relation \sim in V^(PS₃) as $u \sim v$ iff V^(PS₃) $\models u = v$, where $u, v \in V^{(PS_3)}$. It can be proved that \sim is an equivalence relation and hence we have the quotient space V^(PS₃)/ \sim .

Question: How effective this quotient space is?

Let us define a class relation \sim in V^(PS₃) as $u \sim v$ iff V^(PS₃) $\models u = v$, where $u, v \in V^{(PS_3)}$. It can be proved that \sim is an equivalence relation and hence we have the quotient space V^(PS₃)/ \sim .

Question: How effective this quotient space is? Answer: Not much, as $V^{(PS_3)}$ does not satisfy the *Leibniz's law of indiscernibility of identicals:*

$$\forall x \forall y \big((x = y \land \varphi(x)) \to \varphi(y) \big) \tag{LL}_{\varphi} \big)$$

for all formulas $\varphi(x)$.

MTV-Algebra

3

イロト イヨト イヨト イヨト

MTV -Algebra

Definition

Let $\mathbb{A} = (A, \wedge, \vee, \Rightarrow, *, 1, 0)$ be an algebra and D be a designated set on A. We say that (\mathbb{A}, D) is an MTV-algebra if

∃ ► < ∃ ►

MTV -Algebra

Definition

Let $\mathbb{A} = (A, \wedge, \vee, \Rightarrow, *, 1, 0)$ be an algebra and D be a designated set on A. We say that (\mathbb{A}, D) is an MTV-algebra if

(i) $(A, \land, \lor, 1, 0)$ is a complete distributive lattice,

- ∢ ∃ →

MTV-Algebra

Definition

Let $\mathbb{A} = (A, \wedge, \vee, \Rightarrow, *, 1, 0)$ be an algebra and D be a designated set on A. We say that (\mathbb{A}, D) is an MTV-algebra if

- (i) $(A, \land, \lor, 1, 0)$ is a complete distributive lattice,
- (ii) \mathbb{A} has a unique atom and a unique co-atom,

Definition

Let $\mathbb{A} = (A, \wedge, \vee, \Rightarrow, *, 1, 0)$ be an algebra and D be a designated set on A. We say that (\mathbb{A}, D) is an MTV-algebra if

- (i) $(A, \land, \lor, 1, 0)$ is a complete distributive lattice,
- (ii) \mathbb{A} has a unique atom and a unique co-atom,

(iii) the two algebraic operators \Rightarrow and * are defined as follows:

$$a\Rightarrow b=\left\{egin{array}{ll} 0, & ext{if } a
eq 0 ext{ and } b=0; \ 1, & ext{otherwise}; \ a^*=\left\{egin{array}{ll} 0, & ext{if } a=1; \ a, & ext{if } a\in D\setminus\{1\}; \ 1, & ext{if } a\notin D. \end{array}
ight.$$

Let (\mathbb{A}, D) be an MTV-algebra. We replace the usual assignment function $\llbracket \cdot \rrbracket$ by a new assignment function $\llbracket \cdot \rrbracket_{PA}$, where the algebraic expressions of both the assignment functions are same except the expressions of the atomic formulas with equality: for any $u, v \in V^{(\mathbb{A})}$,

$$\llbracket u = v \rrbracket_{\mathrm{PA}} = \bigwedge_{x \in \mathrm{dom}(u)} \left((u(x) \Rightarrow \llbracket x \in v \rrbracket_{\mathrm{PA}}) \land (\llbracket x \in v \rrbracket_{\mathrm{PA}}^* \Rightarrow u(x)^*) \right)$$

$$\wedge \bigwedge_{y \in \operatorname{dom}(v)} \big((v(y) \Rightarrow \llbracket y \in u \rrbracket_{\operatorname{PA}}) \land (\llbracket y \in u \rrbracket_{\operatorname{PA}}^* \Rightarrow v(y)^*) \big).$$

Let (\mathbb{A}, D) be an MTV-algebra. We replace the usual assignment function $\llbracket \cdot \rrbracket$ by a new assignment function $\llbracket \cdot \rrbracket_{PA}$, where the algebraic expressions of both the assignment functions are same except the expressions of the atomic formulas with equality: for any $u, v \in V^{(\mathbb{A})}$,

$$\llbracket u = v \rrbracket_{\mathrm{PA}} = \bigwedge_{x \in \mathrm{dom}(u)} \left((u(x) \Rightarrow \llbracket x \in v \rrbracket_{\mathrm{PA}}) \land (\llbracket x \in v \rrbracket_{\mathrm{PA}}^* \Rightarrow u(x)^*) \right)$$

$$\wedge \bigwedge_{y \in \operatorname{dom}(v)} \big((v(y) \Rightarrow \llbracket y \in u \rrbracket_{\operatorname{PA}}) \land (\llbracket y \in u \rrbracket_{\operatorname{PA}}^* \Rightarrow v(y)^*) \big).$$

Question: Does $V^{(\mathbb{A}, [\cdot]]_{PA})} \models_D ZF$ hold for any MTV algebra (\mathbb{A}, D) ? Answer: No; the Axiom of Extensionality fails.

Question: Does $V^{(\mathbb{A}, [\cdot]]_{PA})} \models_D ZF$ hold for any MTV algebra (\mathbb{A}, D) ? Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (\mathbb{A} , D), $V^{(\mathbb{A}, [\cdot]]_{PA})} \models_D ZF^P$,

Question: Does $V^{(\mathbb{A}, [\cdot]]_{PA})} \models_D ZF$ hold for any MTV algebra (\mathbb{A}, D) ? Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (A, D), $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_{D} \operatorname{ZF}^{P}$, where

 $ZF^{P} := ZF - Axiom of Extensionality + Extensionality^{P}$,

• • = • • = •

Question: Does $V^{(\mathbb{A}, [\cdot]]_{PA})} \models_D ZF$ hold for any MTV algebra (\mathbb{A}, D) ? Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra
$$(\mathbb{A}, D)$$
, $V^{(\mathbb{A}, [\cdot]_{PA})} \models_D ZF^P$, where

 $ZF^{P} := ZF - Axiom of Extensionality + Extensionality^{P}$,

where $Extensionality^{P}$ is the following sentence:

 $\forall x \forall y \forall z \big(((z \in x \leftrightarrow z \in y) \land (\neg z \in x \leftrightarrow \neg z \in y)) \rightarrow x = y \big).$

イロト イヨト イヨト イヨト

Question: Does $V^{(\mathbb{A}, [\cdot]_{PA})} \models_D ZF$ hold for any MTV algebra (\mathbb{A}, D) ? Answer: No; the Axiom of Extensionality fails.

Theorem

For any MTV-algebra (
$$\mathbb{A}$$
, D), V^{(\mathbb{A} , $\llbracket \cdot \rrbracket_{PA}$) $\models_D ZF^P$, where}

 $ZF^{P} := ZF - Axiom of Extensionality + Extensionality^{P}$,

where $Extensionality^{P}$ is the following sentence:

 $\forall x \forall y \forall z \big(((z \in x \leftrightarrow z \in y) \land (\neg z \in x \leftrightarrow \neg z \in y)) \rightarrow x = y \big).$

イロン イヨン イヨン

For any MTV-algebra (\mathbb{A} , D), $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_D LL_{\varphi}$, for all formula φ .

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

For any MTV-algebra (\mathbb{A}, D) , $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_D LL_{\varphi}$, for all formula φ .

As usual, we define a class relation \sim in a MTV-algebra-valued model $V^{(\mathbb{A})}$ as $u \sim v$ iff $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_D u = v$, where $u, v \in V^{(\mathbb{A})}$.

For any MTV-algebra (\mathbb{A}, D) , $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_D LL_{\varphi}$, for all formula φ .

As usual, we define a class relation \sim in a MTV-algebra-valued model $V^{(\mathbb{A})}$ as $u \sim v$ iff $V^{(\mathbb{A}, [\![\cdot]\!]_{\mathrm{PA}})} \models_D u = v$, where $u, v \in V^{(\mathbb{A})}$. It can be proved that \sim is an equivalence relation and hence we have the desired quotient space $V^{(\mathbb{A})}/\sim$.

For any MTV-algebra (\mathbb{A}, D) , $V^{(\mathbb{A}, [\![\cdot]\!]_{PA})} \models_D LL_{\varphi}$, for all formula φ .

As usual, we define a class relation \sim in a MTV-algebra-valued model $V^{(\mathbb{A})}$ as $u \sim v$ iff $V^{(\mathbb{A}, [\![\cdot]\!]_{\mathrm{PA}})} \models_D u = v$, where $u, v \in V^{(\mathbb{A})}$. It can be proved that \sim is an equivalence relation and hence we have the desired quotient space $V^{(\mathbb{A})}/\sim$.

Theorem

For any MTV-algebra (\mathbb{A}, D) , $V^{(\mathbb{A})}/\sim \models \mathbb{ZF}^{P}$.

Thank You...

æ

イロト イヨト イヨト イヨト