Analytic Multi-Succedent Sequent Calculus for Combining Intuitionistic and Classical Propositional Logic

<u>Masanobu Toyooka (Hokkaido University)</u> Katsuhiko Sano (Hokkaido University) ICLA 2021 (online)

Theme of This Talk

- •Combining intuitionistic logic (Int) and classical logic (CL):
- (C+J) Humberstone 1979, Del Cerro & Herzig 1996
- ✓ De 2013, De & Omori 2014

✓ Liang & Miller 2013

Sequent Calculus for C+J

Contribution of This Talk

- Lucio (2000) gave a "structured" sequent calculus for C+J, but we stick to the ordinary notion of sequent.
- Our sequent calculus G(C+J) is cut-free, so the conservativeness of C+J over CL and Int are shown syntactically.
- •To get G(C+J), we reveal a "core" of the right rule for intuitionistic implication.

Our Approach

- Our G(C+J) is based on multisuccedent sequent calculus mLJ for intuitionistic logic, proposed by Maehara (1954).
- To add classical implication, the right rule for the intuitionistic implication of mLJ should be reformulated in terms of the context.

Syntax

$A ::= p \mid \perp \mid A \lor A \mid A \land A \mid A \to_i A \mid A \to_c A,$

where $p \in \mathsf{Prop}$

• $\neg_c A$ and T are abbreviations of $A \rightarrow_c \bot$ and $\bot \rightarrow_c \bot$, respectively.

Kripke Semantics for C+J by Humberstone 1979.

A model is a tuple M = (W, R, V) where:

- *R* satisfies reflexivity and transitivity,
- *V* is a valuation satisfying persistency:

 $w \in V(p)$ and wRv jointly imply $v \in V(p)$

•
$$M, w \models A \rightarrow_i B \Leftrightarrow$$

For all $v (wRv \& M, v \models A \text{ imply } M, v \models B)$.
• $M, w \models A \rightarrow_c B \Leftrightarrow M, w \models A \text{ implies } M, w \models B$.

What Does Simple Addition Cause?

• If the ordinary right rule for \rightarrow_i were used $A \rightarrow_c (B \rightarrow_i A)$ would be derivable:

• However, $A \rightarrow_c (B \rightarrow_i A)$ is invalid in the Kripke Semantics!

- $\neg_c p$ does not satisfy persistency.
- So, persistency cannot be extended to all formulas in C+J.

Hilbert System H(C+J) by Del Cerro and Herzig 1996

(Per)
$$A \rightarrow_c (B \rightarrow_i A)^{\dagger}$$

† any occurrence of \rightarrow_c in A is in the scope of \rightarrow_i

• An underlying idea to get H(C+J) is: On the top of classical logic, \rightarrow_i is added by the idea of conditional logic.

The Right Rule for Intuitionistic Implication

mLJ* : The same system as mLJ except we replace the right rule of \rightarrow_i with this rule

The ordinary right rule for intuitionistic implication

$\Gamma \Rightarrow \Delta$ is derivable in mLJ if and only if $\Gamma \Rightarrow \Delta$ is derivable in mLJ*

• We reveal the "core" of the right rule for intuitionistic implication.

Other rules of G(C+J)

- Other rules for intuitionistic connectives are the same as mLJ by Maehara (1954).
- Rules for the classical implication are the ordinary ones:

$$\frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow_c B} (\Rightarrow \rightarrow_c) \frac{\Gamma_1 \Rightarrow \Delta_1, A \quad B, \Gamma_2 \Rightarrow \Delta_2}{A \rightarrow_c B, \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} (\rightarrow_c \Rightarrow)$$

Cut-elimination Theorem in G(C + J)

- We call the combined system G(C + J).
- Let G⁻(C + J) be a sequent calculus obtained from G(C + J) by removing (Cut).

Cut-elimination Theorem If $\Gamma \Rightarrow \Delta$ is derivable in G(C + J)then $\Gamma \Rightarrow \Delta$ is derivable in $G^{-}(C + J)$ Cut-elimination theorem can be shown by Extended cut rule (Kashima 2009, Ono & Komori 1985):

$$\frac{\Gamma \Rightarrow \Delta, A^m \quad A^n, \Pi \Rightarrow \Sigma}{\Gamma, \Pi \Rightarrow \Delta, \Sigma} \ (ECut)$$

<u>Corollary</u> G(C + J) is a conservative extension of each of intuitionistic and classical logic.

Contribution of This Talk

- Lucio (2000) gave a "structured" sequent calculus for C+J, but we stick to the ordinary notion of sequent.
- Our sequent calculus G(C+J) is cut-free, so the conservativeness of C+J over CL and Int are shown syntactically.
- •To get G(C+J), we reveal a "core" of the right rule for intuitionistic implication.

Further Directions

- We are currently working on decidability and Craig interpolation theorem of G(C + J).
- Del Cerro and Herzig (1996) showed the decidability of C+J with the help of translation into S4. We try to give a more direct argument.
- Craig interpolation theorem of G(C + J) is not shown straight forwardly .

Thank you!