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Spatial logic

Spatial logic studies various spatial structures though the
prism of logic.

Central to this area is the topological semantics of
intuitionistic and modal logics.

I will discuss a new directions in spatial logic, which I call
polyhedral modal logic.

This topic connects modal logic with polyhedral geometry.



Topological semantics of modal logic



Modal logic
Syntax:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ϕ | �ϕ

We will use the shorthand ♦ϕ := ¬�¬ϕ.

In Kripke frames � and ♦ are modeled by a binary relation
R:

x |= �ϕ iff (∀y)(xRy⇒ y |= ϕ)

x |= ♦ϕ iff (∃y)(xRy and y |= ϕ)

This interpretation is local in that the truth of �ϕ and ♦ϕ
at x is determined by the truth of ϕ in

R[x] = {y | xRy}

So the truth is determined in the R[x]-neighborhood of x.
This is exactly the idea behind topological semantics of
modal logic!



Topological Semantics

Let X be a topological space, x ∈ X, and Ux an arbitrary
open neighborhood of x.

x |= �ϕ iff (∃Ux)(∀y)(y ∈ Ux ⇒ y |= ϕ)

x |= ♦ϕ iff (∀Ux)(∃y)(y ∈ Ux and y |= ϕ)

The difference between Kripke and topological semantics
lies in the fact that while in a Kripke frame R[x] is uniquely
determined by x, in a topological space open
neighborhoods of x vary, thus yielding more freedom.

The idea is exactly the same as in the neighborhood
semantics of Scott-Montague.



Some history

One of the first semantics of modal logic is topological,
introduced some 20 years before Kripke semantics.

The pioneers of topological semantics were Tarski (1938),
Tsao-Chen (1938), McKinsey (1941), and McKinsey and
Tarski (1944).

They were influenced by the work of Kuratowski (1922)
who axiomatized topological spaces by means of closure
operators.



Kuratowski’s axioms and S4

Kuratowski’s axioms closely resemble the axioms of Lewis’
modal system S4:

c∅ = ∅ ♦⊥ ↔ ⊥
c(A ∪ B) = cA ∪ cB ♦(p ∨ q)↔ ♦p ∨ ♦q
A ⊆ cA p→ ♦p
ccA ⊆ cA ♦♦p→ ♦p

iX = X �> ↔ >
i(A ∩ B) = iA ∩ iB �(p ∧ q)↔ �p ∧�q
iA ⊆ A �p→ p
iA ⊆ iiA �p→ ��p



S4 as the logic of topological spaces

For a formula ϕ let JϕK = {x ∈ X | x |= ϕ}.

Then x |= �ϕ iff x ∈ iJϕK and x |= ♦ϕ iff x ∈ cJϕK.

Thus, � is interpreted as interior and ♦ as closure.

Consequently, each topological space validates S4.

The converse is also true, and hence S4 is the logic of all
topological spaces when � is interpreted as interior and ♦
as closure.

But much stronger results hold...



McKinsey-Tarski Theorem

A topological space is dense-in-itself if every point is a limit
point.

Theorem
(McKinsey-Tarski, 1944) S4 is the logic of an arbitrary
(nonempty) dense-in-itself metric space.

Remark
The original McKinsey-Tarski result had an additional
assumption that the space is separable. In their 1963 book
Rasiowa and Sikorski showed that this additional condition can
be dropped. Their proof uses the Axiom of Choice.



How to prove the McKinsey-Tarski Theorem

It is a well-known fact in modal logic that S4 has the finite
model property, meaning that each non-theorem is refuted
on a finite Kripke frame, where the binary relation is
reflexive and transitive. Such frames are called S4-frames.

Since refuting a formula at a point x of an S4-frame F only
requires the points from R[x], we may assume that F is
rooted, meaning that there is a point, called a root, such
that every point is seen from it.

Given a dense-in-itself metric space X, the key is to transfer
each such finite refutation to X. This can be done by
defining an onto map f : X → F that behaves like a
p-morphism or functional bisimulation.



How to prove the McKinsey-Tarski Theorem

Such maps are called interior maps in topology, and they
satisfy if−1(A) = f−1(iA) or equivalently cf−1(A) = f−1(cA).

Interior maps are exactly the maps that are continuous (the
inverse image of an open set is open) and open (the direct
image of an open set is open).

Constructing such a map from X onto an arbitrary finite
rooted S4-frame is the main challenge in proving the
McKinsey-Tarski theorem.

But as soon as such a map is constructed, the rest of the
proof is easy: each non-theorem ϕ of S4 is refuted on a
finite rooted S4-frame F. Utilizing f : X → F, we can pull
the refutation of ϕ from F to X. Thus, each non-theorem of
S4 is refuted on X, yielding completeness of S4 with respect
to X.



Easy example

Let X be the real line R and F the two-fork

◦ ◦

◦

Define f : R→ F by sending 0 to the root, the negatives to one
maximal node, and the positives to the other maximal node.



How to handle clusters

Define f from R onto the two-point cluster

◦ oo // ◦

by sending the rationals to one node and the irrationals to the
other.

More generally, given an n-cluster, partition R into n-many
dense subsets, and send the equivalence classes to the
corresponding nodes in the cluster.



The logic of intervals

If we consider the smaller Boolean algebra generated by the
open intervals of R, then we can only pick up the two-fork

◦ ◦

◦

Theorem (Aiello, van Benthem, G. Bezhanishvili, 2003)
The logic of the two-fork is the logic of the Boolean algebra
generated by the open intervals of R.



Euclidean hierarchy

McKinsey and Tarski theorem implies that modal logic of each
Euclidean space is S4.

However, we can distinguish the logics of Euclidean spaces of
different dimensions by restricting the valuation to special
subsets.

Theorem (van Benthem, G. Bezhanishvili, Gehrke, 2003)
More generally, there is a decreasing sequence of logics
Ln (n > 1) such that each Ln is the logic of the Boolean algebra
generated by the open hypercubes in Rn. Each Ln is the logic of
the n-product of the two-fork.

This is the beginning of our story...

This is joint work with Sam Adam-Day (Oxford), David Gabelaia
(Tbilisi) and Vincenzo Marra (Milan).



Polyhedral semantics



Polyhedra

Polyhedra can be of any dimension, and need not be convex
nor connected.

Formally: Boolean combination of convex hulls of finite
sets.



Polyhedra



The Boolean algebra Sub(P)

Theorem
The set of subpolyhedra Sub(P) of a polyhedron P forms a
Boolean algebra closed under interior and closure.

If one is interested in intuitionistic logic then we have:

Theorem
The set of open subpolyhedra of a polyhedron P is a Heyting
algebra.

So we arrive at a polyhedral semantics for modal and
intuitionistic logic.



Polyhedral semantcis

Let P be a polyhedron.

A valuation is a map V : Prop→ Sub(P).

This valuation is extended to all modal formulas in a standard
way:

V(�ϕ) = i(V(ϕ)), V(♦ϕ) = c(V(ϕ)).

Then P validates ϕ (written: P |= ϕ) if V(ϕ) = P under any
valuation V.

In other words, P |= ϕ if ϕ is valid in the algebra Sub(P).

Our aim is to investigate this semantics.



Polyhedral maps

Let P and Q be polyhedra.

A map f : P→ Q is polyhedral if it is a continuous and open, and
the inverse image of a subpolyhedron of Q is a subpolyhedron of
P.

That is, f−1 : Sub(Q)→ Sub(P) is an algebra homomorphism.

If Q is a finite Kripke frame, then f is polyhedral if it is interior
and the inverse image of any point of Q is a subpolyhedron of P.

Polyhedral maps preserve the validity of modal formulas in the
polyhedral semantics.



Polyhedral maps



Polyhedral semantics

Let P be a polyhedron. Then P validates the Grzegorczyk axiom
grz, i.e.,

P |= �(�(p→ �p)→ p)→ p

This is equivalent to saying that a two element cluster is not a
polyhedral image of an (open) subpolyhedron of P.

S4.Grz = S4 + grz is the logic of finite posets.

If P is a polyhedron of dimension n, then P |= bdn+1 and
P 6|= bdn+2, where bdn is the formula restricting the height of a
poset. BDn = S4.Grz + bdn, for each n ∈ N.

This is equivalent to saying that an n + 2-element chain is not a
polyhedral image of P.

Thus in the polyhedral semantics we can differentiate Euclidean
dimensions.



Gödel embedding

Intuitionistic propositional calculus IPC can be faithfully
embedded into S4.Grz via the Gödel embedding.

Tr(p) = �p,

Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ),

Tr(ϕ ∨ ψ) = Tr(ϕ) ∨ Tr(ψ),

Tr(ϕ→ ψ) = �(Tr(ϕ)→ Tr(ψ)).

Then
IPC ` ϕ iff S4 ` Tr(ϕ)

IPC ` ϕ iff S4.Grz ` Tr(ϕ)

S4 is the least modal companion of IPC and S4.Grz is the
greatest modal companion of IPC.

All the results in this talk also translate to the intuitionistic
setting.



Polyhedral Completeness: Two Approaches

Definition
A logic is polyhedrally complete (poly-complete) if it is the logic
of some class of polyhedra.

We investigate the phenomenon of poly-completeness from two
directions.

1 Which logics are poly-complete?
2 Given a class of polyhedra, what is its logic?



Local finiteness and FMP

Since P 6|= bdn for some n ∈ N, the algebra Sub(P) is locally
finite.

Then P 6|= ϕ implies that there is a finite subalgebra A of Sub(P)
such that A 6|= ϕ.

Theorem
Every poly-complete logic has the finite model property (FMP).

There exist continuum many modal logics without the FMP.
So there exists continuum many poly-incomplete logics.

From now on we will focus on logics with the FMP.



Polyhedra

Polyhedra can be of any dimension, and need not be convex
nor connected.

Formally: Boolean combination of convex hulls of finite
sets.



Triangulations I

Intuition: triangulations break polyhedra up into simple shapes.



Triangulations II

Simplices are the most basic polyhedra of each dimension.

Points, line segments, triangles, tetrahedra, pentachora, etc.

A triangulation is a splitting up of a polyhedron into finitely
many simplices.

Represented as a poset (Σ,4) of simplices, where σ 4 τ
means that σ is a face of τ .

Its underlying polyhedron is |Σ| :=
⋃

Σ.

Every polyhedron admits a triangulation.



Triangulation Subalgebras

A triangulation is a polyhedral map from P onto Σ.

Definition
Given a triangulation Σ of P, let its triangulation subalgebra
P(Σ) be the subalgebra of Sub(P) generated by Σ.

Lemma
Every finite subalgebra of Sub(P) is a subalgebra of a finite
triangulation subalgebra.

Theorem
The logic of a polyhedron is the logic of its triangulations.

Proof: If P 6|= ϕ, then there is a finite subalgebra of Sub(P) that
refutes ϕ. By the lemma this algebra is a subalgebra of P(Σ) for
some Σ. So P(Σ) 6|= ϕ.



The Nerve

Definition (Alexandroff’s nerve)
The nerve, N (F), of a finite poset F is the set of all non-empty
chains in F, ordered by inclusion.

a

b

c

d

{a}{b} {c} {d}

{a, b}{b, c} {a, c} {a, d}

{a, b, c}

There is always a p-morphism N (F)→ F.



Barycentric Subdivision

Given a triangulation Σ, construct its barycentric subdivision Σ′

by putting a new point in the middle of each simplex, and
forming a new triangulation around it.

Σ′ ∼= N (Σ) as posets.



Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion) A logic L is poly-complete if and
only if it is the logic of a class C of finite frames closed under N .

This is about barycentric subdivision.

Let Σ(n) be the nth iterated barycentric subdivision of Σ.

Intuition: (Σ(n))n∈N captures everything (logical) about
P = |Σ|.
{P(Σ(n)) : n ∈ N} approximate Sub(P).



Consequences

Corollary
The logics S4.Grz and BDn are poly-complete for every
n ∈ N.

The logics S4.Grz.2, S4.Grz.3, S4.Grz.3n, BWn, BTWn and
BCn are poly-incomplete.

Moreover, there are continuum-many logics which are
poly-incomplete and have the FMP (stable modal logics).

The key idea: (1) use the Nerve Criterion and note that S4.Grz
is the logic of all finite posets and the nerve construction does
not increase the height of a poset.

(2), (3) Note that repeatedly applying N produces wider and
wider frames. Are there other poly-complete logics?



Jankov-Fine Formulas for Forbidden Configurations

For every finite rooted frame Q, there is a formula χ(Q), the
Jankov-Fine formula of Q, such that for any frame F, we have
F 2 χ(Q) if and only if F up-reduces to Q.

F

U
Q

The formula χ(Q) axiomatizes the least logic which does not
have Q as its frame.



Starlike Logics

Definition (starlike tree)
A tree T is starlike if the root is the only branching node.

Definition
A logic L is starlike if it is of the form
S4.Grz + χ(T1) + χ(T2) + · · · , where {T1,T2, . . .} is a (possibly
infinite) set of starlike trees other than .



Starlike Poly-completeness I

Theorem (Starlike Poly-completeness)
Every starlike logic L is poly-complete.

Corollary
BDn + χ(T1) + χ(T2) + · · · is poly-complete. Hence there are
infinitely many poly-complete logics of each finite height.

Scott’s logic SL = S4.Grz + χ( ).

Corollary
Scott’s logic is poly-complete.



Proof of Starlike Poly-Completeness

Proof Idea.
Exploits the Nerve Criterion.

A method which, given a finite frame F of L, produces a
finite frame F′ and a p-morphism F′ → F such that
N k(F′) � L for every k ∈ N.

Two different methods, depending on whether
χ( ) ∈ L.



Starlike Poly-completeness II

Starlike logics express quasi-connectedness properties
about frames and polyhedra.

The exclusion of is necessary: the only poly-complete
logic extending S4.Grz + χ( ) is CPC.

The method does not work for arbitrary trees T, and it is
unclear if χ(T) has a sensible geometric meaning.



Convex Polyhedra

We will now look at a different problem: axiomatization.

Definition
A polyhedron P is convex if whenever x, y ∈ P, the straight line
from x to y is also in P.

The most natural class of polyhedra of which to ask: what
is its logic?



An Axiomatization

Theorem (An Axiomatization)
The logic of convex polyhedra is axiomatised by

S4.Grz + χ( ) + χ( )

The logic of convex polyhedra of dimension n is
axiomatised by

BDn + χ( ) + χ( )

Proof Sketch.
The soundness proof is a combinatorial argument
exploiting the Nerve Criterion. Geometric arguments using
classical dimension theory are also available.



Soundness

That P |= χ( ) expresses the classical result of Hurewicz and
Wallman that a convex polyhedron of dimension n cannot be
disconnected by a subset of dimension < n− 1.

That P |= χ( ) expresses that a convex polyhedron cannot
contain three open disjoint subpolyhedra sharing a common
boundary



Completeness

Proof Sketch.
For completeness, we show that every finite frame F of the
axiomatisation is realised in a convex polyhedron.

As an intermediary step, transform F into a more
geometrically-amenable form, called a saw-topped tree.

Saw-topped trees are planar, which enables the
realisation.



A 4-dimensional Example

⊥

u

p q

u
p

q

⊥



Conclusion and future work

We mapped out the following connections.

Geometry Logic

Combinatorics

Give a full classification of poly-complete modal logics.

Axiomatize other important classes of polyhedra.

Path towards applications: polyhedral model checking.



Polyhedral model checking

Spatial model checking is model checking applied to spatial
structures and spatial logic.

We would like to develop polyhedral model checker. For
example, to reason about 3D images.

The key observation is that the poset obtained by a triangulation
keeps all the “logical information” about the polyhedra.

I’ll now show a toy prototype (prepared by G.Grilleti and
V. Ciancia).

This is joint work with CNR Pisa (Ciancia, Masink, Vallota,
Grilletti).



Thank you!
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