$\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Tarski-type} & \stackrel{?}{\longleftrightarrow} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

On the Characterizations of Tarski-type and Lindenbaum-type Logical Structures

Sayantan Roy

Department of Mathematics Indraprastha Institute of Information Technology, Delhi

9th Indian Conference on Logic and its Applications March 5, 2021 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \stackrel{?}{\longleftrightarrow} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

5 Future Work

 $\begin{array}{c} \textbf{Historical Background} \\ \text{Definitions} \\ \text{Theorems} \\ \text{Tarski-type} & \stackrel{?}{\longleftrightarrow} \text{strongly-Lindenbaum-type} \\ \text{Future Work} \end{array}$

Historical Background

• Tarski's theory of consequence operators

• The structures he considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is a set and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

 $\begin{array}{c} \textbf{Historical Background} \\ \text{Definitions} \\ \text{Theorems} \\ \text{Tarski-type} & \stackrel{?}{\longleftrightarrow} \text{strongly-Lindenbaum-type} \\ \text{Future Work} \end{array}$

Historical Background

• Tarski's theory of consequence operators

- The structures he considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is a set and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.
- Polish Logic
 - The structures they considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is an **absolutely free algebra** and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

 $\begin{array}{c} \textbf{Historical Background} \\ \text{Definitions} \\ \text{Theorems} \\ \text{Tarski-type} & \overleftrightarrow{} \text{strongly-Lindenbaum-type} \\ \text{Future Work} \end{array}$

Historical Background

• Tarski's theory of consequence operators

- The structures he considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is a set and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.
- Polish Logic
 - The structures they considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is an **absolutely free algebra** and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

• Suszko's Abstract Logic

• The structures considered by Suszko and his collaborators essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is an algebra and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

 $\begin{array}{c} \textbf{Historical Background} \\ \text{Definitions} \\ \text{Theorems} \\ \text{Tarski-type} & \overleftrightarrow{} \text{strongly-Lindenbaum-type} \\ \text{Future Work} \end{array}$

Historical Background

• Tarski's theory of consequence operators

• The structures he considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is a set and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

• Polish Logic

• The structures they considered essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is an **absolutely free algebra** and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

• Suszko's Abstract Logic

• The structures considered by Suszko and his collaborators essentially are pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is an **algebra** and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$ satisfying certain properties.

• Béziau's Universal Logic

• Universal logic was defined by Béziau to be the study of pairs of the form (\mathscr{L}, \vdash) where \mathscr{L} is a **set** and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \stackrel{?}{\longleftrightarrow} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Definitions

Definition 2.1 (Logical Structures)

A logical structure is a pair of the form (\mathscr{L}, \vdash) where \mathscr{L} is a set and $\vdash \subseteq \mathcal{P}(\mathscr{L}) \times \mathscr{L}$.

Example 1

The pair (CPC, \vdash_{CPC}) where,

- **CPC** denotes the set of all wffs of classical propositional logic and,
- \mid -**CPC** denotes the usual proof theoretic consequence relation.

is a logical structure.

Definitions

Definition 2.2 (Tarski-type Logical Structures)

A logical structure (\mathscr{L}, \vdash) is called Tarski-type logical structure (or simply, Tarski-type) if \vdash satisfies the following properties:

- (a) For all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\alpha \in \Gamma$ then $\Gamma \models \alpha$. (Reflexivity)
- (b) For all $\Gamma, \Sigma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\Gamma \vdash \alpha$ and $\Gamma \subseteq \Sigma$ then $\Sigma \vdash \alpha$. (Monotonicity)
- (c) For all $\Gamma, \Sigma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\Gamma \vdash \beta$ for all $\beta \in \Sigma$ then, $\Sigma \vdash \alpha$ implies that $\Gamma \vdash \alpha$. (Transitivity)

Example 2

 $(\mathbf{CPC}, \vdash_{\mathbf{CPC}})$ as previously defined is a Tarski-type logical structure.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \overleftrightarrow{} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Definitions

Definition 2.3 (Deductively Closed Sets)

Let (\mathscr{L}, \vdash) be a logical structure and $\Sigma \subseteq \mathscr{L}$. Then Σ is called a *deductively* closed set in \mathscr{L} if it satisfies the following properties.

- (1) For all $\Gamma \subseteq \Sigma$ and all $\beta \in \mathscr{L}$, if $\Gamma \models \beta$ then $\beta \in \Sigma$.
- (2) For all $\beta \in \Sigma$, $\Sigma \vdash \beta$.

Example 3

In $(\mathbf{CPC}, \models_{\mathbf{CPC}})$ the set of theorems is a deductively closed set.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \overleftrightarrow{} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Definitions

Definition 2.4 (Strongly-Lindenbaum-Type Logical Structures)

A logical structure (\mathscr{L}, \vdash) is called a *strongly-Lindenbaum-type logical structure* (or, simply *strongly-Lindenbaum-type*) if for all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$ the set,

$$\mathbf{T}^{\Gamma}_{\alpha} := \{ \Sigma : \Gamma \subseteq \Sigma \text{ and } \Sigma \not\models \alpha \}$$

has a maximal element whenever it is non-empty.

Example 4

 $(\mathbf{CPC}, \vdash_{\mathbf{CPC}})$ as previously defined is a strongly-Lindenbaum-type logical structure.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \xrightarrow{?} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Definitions

Definition 2.5 (α -saturated sets)

Let (\mathscr{L}, \vdash) be a logical structure. Let $\Gamma \subseteq \mathscr{L}$ and $\alpha \in \mathscr{L}$. Then Γ is called α -saturated in \mathscr{L} if $\Gamma \not\vdash \alpha$ and for all $\beta \in \mathscr{L} \setminus \Gamma, \Gamma \cup \{\beta\} \models \alpha$.

Example 5

In $(\mathbf{CPC}, \vdash_{\mathbf{CPC}})$ a maximal consistent set Δ is α -saturated iff $\Delta \not\vdash_{\mathbf{CPC}} \alpha$.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \xrightarrow{?} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Theorems

Theorem 3.1 (Characterization of Tarski-type Logical Structures)

- Let (\mathscr{L}, \vdash) be a logical structure. The following statements are equivalent, (1) (\mathscr{L}, \vdash) is a Tarski-type Logic.
- (2) For all $\Gamma \subseteq \mathscr{L}$ and for all $\alpha \in \mathscr{L}$ such that $\Gamma \nvDash \alpha$, there exists a deductively closed $\Sigma \subseteq \mathscr{L}$ such that $\Gamma \subseteq \Sigma$ and $\Sigma \nvDash \alpha$.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \xleftarrow{?} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Theorems

Theorem 3.2 (Characterization of Strongly Lindenbaum-type Logical Structures)

Let (\mathscr{L}, \vdash) be a logical structure. Then the following statements are equivalent. (1) For all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\Gamma \not\vdash \alpha$ then there exists a maximal α -saturated set Σ such that $\Gamma \subseteq \Sigma$.

(2) (\mathscr{L}, \vdash) is strongly-Lindenbaum-type.

Theorems

Theorem 3.2 (Characterization of Strongly Lindenbaum-type Logical Structures)

Let (\mathscr{L}, \vdash) be a logical structure. Then the following statements are equivalent. (1) For all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\Gamma \not\vdash \alpha$ then there exists a maximal α -saturated set Σ such that $\Gamma \subseteq \Sigma$.

(2) (\mathscr{L}, \vdash) is strongly-Lindenbaum-type.

Note:

• For $(\mathbf{CPC}, |-\mathbf{CPC})$ the α -saturated sets correspond to maximal consistent sets of wffs.

Theorems

Theorem 3.2 (Characterization of Strongly Lindenbaum-type Logical Structures)

Let (\mathscr{L}, \vdash) be a logical structure. Then the following statements are equivalent. (1) For all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, if $\Gamma \not\vdash \alpha$ then there exists a maximal α -saturated set Σ such that $\Gamma \subseteq \Sigma$.

(2) (\mathscr{L}, \vdash) is strongly-Lindenbaum-type.

Note:

- For $(\mathbf{CPC}, |-\mathbf{CPC})$ the α -saturated sets correspond to maximal consistent sets of wffs.
- Consequently, for (**CPC**, \vdash_{CPC}), (1) of Theorem 3.2 becomes the usual Lindenbaum Lemma.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \stackrel{?}{\longleftrightarrow} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

Theorems

Theorem 3.3 (Characterization of TsL Logical Structures)

Let (\mathscr{L}, \vdash) be a logical structure. Then the following statements are equivalent.

- (1) For all $\Gamma \subseteq \mathscr{L}$ and all $\alpha \in \mathscr{L}$, there exists a deductively closed α -saturated set $\Sigma \subseteq \mathscr{L}$ such that $\Gamma \subseteq \Sigma$.
- (2) (\mathscr{L}, \vdash) is both Tarski-type and strongly-Lindenbaum-type.

Historical Background Definitions Theorems Tarski-type → strongly-Lindenbaum-type Future Work

Tarski-type \implies strongly-Lindenbaum-type

Tarski-type \Rightarrow strongly-Lindenbaum-type

Let X be any infinite set.

Tarski-type \implies strongly-Lindenbaum-type

Tarski-type \Rightarrow strongly-Lindenbaum-type

Let X be any infinite set. Define $C : \mathcal{P}(X) \to \mathcal{P}(X)$ as follows:

$$C(\Gamma) := \begin{cases} \Gamma & \text{if } \Gamma \text{ is finite} \\ X & \text{otherwise} \end{cases}$$

for all $\Gamma \subseteq X$.

Tarski-type $\stackrel{?}{\Longrightarrow}$ strongly-Lindenbaum-type

Tarski-type \Rightarrow strongly-Lindenbaum-type

Let X be any infinite set. Define $C : \mathcal{P}(X) \to \mathcal{P}(X)$ as follows:

 $C(\Gamma) := \begin{cases} \Gamma & \text{if } \Gamma \text{ is finite} \\ X & \text{otherwise} \end{cases}$

for all $\Gamma \subseteq X$. Now let \vdash_C be defined as follows:

For all $\Gamma \subseteq X$ and $\alpha \in X$, $\Gamma \models_C \alpha$ iff $\alpha \in C(\Gamma)$

Tarski-type $\stackrel{?}{\Longrightarrow}$ strongly-Lindenbaum-type

Tarski-type \Rightarrow strongly-Lindenbaum-type

Let X be any infinite set. Define $C : \mathcal{P}(X) \to \mathcal{P}(X)$ as follows:

 $C(\Gamma) := \begin{cases} \Gamma & \text{if } \Gamma \text{ is finite} \\ X & \text{otherwise} \end{cases}$

for all $\Gamma \subseteq X$. Now let \vdash_C be defined as follows:

For all
$$\Gamma \subseteq X$$
 and $\alpha \in X$, $\Gamma \models_C \alpha$ iff $\alpha \in C(\Gamma)$

Then (X, \vdash_C) is Tarski-type but not strongly-Lindenbaum-type.

We point out that Kuratowski closure operators corresponding to the cofinite topology on an infinite set always satisfies the above property.

Strongly-Lindenbaum-type \Rightarrow Tarski-type

Consider $(\mathbf{CPC}, \vdash_{\mathbf{CPC}})$ again.

 $\frac{\text{Historical Background} \\ \text{Definitions} \\ \text{Theorems} \\ \text{Tarski-type} \Leftrightarrow \text{strongly-Lindenbaum-type} \\ Future Work \\ \hline \\ Strongly-Lindenbaum-type \implies Tarski-type \\ \hline \\ \end{array}$

Strongly-Lindenbaum-type \Rightarrow Tarski-type

Consider (CPC, \models_{CPC}) again. Define a new logical structure, say, (CPC, \models) as follows:

For all $\Gamma \subseteq \mathbf{CPC}$ and all $\alpha \in \mathbf{CPC}$, $\Gamma \models \alpha$ iff $\Gamma \setminus \{\alpha\} \models_{\mathbf{CPC}} \alpha$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Historical Background \\ Definitions \\ Theorems \\ \hline Theorems \\ \hline Tarski-type & \Leftrightarrow strongly-Lindenbaum-type \\ \hline Future Work \end{array} \end{array}$

Strongly-Lindenbaum-type \Rightarrow Tarski-type

Consider $(\mathbf{CPC}, \models_{\mathbf{CPC}})$ again. Define a new logical structure, say, (\mathbf{CPC}, \models) as follows:

For all $\Gamma \subseteq \mathbf{CPC}$ and all $\alpha \in \mathbf{CPC}$, $\Gamma \models \alpha$ iff $\Gamma \setminus \{\alpha\} \models_{\mathbf{CPC}} \alpha$

Then (\mathbf{CPC}, \models) is strongly-Lindenbaum-type but \models is not reflexive. So (\mathbf{CPC}, \models) is not Tarski-type.

 $\begin{array}{c} \mbox{Historical Background} \\ \mbox{Definitions} \\ \mbox{Theorems} \\ \mbox{Tarski-type} & \xrightarrow{?} \mbox{strongly-Lindenbaum-type} \\ \mbox{Future Work} \end{array}$

- Develop a theory of logical structures.
- Develop the graded counterparts of the notions talked about here and find their applications to the Graded Consequence Theory.

Thank You!