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Theme of This Talk

•Combining intuitionistic logic (Int) and 
classical logic (CL):

 (C+J) Humberstone 1979, Del Cerro & Herzig 
1996

 De 2013, De & Omori 2014

 Liang & Miller 2013

•Sequent Calculus for C+J



Contribution of This Talk
•Lucio (2000) gave a “structured” sequent 
calculus for C+J, but we stick to the 
ordinary notion of sequent.

• Our sequent calculus G(C+J) is cut-free, 
so the conservativeness of C+J over CL and 
Int are shown syntactically.

•To get G(C+J), we reveal a “core” of the 
right rule for intuitionistic implication.



Our Approach
•Our G(C+J) is based on multi-
succedent sequent calculus mLJ for 
intuitionistic logic, proposed by 
Maehara (1954). 

• To add classical implication, the right 
rule for the intuitionistic implication of 
mLJ should be reformulated in terms 
of the context.



Syntax

•¬𝑐𝐴 and T are abbreviations of 𝐴 →𝑐⊥
and ⊥→𝑐⊥, respectively.



Kripke Semantics for C+J
by Humberstone 1979.

A model is a tuple 𝑀 = 𝑊,𝑅, 𝑉 where:
• 𝑅 satisfies reflexivity and transitivity,

• 𝑀,𝑤 ⊨ 𝐴 →𝑖 𝐵 ⇔
For all 𝑣 (𝑤𝑅𝑣 & 𝑀, 𝑣 ⊨ 𝐴 imply 𝑀, 𝑣 ⊨ 𝐵).

• 𝑀,𝑤 ⊨ 𝐴 →𝑐 𝐵 ⇔ 𝑀,𝑤 ⊨ 𝐴 implies 𝑀,𝑤 ⊨ 𝐵. 

𝑤 ∈ 𝑉 𝑝 and 𝑤𝑅𝑣 jointly imply 𝑣 ∈ 𝑉 𝑝

• 𝑉 is a valuation satisfying persistency:   



What Does Simple Addition Cause?
• If the ordinary right rule for →𝑖 were used

𝐴 →𝑐 (𝐵 →𝑖 𝐴) would be derivable:

•However, 𝐴 →𝑐 (𝐵 →𝑖 𝐴) is invalid in the 
Kripke Semantics!



• ¬𝑐𝑝 does not satisfy persistency. 
• So, persistency cannot be extended to 

all formulas in C+J.

𝑤 ⊭ 𝑝
𝑣 ⊨ T

¬𝑐𝑝 →𝑐 (T →𝑖 ¬𝑐𝑝) is invalid

𝑤 ⊨ ¬𝑐𝑝
𝑤 ⊨ T

𝑣 ⊨ 𝑝

𝑣 ⊭ ¬𝑐𝑝

𝑤 ⊭ ¬𝑐𝑝 →𝑐 (T →𝑖 ¬𝑐𝑝)
𝑤 ⊭ T →𝑖 ¬𝑐𝑝



Hilbert System H(C+J) 
by Del Cerro and Herzig 1996

(Per) 𝐴 →𝑐 𝐵 →𝑖 𝐴
†

† any occurrence of →𝑐 in 𝐴 is in the scope of →𝑖

• An underlying idea to get H(C+J) is: 
On the top of classical logic, →𝑖 is added 
by the idea of conditional logic. 



The Right Rule for Intuitionistic 
Implication 

Γ

Γ

mLJ* : The same system as mLJ except we  
replace the right rule of →𝑖 with this rule 



The ordinary right rule for 
intuitionistic implication

Γ ⇒ Δ is derivable in mLJ
if and only if Γ ⇒ Δ is derivable in mLJ*

•We reveal the “core” of the right rule for 
intuitionistic implication.



Other rules of G(C+J)
•Other rules for intuitionistic connectives are 
the same as mLJ by Maehara (1954). 

• Rules for the classical implication are the 
ordinary ones: 



Cut-elimination Theorem in G C + J
•We call the combined system G C + J . 
• Let G− C + J be a sequent calculus obtained 
from G(C + J) by removing (Cut).

Cut-elimination Theorem
If Γ ⇒ Δ is derivable in G C + J

then Γ ⇒ Δ is derivable in G− C + J



• Cut-elimination theorem can be shown by 
Extended cut rule (Kashima 2009, Ono & 
Komori 1985): 

Corollary
G C + J is a conservative extension of each 

of intuitionistic and classical logic.
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calculus for C+J, but we stick to the 
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Further Directions
•We are currently working on decidability
and Craig interpolation theorem of G C + J .

• Craig interpolation theorem of G C + J is not 
shown straight forwardly .

•Del Cerro and Herzig (1996) showed the 
decidability of C+J with the help of 
translation into S4. We try to give a more 
direct argument. 



Thank you! 


