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(e.g., loan application)

Why did you make this decision?
Will you make biased decisions?
How robust is the decision?

(e.g., decline)



ML Systems as Discrete Functions
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ML Systems as Discrete Functions

Threshold 90%

Instance: U=+ve, B=-ve, S=-ve
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ML Systems as Discrete Functions
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ML Systems as Discrete Functions

Threshold 90%
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What ML system?
What symbolic representation?
What can we do with the symbolic representation?
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Ordered Binary Decision Diagrams (OBDDs)




Ordered Binary Decision Diagrams (OBDDs)




Negation Normal Form Circuits

AND




Tractable Circuits Knowledge Compilation

Darwiche & Marquis, JAIR 2002

OBDD
SDD
d-DNNF
DNNF

NNF Circuits

Determinism
Smoothness
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Decomposability
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Flatness
Decision
Ordering

Polytime Operations

Consistency (CO)
Validity (VA)

Clausal entailment (CE)
Sentential entailment (SE)
Implicant testing (IP)
Equivalence testing (EQ)
Model Counting (CT)
Model enumeration (ME)

Succinctness

Existential quantification
Conditioning
Conjoin, Disjoin, Negate




Decomposability (DNNF)

Darwiche, JACM 2001

SAT in linear time
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Determinism (d-DNNF)
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Model Counting (#SAT)




Knowledge Compilation Map

Darwiche & Marquis, JAIR 2002

circuit types succinctness

DNNF
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decision 9i
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KOCOON workshop 2019 See PODS paper for pointers to:

Friedrich Slivovsky. An Introduction to Knowledge Compilation [87] knowledge compilers, model counters, weighted model counters,
reduction tools and other resources



Lecture 7B: Tractable Circuits & Knowledge Compilation Map
UCLA Automated Reasoning Group

C8264A: Automated Reasoning

Lecture [-A

Fall 2020 Lecture 8A: DNNF Circuits (Decomposability)

aitosior Alloart Darsidiia UCLA Automated Reasoning Group
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Automated Reasoning Lecture 8B: DNNF Circuits (Minimization and Structured Decomposability)

35 videos ¢ 10,657 views * Last updated on Dec
17,2020
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Lectures by Adnan Darwiche for his UCLA course
on Automated Reasoning. The course is focused

UCLA Automated Reasoning Group

Lecture 9A: d-DNNF circuits (Determinism and Smoothness)
UCLA Automated Reasoning Group

on the interplay between logic, probabilistic
reasoning and machine learning. The unifying Lecture 9B: Top-Down Knowledge Compilers
theme is tractable Boolean and Arithmetic circuits

(knowledge compilation).

UCLA Automated
@ Reasoning Group SUBSCRIBE

UCLA Automated Reasoning Group

Lecture 10A: OBDD Circuits (Binary Decision Diagrams)

UCLA Automated Reasoning Group

Lecture 10B: OBDD Circuits (Binary Decision Diagrams)
UCLA Automated Reasoning Group

Lecture 11A: SDD Circuits (Sentential Decision Diagrams)
UCLA Automated Reasoning Group

Lecture 11B: Bottom-Up Knowledge Compilers
UCLA Automated Reasoning Group

Lecture 12A: PSDD Circuits (Probabilistic Sentential Decision Diagrams)



Knowledge Compilation Meets X

Abhay Kumar Jha, Dan Suciu:
Knowledge Compilation Meets Database Theory: Compiling Queries
to Decision Diagrams. Theory Comput. Syst. 52(3): 403-440 (2013)

Simone Bova, Florent Capelli, Stefan Mengel, Friedrich Slivovsky:
Knowledge Compilation Meets Communication Complexity. ||CAl

2016:1008-1014

Shubham Sharma, Rahul Gupta, Subhaijit Roy, Kuldeep S. Meel:
Knowledge Compilation meets Uniform Sampling. LPAR 2018: 620-636



Com piling M L CIaSSifierS into tractable circuits

* Bayesian Networks

* Chan, Darwiche. UAI 03
e Shih, Choi, Darwiche. [JCAI 18
* Shih, Choi Darwiche. AAAI 19

* Neural Networks (restricted classes)

* Choi, Shi, Shih, Darwiche. VNN 2019
* Shih, Darwiche, Choi. SAT 2019
* Shi, Shih, Darwiche, Choi. KR 2020

* Decision Trees & Random Forests

e Choi, Shih, Goyanka, Darwiche. FOMLAS 2020
* Audemard, Koriche, Marquis. KR 2020



Decision Tree = Discrete Function

value | interval X Y| f(X,Y)
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Numbers Don’t Matter as Much

P | Pr(p) P | Pr(p) P | Pr(p)
yes | 0.684 - yes | 0.870 jmmmp| yes | 0.970
no | 0.316 no | 0.130 no | 0.030

Pregnant?

(P)

Blood test Scanning test
(B) (S)
P U Pr(ulp) P B Pr(b|p) P S Pr(s|p)
yes -ve 0.27 yes -ve 0.36 yes -ve 0.10
no +ve 0.107 no +ve 0.106 no +ve 0.01

Threshold 0.9 Equivalence interval [0.684, 0.970]



Com piling M L CIaSSifierS into tractable circuits

* Bayesian Networks

* Chan, Darwiche. UAI 03
° Shih, ChOi, Darwiche. 1JCAI 18 Lecture 15A: Compiling Bayesian Network Classifiers
» Shih, Choi Darwiche. AAAI 19 R L Atomated Reasoning Group

* Neural Networks (restricted classes)

Lecture 15B: Compiling Neural Network and Random Forest Classifiers

° ChOi, Shl, Shlh, Darwiche. VNN 2019 “ UCLA Automated Reasoning Group
* Shih, Darwiche, Choi. SAT 2019
* Shi, Shih, Darwiche, Choi. KR 2020

* Decision Trees & Random Forests

e Choi, Shih, Goyanka, Darwiche. FOMLAS 2020
* Audemard, Koriche, Marquis. KR 2020



Explaining Decisions

Pl-Explanation (Sufficient Reason) shih, choi & barwiche (licAl 18)

minimal set of instance characteristics that can trigger the decision

(other features are irrelevant)



Example Explanation

Sally tested negative for
Scanning, Blood and Urine

Why did you conclude that Sally
is not pregnant?

Because the Scanning test, and
one of the Blood and Urine tests
came out negative

sufficient reasons

= S=-ve and B=-ve

= S=-ve and U=-ve

The complete reason behind the decision

(S=-ve and (B=-ve or U=-ve))

Instance: U=-ve, B=-ve, S=-ve

Cv)
+ve
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+tve '
~VeE
A 4

Yes No

Ordered Decision Graph




Prime Implica nts decades old: CS + Al

Boolean function F=@A+0@B+0)(A+B) Boolean function f= (A+C)(B+C)(A+B)

Prime implicants 4B, 4c,BC Prime implicants 4c,Bc 4B
Instance: ABcC Instance: 4Bc

Decision: 1 Decision: O

Sufficient reasons: 4B,BC Sufficient reasons: 4c

Issue: we may have an exponential number of prime implicants



Image Classifier (0O vs 1)
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Example: Sufficient Reason

did you conclude
that this image is a 0?




Example: Sufficient Reason

™

L

Why did you conclude Because these
that this image is a 0? 3 white pixels are sufficient
to label the image 0



Example: Sufficient Reason

Fa™
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did you conclude these We that this
that this image is a 0? 3 white pixels are sufficient classifier will also
to label the image 0 label this image asa 0

NN



Example: Sufficient Reason

did you conclude
that thisimage isa 1?

NHNR
\\\

AN\

these
pixels are sufficient
to label the image 1

We that this
classifier will also
label thisimage asa 1



The Complete Reason Behind a Decision

Darwiche, Hirth (ECAI 2020)

disjunction of all sufficient reasons

avoids computing sufficient reasons explicitly

Reason Circuit
(for a decision)

tractable circuit representation of the complete reason

permits answering questions about sufficient reasons efficiently



Decision Bias (E)

E: passed the entrance exam e |

F: first-time applicant | .

G: has good grades (GPA)

W: has work experience @ @ @

R: comes from a rich hometown

l
|
Decision on instance X is biased iff it can be different on an :
instance Y that disagrees with X on protected features only [
|

|

Theorem: Decision is biased iff each of its sufficient reasons e e @

contains at least one protected feature

Classifier is biased iff one of its decisions is biased 1 0

Theorem: Classifier is biased iff one of its decisions has a
sufficient reason with at least one protected feature Admissions classifier compiled into an OBDD



Complete Reason

Robin is admitted. Why?

(E,F,G) (E,F,W) (E,G,R) (E,R,W) (G,R,W)

or

and) (and

or E

and) (and) (and

and and) (and

Reason Circuit

obtained in linear time
(OBDD, Decision-DNNF)

monotone circuit

existential quantification in linear time

Decision not Biased

Robin

v/ E: passed the entrance exam

v/ F: first-time applicant

v/ G: has good grades (GPA)

v/ W: has work experience

v/ R: comes from a rich hometown



Computing the Reason Circuit




What else
can be done with
Reason Circuits?

On The Reasons Behind Decisions.
Darwiche & Hirth (ECAI 2020)

8.3 Computing Queries

Susan would still be admitted even if she did not
have a high GPA because she passed the entrance
exam and comes from a rich hometown.

Sufficient Reasons. By Theorems 2 and 12, the call PI(A,, @) to
Algorithm 1 will return all sufficient reasons for decision A(«), as-
suming A, is a Decision-DNNF circuit. The number of sufficient
reasons can be exponential, but we can actually answer many ques-
tions about them without enumerating them directly as shown below.

Necessary Property. By Proposition 4, characteristic (literal) [ is
necessary for decision A(«) iff R |= [. This is equivalent to R |-l
being unsatisfiable, which can be decided in O(n) time given The-
orem 10. The necessary property (all necessary characteristics) can
then be computed in O(n - m) time.

Necessary Reason. To compute the necessary reason (if any) we
compute the necessary property and check whether it satisfies the
complete reason. This can be done in O(n - m) time.

Because Statements. To decide whether decision A(«) was made
“because 7 we check whether property 7 is the complete reason for
the decision (Definition 5): 7 =R and R = 7. We have 7 = R iff
(—=R)|7 is unsatisfiable. Moreover, R = T iff R|—l is unsatisfiable
for every literal [ in 7. All of this can be done in O(n - |7|) time.

Even if, Because Statements. To decide whether decision A(«)
would stick “even if p because 7’ we replace property p with p in
instance « to yield instance B (Definition 6). We then compute the
complete reason for decision A(f3) and check whether it is equiva-
lent to 7. All of this can be done O(n - |7|) time.

Decision Bias. To decide whether decision A(«) is biased we ex-
istentially quantify all unprotected features from circuit R and then
check the validity of the result (Theorem 6). All of this can be done
in O(n) time given Theorems 10 and 11.



Decision and Classifier Robustness



Hamming Distance
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DEClSIOn RObUStneSS Shih, Choi, Darwiche (PGM 18)

robustness¢(x) = min  d(x,x
FX) = Oy 406X

* How many features do we need to flip, to flip the classifier’s decision?
* Decision robustness is coNP-complete
* Linear time in an OBDD



Example: Robustness

most robust 1: most robust 2:
robustness 3 robustness 13



CIaSSIfler RObUStneSS Shi, Shih, Darwiche, Choi. KR 2020

1
model-robustness( f) = — Z robustness ¢(x)

Q”X

the expected robustness, averaged over all possible 2" inputs



Classifier Robustness

1
model-robustness( f) = — Z robustness ¢(x)

Q”X

model-robustness( fpaity) = 1

1
model-robustness( fo;) = g o



CIaSSIfler RObUStneSS Shi, Shih, Darwiche, Choi. KR 2020

. NN2:
98.18% accuracy 96.93% accuracy
1,298 nodes oo NN2 203 nodes
3,653 edges 440 edges
3.62
average robustness average robustness
13

max robustness max robustness

http://reasoning.cs.ucla.edu/xai



Verification: Monotone Classifiers s, i oamicre o 18

Positive decision remains positive if we flip some features from — to +.

If instance (+,-,-,+) gives positive decision, these also give positive decision:
* (+I+I-I+)
* (+I-I+I+)
° (+I+I+I+)

Educational Testing:
Susan’s correct answers include Jack’s correct answers
Susan should pass if Jack passed

Credit Application:

Susan and Jack have the same characteristics, except that Susan has a higher income
Susan should be approved if Jack is approved



Verification: Monotone Classifiers s, i oamicre o 18

* Quadratic complexity on OBDDs

 Educational assessment classifier not monotone
(threshold %)

* Cancer classifier not monotone
(threshold .02 based on BI-RADS assessment scale)

* Two patients, same mammography report except for personal history.
* One with personal history = Benign
* One with no personal history - Malignant



Reasoning about the Behavior of ML Systems

new role for symbolic Al & CS methods

Reason About What Was Learned

Systems 1 / 2 (thinking fast and slow), reflection, meta-reasoning

compile-then-reason paradigm

(VNN community: other techniques including SAT)



Three Modern Roles for Logic in Al

Adnan Darwiche

Computer Science Department
University of California, Los Angeles
darwiche@cs.ucla.edu

Flat NNF

Prime
Implicates

Prime
Implicants

Figure 1: Tractable Boolean circuits as a basis for computation.

ABSTRACT

We consider three modern roles for logic in artificial intelligence,
which are based on the theory of tractable Boolean circuits: (1) logic
as a basis for computation, (2) logic for learning from a combina-
tion of data and knowledge, and (3) logic for reasoning about the
behavior of machine learning systems.

CCS CONCEPTS

« Computing methodologies — Learning in probabilistic graph-
ical models; Logical and relational learning; - Theory of com-
putation — Automated reasoning; Complexity classes; Prob-
lems, reductions and completeness.
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tractable circuits, knowledge compilation, explainable AI
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1 INTRODUCTION

Logic has played a fundamental role in artificial intelligence since
the field was incepted [52]. This role has been mostly in the area
of knowledge representation and reasoning, where logic is used to

Permission to make digital or hard copies of part or all of this work for personal or
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ACM ISBN 978-1-4503-7108-7/20/06.
https://doi.org/10.1145/3375395.3389131

represent categorical knowledge and then draw conclusions based
on deduction and other more advanced forms of reasoning. Starting
with [59], logic also formed the basis for drawing conclusions from
a mixture of categorial and probabilistic knowledge.

In this paper, we review three modern roles for propositional
logic in artificial intelligence, which are based on the theory of
tractable Boolean circuits. This theory, which matured consider-
ably during the last two decades, is based on Boolean circuits in
Negation Normal Form (NNF) form. NNF circuits are not tractable,
but they become tractable once we impose certain properties on
them [34]. Over the last two decades, this class of circuits has been
studied systematically across three dimensions. The first dimension
concerns a synthesis of NNF circuits that have varying degrees
of tractability (the polytime queries they support). The second di-
mension concerns the relative succinctness of different classes of
tractable NNF circuits (the optimal size circuits can attain). The third
dimension concerns the development of algorithms for compiling
Boolean formula into tractable NNF circuits.

The first modern role for logic we consider is in using tractable
circuits as a basis for computation, where we show how problems
in the complexity classes NP, PP, NPPP and PPPP can be solved by
compiling Boolean formula into corresponding tractable circuits.
These are rich complexity classes, which include some commonly
utilized problems from probabilistic reasoning and machine learn-
ing. We discuss this first role in two steps. In Section 2, we discuss
the prototypical problems that are complete for these complexity
classes, which are all problems on Boolean formula. We also discuss
problems from probabilistic reasoning which are complete for these
classes and their reduction to prototypical problems. In Section 3,
we introduce the theory of tractable circuits with exposure to cir-
cuit types that can be used to efficiently solve problems in these
complexity classes (if compiled successfully).




Logic For Computation

complete problems (probabilistic reasoning & ML)

complexity classes e

PPP2

PP @)

S C |6y C Ti |6y
S A male yes | .05 yes +ve | .80
male | .55 male no |.95 yes —ve |.20
female | .45 female yes | .01 no +ve|.20

female no | .99 no -—ve|.80
S C T |Oypes n T, A |Gy
male yes +ve|.80 +ve +ve yes|1
male yes —ve|.20 +ve +ve no |0
male no +ve| .20 +ve —ve yes |0
male no —ve| .80 +ve —ve no |1
female yes +ve |.95 —ve +ve yes |0
female yes —ve |.05 —ve +4ve no |1
female no +ve | .05 —ve —ve yes|1
female no —ve |.95 —ve —ve no |0

tractable Boolean circuits (essence of computation)

prototypical problems (on Boolean formula)

((A or B) and (not C)) or (not B and D)

NOT

NOT

AND

AND




BOO I ea n Ci rcu itS complexity classes
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Circuit input that generates 1-output?



BOO I ea n Ci rcu itS complexity classes
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Majority of circuit inputs generate 1-output?



BOO I ea n Ci rcu itS complexity classes

E-MAJ-SAT
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Y-input under which majority of Z-inputs generate 1-output?



BOO I ea n Ci rcu itS complexity classes

probabilistic reasoning

MAJ-MAJ-SAT < SDP

IYI IZl
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Majority of Y-inputs under which majority of Z-inputs generate 1-output?



BOO I ea n Ci rcu itS complexity classes

weights
W(xp=0), w(xo=1) ... w(x5=0), w(x3=1)

1}
= =

1 »
1
—L

Majority of circuit inputs generate 1-output?

Count of circuit inputs that generate 1-output? (#SAT)
Weighted count of circuit inputs that generate 1-output? (WMC)

MAJ-SAT



NP-complete query

Most Probable Explanation (MPE)

sex
51.91% - male

48.09% - female | % File Edit Tools View Debug

P(mpe,e)=0.33858000000000005
P(mpe|e)=0.46992366412213754
Variable Value
no
female

neg
neg




PP-complete query

Marginal Probabilities (MAR)

sex
] 83.02% - male
[] 16.98% - female




NPFPP-complete query

Maximum a Posterior Hypothesis (MAP)

sex
] 5191% - male
] 48.09% - female
C
|
) 96.92% - no ,

‘ P(MAP,e)=0.35530000000000006

P(MAPIe) 0.49312977099236655

Result is exact.

Variable Value |
C no

sex male

values LI |
CED|CYES
[ = Code Bandit | ( Close ;




PPPP-complete query

Darwiche & Choi, PGM 2010

Pregnant
<.:] 40.33% - yes
] 5967% - no

./

Progesterone Level
B 36.90% - detectable

B 63.10% - undetectable

VA

Urine Test

] 35.83% - true

] 64.17% - false

N

Blood Test

] 32.14% - true
] 67.86% - false

Decision is
Pregnant=no

L]

Scanning Test
0% - true >
[ 100% - false

¢

78.7%0 chance you will still make
the same decision after collecting
the blood and urine tests.

En' SD D

1DecisIO
Pregnant

:

[2Query Variiy, Variable Selection Tool.
Blood Test ;
Urine Test

Compute

values ~ ||

'= Code Bandit

Close




On Probabilistic Reasoning by Weighted Model Counting. Chavira and Darwiche, AlJ 2008

w(d) = w(-4) =w(B) =w-B) =w(@) =w=C) =1 [A Tg Tc [pr()
w(—Fyp) =1

0.0,.0
w(Paw) = HCYW T T T A~ B4~ C|4

ANB & Pyp T T F HAHBlAHﬁCM

Lecture 16: Reducing Probabilistic Reasoning (MPE) to Weighted MAX-SAT
UCLA Automated Reasoning Group

Lecture 17A: Reducing Probabilistic Reasoning (MAR) to Weighted Model Counting
UCLA Automated Reasoning Group

Darwiche, KR 2002
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