
DEL for DC — asynchrony and concurrency

Dynamic epistemic logic for distributed
computing — asynchrony and concurrency

Hans van Ditmarsch, CNRS, LORIA, University of Lorraine

March 6, 2021

ICLA 2021

DEL for DC — asynchrony and concurrency

Dynamic epistemic logic:

Anne knows whether p (‘There is a Xmas tree on Place Stanislas’).
Bill knows whether q (‘St Nicolas has arrived in Nancy’).
Anne and Bill are being told that p ∨q is true. What do they learn?
In state pq (p is true, q is false), Bill now knows that p is true,
but Anne considers it possible that Bill doesn’t know that p is true.

pq

pq

pq

pq

b

b

a a p∨q
⇒

pq

pq

pqb

a

epistemic model
epistemic action⇒ updated epistemic model

DEL for DC — asynchrony and concurrency

Dynamic epistemic logic:

▸ model
action⇒ model1

Dynamic epistemic logic for distributed computing:

▸ distinguishing histories of epistemic actions

model
action⇒ model1

action1⇒ model2

model
action2⇒ model3

action3⇒ model4
What if the agent cannot distinguish model1 from model4?

▸ separating sending from receiving actions

model
send action⇒ model1

receive that action⇒ model2
What if the action (message) is not received by the agent?

▸ concurrency in dynamic epistemic logic

model
action⇒ model1 ⎫⎪⎪⎬⎪⎪⎭

model3
model

action1⇒ model2
What if action and action1 concurrently result in model3?

DEL for DC — asynchrony and concurrency

Dynamic epistemic logic for distributed computing:
▸ distinguishing histories of epistemic actions

▸ non-public communication with a weak signal (100 prisoners)
▸ gossip protocols where agents only know their own calls
▸ knowledge for simplicial complexes

▸ separating sending from receiving actions
▸ the logic of asynchronous announcements

▸ concurrency in dynamic epistemic logic
▸ ‘nobody steps forward’ concurrently in ‘muddy children’

Distinguishing histories of epistemic actions

Part I

How to distinguish action histories of different length in DEL?

Distinguishing histories of epistemic actions

Executing an action is like a tick of the clock.
For a public announcement this is what we want.
For private announcements this may not always be what we want.
If this is what we want, dynamic epistemic logic is synchronous.

[van Benthem et al., JPL 2009] propose temporal properties for an
agent a to distinguish histories α,β, . . . of actions (events) e, f ,

▸ synchronicity: if α ∼a β then ∣α∣ = ∣β∣
▸ (synchronous) perfect recall: if α.e ∼a β.f then α ∼a β
▸ no miracles: if α.e ∼a β.f , then α′ ∼a β′ implies α′.e ∼a β′.f

[Dégremont, Löwe, Witzel, TARK 2011] propose properties:

▸ (Pnueli) perfect recall: if α.e ∼a β, then ∃β′ ⊑ β with α ∼a β′
▸ synchronous grounding:
α ∼a β and ∣α∣ ≤ ∣β∣ imply ∃β′ ⊑ β with α ∼a β′ and ∣α∣ = ∣β′∣.

They provide a translation of DEL into asynchronous ETL.
Perfect recall and synchronicity gets synchronous perfect recall.

Distinguishing histories of epistemic actions

This was for TARK 2011. Why is there no journal version?
TARK 2011 co-author Andreas Witzel got a job at Google . . .
Maybe there are also other reasons.

For some applications asynchrony is simulated in synchronous DEL:

▸ One Hundred Prisoners and a Light Bulb

▸ Gossip Protocols

▸ Immediate Snapshot (Distributed Computing)

One Hundred Prisoners and a Light Bulb

▸ There are three prisoners 0,1,2. Prisoner 0 is the counter.

▸ e0: 0 turns off the light when it is on.

▸ e1/e2: 1 and 2 turn on the light the first time they see it’s off.

▸ p: ‘the light is on’, q1/q2: ‘1/2 has (ever) turned on the light’.

▸ virtual action eε: ‘nothing happens’

Asynchronous: e1 ∼0 e2 ∼0 ε Synchronous: e1 ∼0 e2 ∼0 eε
pq1q2

pq1q2 pq1q2 pq1q2

e0 e1 e20
0

0

pq1q2

pq1q2 pq1q2 pq1q2 pq1q2

e0 e1 e2 eε

0 0

[vD, van Eijck, Wu, One Hundred Prisoners KR 2010]
And: (e1∪ e2) ∼0 (e1∪ e2)+. A poor man’s modelling of asynchrony
in DEL? Not really. Only the knowledge of 0 and value of p count.

Gossip

In gossip protocols n agents a,b, c , . . . each holding a secret A, B,
C ,. . . call each other until all agents know all secrets. In a call the
agents exchange all secrets they know. Agents are only aware of
calls they are involved in. If n = 4, six different calls may be made.

(A,B,C ,D)

(AB,AB,C ,D) (AC ,B,AC ,D) (A,BC ,BC ,D) . . . (A,B,C ,D)

ab ac bc . . . eε

d d

Trying to model asynchrony, we again added the trivial call eε.
After first call ab, agent d knows that no agent knows more than
two secrets. But after second call bc, b and c know three secrets:

(A,B,C ,D) ab⇒ (AB,AB,C ,D) bc⇒ (AB,ABC ,ABC ,D) ac⇒ . . .

Although ab ∼d ac ∼d bc (∼d eε), agent d also cannot distinguish
single calls from call sequences: ab ∼d ab.bc ∼d ab.bc.ac ∼d . . .

Gossip

One action: By adding ‘nothing happens’ action eε, indistinguish.
for all agents from other (indistinguishable) actions, we cannot
simulate asynchronous DEL in synchronous DEL.
Arbitrarily many actions: Still, in asynchronous DEL, adding eε in
that way does not change truth: [α]ϕ↔ [α.eε]ϕ.
Boundedly many actions: In PDL for asynchronous gossip, histories
may be bounded by removing ‘redundant’ calls. This makes the
execution tree finite, and allows for ‘DEL-style’ reduction axioms:
[ab]Kcϕ↔ (. . .)⋀α∼cab Kc[α]ϕ. (Conjunction ⋀ over finite set.)

Gossip as an action model:
[Attamah, vD, Grossi, vdHoek, Knowl. and Gossip, ECAI 2014]
[Gattinger, New Directions in Model Checking DEL, PhD, 2018]
Finitary execution trees for gossip protocols:
[Apt, Wojtczak, Verification (. . .) Gossip Protocols, JAIR 2018]
[vD, vdHoek, Kuijer, The Logic of Gossiping, AI Journal, 2020]

Immediate snapshot

In distributed computing, in the immediate snapshot, processes
(agents) asynchronously communicate their local state value to
each other by a shared memory. Each process writes its value and
simultaneously reads all values already written. It may do that
concurrently with other processes: this determines a concurrency
class. A schedule is an ordered partition of the processes in
concurrency classes. For three processes a,b, c, the schedules are
a.b.c , a.bc, abc,b.a.c , . . . Then, a.c .b ∼a a.b.c ∼a a.bc: a only
reads its own value. Also, a.b.c /∼b a.bc: in a.b.c , b reads the
values of a,b, but in a.bc, those of a,b, c . Etc.

An action model representing these indistinghuishabilities, has a
domain consisting of all different schedules (multiplied by the
number of different valuations). Is this asynchronous DEL?

[Ledent, Goubault, Rajsbaum, A Simplicial Complex Model for
DEL to study Distributed Task Computability. GandALF 2018]
[Ledent, Geometric semantics for asynch. comput., PhD, 2019]

Immediate snapshot

In the action model for the immediate snapshot, domain elements
are schedules, i.e., sequences of concurrency classes. The schedule
of a snapshot is a way to approach synchronization in an
asynchronous system. We could call it a round of actions. A
schedule is a perfectly acceptable domain element for an action
model in synchronous DEL.

Similarly, for an asynchronous (terminating) gossip protocol we can
consider an action model consisting of all maximal call sequences.

Either way we ‘flatten’ time into the straightjacket of synchronous
DEL.

Goubault et al. do more: they translate dynamic epistemic logic
into simplicial geometry. This is a gold mine for DEL applications.
Let’s see some gold.

Epistemic models and simplicial complexes

Anne knows whether p. Bill knows whether q. The environment
informs Anne and Bill that p ∨ q. What do they learn?

pqs

pqt

pqv

pqu

b

b

a a p∨q
⇒

pqt

pqv

pqu

a

b

Representation as a 1-dimensional simplicial complex:

ap ap

bq

bq

t

s

u

v

p∨q
⇒ ap ap

bq

bq

t u

v

Epistemic models and simplicial complexes

Anne knows whether p. Bill knows whether q. Anne informs Bill of
the value of p. What do they learn? (A more suitable example, as
one agent informs the other.)

pqs

pqt

pqv

pqu

b

b

a a Kap∪Ka¬p
⇒

pqs

pqt

pqv

pqu

a a

Representation as a 1-dimensional simplicial complex:

ap ap

bq

bq

t

s

u

v

Kap∪Ka¬p
⇒ ap ap

bq

bq

bq

bq

t

s

u

v

Epistemic models and simplicial complexes

Given a set of vertices V , a simplicial complex C is a set of
non-empty finite subsets of V , called simplexes, closed under
subsets, and containing all singletons. A simplicial complex is
pure if all maximal simplexes X have the same dimension ∣X ∣ − 1.

With a chromatic function we decorate the vertices of simplicial
complexes with colours (agents) a ∈ A. Vertices of a simplex must
have different colours. A valuation assigns local variables to
vertices. A simplicial complex with a chromatic function and a
valuation is a chromatic simplicial model.

The simplicial model just represented was 1-dimensional, for 2
agents a,b. Let us see a 2-dimensional simplicial model.

Epistemic models and simplicial complexes

A epistemic model representing three players each holding a card
(variable 0a stands for “player a holds card 0,” and so on) and the
corresponding 2-dimensional simplicial complex. The outer vertices
of for the same agent must be identified.

0a1b2c 0a2b1c

1a2b0c

2a1b0c2a0b1c

1a0b2c

a

b

c

a

b

c

a

bc

1b 1c

1a

1b1c

1a

2c

0a

2b

0c

2a

0b

Epistemic models and simplicial complexes

The simplicial action model for the immediate snapshot is what is
known as the standard subdivision. Without any explanation, on
the left a 2-dimensional simplex, on the right its subdivision.

a b

c

a b a b

c
b a

c
c

a b

c

Epistemic models and simplicial complexes

Local epistemic model: all variables are known by some agent a;

▸ local epistemic models correspond to simplicial complexes

▸ action models correspond to simplicial complexes

▸ the update of an epistemic model with an action model
corresponds to the product of two simplicial models

Further issues of interest:

▸ bisimulation for simplicial complexes

▸ binary consensus, equality negation, ...: as action models

▸ finite epistemic models can be made local? (open)

▸ ‘common distributed knowledge’ on manifolds

▸ epistemic logic for impure complexes (with crash/failure)
Wanted Dead or Alive, arxiv.org/abs/2103.03032

[vD, Ledent, Goubault, Rajsbaum, Knowledge and simplicial
complexes, arxiv.org/abs/2002.08863, IACAP-2019 book]

arxiv.org/abs/2103.03032
arxiv.org/abs/2002.08863

Asynchronous histories in dynamic epistemic logic —
challenges

▸ Dynamic epistemic logic with synchronous grounding for
rounds of asynchronous epistemic actions

▸ An asynchronous dynamic epistemic logic with a history-based
semantics of knowledge (assuming some notion of agency)

▸ Novel group epistemic notions on simplicial complexes

▸ Modelling in DEL standard tasks in distributed computing

Part II

Separating sending actions from receiving actions in DEL

Public announcement (Plaza 1989)

Anne knows whether p. Bill knows whether q.
Anne and Bill are being told that p ∨ q is true.
This is the public announcement of p ∨ q.
Anne and Bill receive the announcement synchronously.

pq

pq

pq

pq

b

b

a a p∨q
⇒

(standard)

pq

pq

pqb

a

Asynchronous announcement

Anne knows whether p. Bill knows whether q.
After the asynchronous announcement of p ∨ q,
first Anne and then Bill receives this.

pq

pq

pq

pq

b

b

a a p∨q
⇒

(novel)

pq

pq

pqb

a a
⇒

pq

pq

pqb

a b
⇒

pq

pq

pqb

a

Standard:
[ϕ]Baψ↔ (ϕ→ Ba[ϕ]ψ)
New:
[ϕ][a]Baψ↔ (ϕ→ Ba[ϕ][a]ψ ∧Ba[ϕ][a][b]ψ ∧Ba[ϕ][b][a]ψ)

Knowledge or belief? What’s going on?

Asynchronous announcement

pq

pq

pq

pq

b

b

a a p∨q
⇒

pq

pq

pqb

a a
⇒

pq

pq

pqb

a b
⇒

pq

pq

pqb

a

Representation as a history-based model what a considers here

pq

pq

pq

pq

b

b

a

a

pq

pq

pq
b

a

pq

pq

pq
b

a

pq

pq

pq
b

a
p ∨ q

p ∨ q

p ∨ q

[a]

[a]

[a]

[b]

[b]

[b]

pq

pq

pq
b

a

pq

pq

pq
b

a

[b]
[b]

[b]

[a]

[a]

[a]

Asynchronous announcement

pq

pq

pq

pq

b

b

a a p∨q
⇒

pq

pq

pqb

a a
⇒

pq

pq

pqb

a b
⇒

pq

pq

pqb

a

Representation as a history-based model what b considers here

pq

pq

pq

pq

b

b

a

a

pq

pq

pq
b

a

pq

pq

pq
b

a

pq

pq

pq
b

a
p ∨ q

p ∨ q

p ∨ q

[a]

[a]

[a]

[b]

[b]

[b]

pq

pq

pq
b

a

pq

pq

pq
b

a

[b]
[b]

[b]

[a]

[a]

[a]

Announcements, receptions, and histories

▸ Announcements (messages) are sent by the environment.

▸ Announcements are individually received by agents.

▸ Announcements are true when they are sent.

▸ Announcements are received in the order they were sent.

▸ Agents assume others receive same/fewer announcements.

— history p ∨ q.a.b: already done.
— history p.b.Bbp.a.a: Bb, not Kb, see below . . .
Anne received both announcements, but Bill only the first one.
After Bill received p, Bbp is true and can be announced.
— history p.Bbp.b.a.a:
This history is not executable: before Bbp is true, b must receive p.
In distributed computing this would be an inconsistent cut.
— history p.b.(Bbp ∧Ba¬Bbp).a.a.b:
b receives p before a. So Bbp ∧Ba¬Bbp is true. (a,b learn this.)
The epistemic operator models belief, not knowledge.

Language of asynchronous announcement logic

Given set P of atoms and set A of agents.

ϕ ∶= p ∣ � ∣ ¬ϕ ∣ (ϕ ∧ ψ) ∣ Baϕ ∣ [ϕ]ψ ∣ [a]ϕ

A sequence α of formulas and agents is a history if for any prefix,
for each a, (number of a’s) ≤ (number of formulas). (Dyck words)

Given histories α,β, view relation ▷a formalizes what histories
agent a considers possible.

α▷a β iff: α and β contain the same number m of a’s,
β contains m announcements,
and those are the first m announcements in α.

Example:
p.a▷a p.a,p.a.b.,p.b.a
p.a▷b ε

Semantics of asynchronous announcement logic

A model is a triple (S ,R,V). Simultaneously define satisfaction
relation ⊧ and executability relation &. (They are well-founded.)

s, α ⊧ p iff s ∈ V (p)
s, α /⊧ �
s, α ⊧ ¬ϕ iff s, α /⊧ ϕ
s, α ⊧ ϕ ∧ ψ iff s, α ⊧ ϕ and s, α ⊧ ψ
s, α ⊧ Baϕ iff t, β ⊧ ϕ for all t, β s.t. Rast, α▷a β, and t & β
s, α ⊧ [ϕ]ψ iff s, α ⊧ ϕ implies s, αϕ ⊧ ψ
s, α ⊧ [a]ϕ iff ∣α∣a < ∣α∣! implies s, αa ⊧ ϕ

s & ε
s & αa iff s & α and ∣α∣a < ∣α∣!
s & αψ iff s & α and s, α ⊧ ψ

⊧ε ϕ (ϕ is ε-valid) iff for all (S ,R,V) and for all s ∈ S , s, ε ⊧ ϕ.
⊧∗ ϕ (ϕ is ∗-valid) iff for all (S ,R,V) and for all s, α, s, α ⊧ ϕ.
Set of ε-validities: AA. Derivable: s, ε ⊧ ⟨α⟩ϕ iff s, α ⊧ ϕ.

Complete Axiomatization of AA — and relation to PAL

AA [α]� ∨ (i.e., ⟨α⟩→) relativizes PAL

propositional tautologies ✓
Ba(ϕ→ ψ)→ Baϕ→ Baψ ✓
[α]p↔ [α]� ∨ p [ϕ]p↔ ϕ→ p
[αa]�↔ [α]� if ∣α∣a < ∣α∣! . . .
[αa]� if ∣α∣a ≥ ∣α∣! . . .
[αϕ]�↔ [α]� ∨ ¬[α]ϕ . . .
[α]¬ϕ↔ [α]� ∨ ¬[α]ϕ [ψ]¬ϕ ↔ ψ → ¬[ψ]ϕ
[α](ϕ ∨ ψ)↔ [α]ϕ ∨ [α]ψ [χ](ϕ ∨ ψ) ↔ [χ]ϕ ∨ [χ]ψ
[α]Baϕ↔ [α]� ∨⋀{Ba[β]ϕ ∣ α▷a β} [ψ]Baϕ ↔ ψ → Ba[ψ]ϕ
from ϕ and ϕ→ ψ infer ψ ✓
from ϕ infer Baϕ ✓

A special case of belief after history is:

[ψ][a]Baϕ ↔ (ψ → Ba[ψ][a]ϕ ∧Ba[ψ][a][b]ϕ ∧Ba[ψ][b][a]ϕ)

Asynchronous announcements — references

▸ Knight, Maubert, Schwarzentruber, Reasoning about
knowledge and messages in asynchronous multi-agent
systems. MSCS, 2019. (Similar language, different semantics)

▸ Balbiani, vD, Fernández G., Asynchronous Announcements,
2019. https://arxiv.org/abs/1705.03392

Continuation of a 2017 workshop Strategic Reasoning version

▸ Balbiani, vD, Fernández G. From Public Announcements to
Asynchronous Announcements. Proc. of ECAI Santiago, 2020.

▸ Balbiani, vD, Fernández G. Quantifying over Asynchronous
Information Change. Proceedings of AiML Helsinki, 2020.

▸ . . .

https://arxiv.org/abs/1705.03392

Asynchronous reception in dynamic epistemic logic —
progress and challenges

▸ partial synchronization and common belief (a ∈ A, B ⊆ A)
ϕ ∶= p ∣ � ∣ ¬ϕ ∣ (ϕ ∧ ψ) ∣ Baϕ ∣ CBϕ ∣ [ϕ]ψ ∣ [B]ϕ
asynchronous announcement is the case : [ϕ]ψ ∣ [a]ψ
public announcement is (almost) the case : [ϕ][A]ψ

▸ axiomatization of the partial synch. common belief

▸ well-founded knowledge semantics (belief: ‘knowledge so far’)

▸ axiomatization of asynchronous private announcements

▸ agents sending each other ‘announcements’ (messages)

▸ belief is acknowledgement. This solves Muddy Children.
Ba(¬Bbmb ∨ ¬Bb¬mb) and Bbmb may both be true.
We cannot solve this with knowledge; see 1705.03392.

Part III

Concurrent actions in DEL

Muddy Children are a joy forever

At least two out of three children are muddy. Father announces
that at least one child is muddy. He asks the children who know
whether they are muddy to step forward. Nobody steps forward.

Nobody steps forward is the public announcement of conjunction:

¬(Kama ∨Ka¬ma)∧¬(Kbmb ∨Kb¬mb)∧¬(Kcmc ∨Kc¬mc)

This is a short-cut! The action is composed of the individual
actions of each child not stepping forward. We can do this too:

Labc(Labc?¬(Kama∨Ka¬ma)∩Labc?¬(Kbmb∨Kb¬mb)∩Labc?¬(Kcmc∨Kc¬mc)

where ∩ is concurrent execution (or observation). Concurrent DEL
is like cPDL [Peleg, 1987]. Composing models from sets of models.

Concurrency in dynamic epistemic logic — challenges

▸ true concurrency (à la Peleg)

▸ intersection concurrency (à la Harel)

▸ order independence in histories

▸ agency?

[vD, Kooi, vd Hoek, Concurrent Dynamic Epistemic Logic, 2003]
[van Eijck, Wang, Composing Models, 2011]
[Maubert, Pinchinat, Schwarzentr., Reachability Games in DEL 2019]

DEL for DC — asynchrony and concurrency

Dynamic epistemic logic for distributed computing —
asynchrony and concurrency

Lots of work to do for many years and for many researchers

Thanks!

