Describing structures and classes of structures

Julia F. Knight

University of Notre Dame

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topics to be discussed

I. Describing specific structures—Scott complexity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- II. Characterizing classes—Borel complexity
- III. Classification problems—Borel cardinality

Conventions

- 1. Structures are countable, with universe ω or a subset.
- 2. Languages are countable. usually computable.
- 3. Classes consist of structures for a fixed language, and are closed under isomorphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In $L_{\omega_1\omega}$, we allow countably infinite disjunctions and conjunctions, but only finite strings of quantifiers.

Sample formulas

1. The following sentence says of a real closed ordered field that it is Archimedean:

$$(\forall x) \bigvee_n x < \underbrace{1 + \cdots + 1}_n$$

2. The following formula says of an element in an Abelian group that it has infinite order.

$$\bigwedge_n \underbrace{x + \dots + x}_n \neq 0$$

Note. We do not have prenex normal form for $L_{\omega_1\omega}$ -formulas. We cannot, in general, bring the quantifiers to the front.

New normal form. For $L_{\omega_1\omega}$ formulas, we can bring the negations inside. This gives a new normal form.

For formulas in this normal form, we measure complexity by considering alternations of $\bigvee \exists$ and $\bigwedge \forall$.

Complexity of $L_{\omega_1\omega}$ -formulas

1. $\varphi(\bar{x})$ is Σ_0 and Π_0 if it is finitary quantifier-free.

2. For a countable ordinal $\alpha > 0$,

(a) $\varphi(\bar{x})$ is Σ_{α} if it has form $\bigvee_{i} (\exists \bar{u}_{i}) \psi_{i}(\bar{x}, \bar{u}_{i})$, where each ψ_{i} is $\Pi_{\beta_{i}}$ for some $\beta_{i} < \alpha$,

(b) $\varphi(\bar{x})$ is Π_{α} if it has form $\bigwedge_{i} (\forall \bar{u}_{i}) \psi_{i}(\bar{x}, \bar{u}_{i})$, where each ψ_{i} is $\Sigma_{\beta_{i}}$ for some $\beta_{i} < \alpha$.

Further terminology. A formula is $d-\Sigma_{\alpha}$ if it has form $(\varphi \& \psi)$, where φ is Σ_{α} and ψ is Π_{α} .

Complexity of sample formulas

1. The sentence
$$(\forall x) \bigvee_n x < \underbrace{1 + \cdots + 1}_n$$
 is Π_2 .

2. The formula
$$\bigwedge_n \underbrace{x + \cdots + x}_n \neq 0$$
 is Π_1 .

There is a natural $d-\Sigma_2$ sentence saying of a \mathbb{Q} -vector space that it has a specific finite dimension. We will see more examples of this kind.

Computable infinitary formulas

The computable infinitary formulas are $L_{\omega_1\omega}$ formulas in which the infinite disjunctions and conjunctions are over computably enumerable (c.e.) sets.

We classify these formulas as *computable* Σ_{α} , *computable* Π_{α} , for *computable* ordinals α .

Remark: Computable infinitary formulas seem comprehensible.

n

Describing a structure

Theorem (Scott, 1965). For each structure \mathcal{A} , there is an $L_{\omega_1\omega}$ -sentence φ whose countable models are the copies of \mathcal{A} . (Such a sentence is called a *Scott sentence* for \mathcal{A} .)

Proof sketch. Scott determined a family of formulas $\varphi_{\bar{a}}$ that define the orbits of tuples \bar{a} . Then $\varphi = \bigwedge_{\bar{a}} \rho_{\bar{a}}$, where

$$\rho_{\emptyset} = (\forall y) \bigvee_{b} \varphi_{b}(y) \& \bigwedge_{b} (\exists y) \varphi_{b}(y) ,$$

and for other \bar{a} ,

$$\rho_{\bar{a}} = (\forall \bar{u})[\varphi_{\bar{a}}(\bar{u}) \to ((\forall y) \bigvee_{b} \varphi_{\bar{a},b}(\bar{u},y) \& \bigwedge_{b} (\exists y) \varphi_{\bar{a},b}(\bar{u},y))].$$

Note: If the formulas $\varphi_{\bar{a}}$ are all Σ_{α} , then φ is $\Pi_{\alpha+1}$.

Scott sentence for $\ensuremath{\mathbb{Z}}$

(1) For the additive group of integers, we obtain a (computable) Σ_3 Scott sentence from the conjunction of a sentence characterizing the torsion-free Abelian groups and a sentence saying that some non-zero element generates everything.

We can do better.

(2) There is a (computable) $d \cdot \Sigma_2$ Scott sentence—the conjunction of a Π_2 sentence characterizing the torsion-free Abelian groups, a Π_2 sentence saying that for any pair x, y, there is some z that generates both, and a Σ_2 sentence saying that there is some x not divisible by n > 1.

The free group F_n

Theorem (Carson-Harizanov-K-Lange-McCoy-Quinn-Morozov-Safranski-Wallbaum, 2012). For all finite $n \ge 1$, the free group of rank *n* has a (computable) $d-\Sigma_2$ Scott sentence.

Proof sketch. We have seen the Scott sentence n = 1. For $n \ge 2$, we take the conjunction of:

(1) a Π_2 sentence saying that for every tuple \bar{y} , there is an *n*-tuple \bar{x} that generates \bar{y} ,

(2) a Σ_2 sentence saying that there is an *n*-tuple \bar{x} satisfying no non-trivial relations, s.t. for all *n*-tuples \bar{y} , no "imprimitive" *n*-tuple of words takes \bar{y} to \bar{x} .

Note: Nielsen (1917, 1918) described the primitive tuples of words, and showed that the set of these is computable.

The complexity of an optimal Scott sentence for a structure is connected to the complexity of the orbits.

Theorem (Montalbán, 2015). \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence iff the orbits of all tuples in \mathcal{A} are defined by Σ_{α} formulas.

Theorem (Alvir-K-McCoy, 2020). If \mathcal{A} has a computable $\Pi_{\alpha+1}$ Scott sentence, then the orbits are defined by computable Σ_{α} formulas.

For a countable language L, Mod(L) is the set of L-structures with universe ω .

Identifying Mod(L) with Cantor space. For simplicity, we suppose *L* is a relational language. Let *C* be a set of new constants representing the natural numbers. Let $(\alpha_n)_{n\in\omega}$ be a list of the atomic sentences $R\bar{a}$, where *R* is a relation symbol of *L* and \bar{a} is a tuple from *C*.

We identify $\mathcal{A} \in Mod(L)$ with the function $f \in 2^{\omega}$ s.t.

$$f(n) = \begin{cases} 1 & \text{if } \mathcal{A} \models \alpha_n \\ 0 & \text{otherwise} \end{cases}$$

Borel classes

There is a natural topology on Cantor space, generated by the clopen sets $N_p = \{f \in 2^{\omega} : f \supseteq p\}$, for $p \in 2^{<\omega}$. The *Borel sets* are those in the σ -algebra generated by these N_p .

1. *B* is Σ_0 and Π_0 if it is a finite union of basic clopen sets.

2. For a countable ordinal $\alpha > 0$,

(a) *B* is Σ_{α} if $B = \bigcup_i B_i$, where each B_i is Π_{β_i} for some $\beta_i < \alpha$,

(b) *B* is Π_{α} if $B = \bigcap_{i} B_{i}$, where each B_{i} is $\Sigma_{\beta_{i}}$ for some $\beta_{i} < \alpha$.

Theorem (Lopez-Escobar, 1965): For $K \subset Mod(L)$, closed under automorphism, K is Borel iff it is axiomatized by a sentence of $L_{\omega_1\omega}$.

Theorem (Vaught, 1974): For $K \subseteq Mod(L)$, closed under automorphism, K is Σ_{α} (for $\alpha \geq 1$) iff it is axiomatized by a Σ_{α} sentence.

Vaught's proof involved "Vaught transforms." Vanden Boom (in his senior thesis at ND), gave a different proof, and an effective version.

Vanden Boom

Effective Borel hierarchy. The *effective Borel sets* are obtained from the basic clopen neighborhoods using c.e. unions and intersections.

Theorem (Vanden Boom, 2007). A set $B \subseteq Mod(L)$, closed under isomorphism, is effective Σ_{α} (for $\alpha \geq 1$) iff it is axiomatized by a computable Σ_{α} formula.

Vanden Boom's proof used forcing. The formulas that define forcing substitute for Vaught transforms. Relativizing Vanden Boom's Theorem, we get Vaught's. Borel embeddings and Borel cardinality

Definition (H. Friedman & Stanley, 1989). Let $K \subseteq Mod(L)$, $K' \subseteq Mod(L')$, both closed under isomorphism. A *Borel embedding* of K in K' is a Borel function $\Phi : K \to K'$ s.t. for $\mathcal{A}, \mathcal{B} \in K, \ \mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

Notation: We write $K \leq_B K'$ if there is such an embedding. We write $K \leq_B K'$ if $K \leq_B K'$ and $K' \not\leq_B K$, and we write $K \equiv_B K'$ if $K \leq_B K'$ and $K' \leq_B K$.

Definition. The Borel cardinality of K is its \equiv_B -class.

On top

Theorem (Lavrov, Maltsev, Mekler, Friedman-Stanley, Marker). The following classes lie on top under \leq_B :

- 1. undirected graphs
- 2. fields
- 3. 2-step nilpotent groups
- 4. linear orderings
- 5. real closed ordered fields

New result (Paolini and Shelah). Torsion-free Abelian groups also lie on top.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Embedding Mod(L) in undirected graphs

Theorem (Lavrov, 1963). $Mod(L) \leq_B$ undirected graphs.

There are slightly different embeddings due to Marker, Nies. We follow Marker.

We start with the case where *L* has just one binary relation symbol-Mod(L) is the class of directed graphs. The embedding Φ takes a directed graph (A, \rightarrow) to an undirected graph (B, -) with a special point b_a representing each $a \in A$ and a special point $p_{(a,a')}$ representing each ordered pair (a, a'). The following picture shows how the embedding works.

Picture

To see that Φ is 1-1 on isomorphism types, we note that there is a copy of \mathcal{A} defined in $\Phi(\mathcal{A})$ —the definition uses finitary existential formulas.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To embed Mod(L) in undirected graphs, we use more special points and more *n*-gons.

fields \leq_B 2-step nilpotent groups

Maltsev, 1960. Let Φ take each field *F* to its Heisenberg group H(F), consisting of matrices of form

$$\left[\begin{array}{rrrr} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right] \;,$$

where $a, b, c \in F$.

Maltsev gave finitary existential formulas that define a copy of F in H(F) with an arbitrary non-commuting pair as parameters.

Theorem (Alvir-Calvert-Goodman-Harizanov-K-Miller-Morozov-Soskova-Weisshaar). There are finitary existential formulas that, for all fields F, effectively interpret F in H(F). Friedman and Stanley defined an embedding Φ of graphs in linear orderings. The proof that Φ is 1-1 does not involve a definition or interpretation.

Theorem (Harrison-Trainor-Montalbán, 2020; K-Soskova-Vatev, 2020). There do not exist $L_{\omega_1\omega}$ formulas that, for all graphs *G*, define an interpretation of *G* in $\Phi(G)$. The following classes lie strictly below the top, for different reasons:

- 1. \mathbb{Q} -vector spaces—only \aleph_0 isomorphism types,
- 2. subfields of the algebraic numbers—isomorphism relation is Borel,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Abelian *p*-groups—subtler reason.

Turing computable embeddings

Kechris suggested that my students and I consider effective embeddings.

Definition (Calvert-Cummins-K-Quinn, 2004). For classes K, K', closed under isomorphism, a *Turing computable embedding* of K in K' is a Turing operator $\Phi : K \to K'$ s.t. for $\mathcal{A}, \mathcal{B} \in K$, $\mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$. We write $K \leq_{tc} K'$.

The Borel embeddings of Friedman-Stanley, Lavrov, Mekler, Maltsev, Marker are Turing computable.

Pullback Theorem

Theorem (K-Quinn-Vanden Boom, 2007). Suppose $K \leq_{tc} K'$ via Φ . For any computable infinitary sentence φ in the language of K', we can find a computable infinitary sentence φ^* in the language of K s.t. for all $A \in K$, $A \models \varphi^*$ iff $\Phi(A) \models \varphi$. Moreover, for $0 < \alpha < \omega_1^{CK}$, if φ is computable Σ_{α} , then so is φ^* .

Example. For each $n \ge 1$, there is a Σ_2 -sentence φ_n saying of a \mathbb{Q} -vector space that the dimension is at least n. If $K \le_{tc} \mathbb{Q}$ -vector spaces, then the pullbacks of the sentences φ_n describe invariants for K.

Corollary. Let Φ be a continuous embedding of K in K'. For $0 < \alpha < \omega_1$, for any Σ_{α} sentence φ in the language of K', there is a Σ_{α} sentence φ^* in the language of K s.t. for $\mathcal{A} \in K$, $\mathcal{A} \models \varphi^*$ iff $\Phi(\mathcal{A}) \models \varphi$.

Proof: There is a set X s.t. Φ is X-computable, the ordinal α is X-computable, and φ is X-computable Σ_{α} . Then we have a pullback φ^* that is X-computable Σ_{α} .

Invariants

Suppose $K \leq_B K'$ via Φ . The embedding Φ reduces the classification problem for K to that for K'. If we have useful invariants for K', then we do for K as well.

Having the same Borel cardinality means essentially having the same invariants. Exactly what counts as useful invariants is vague.

1. Q-vector spaces: dimension—universally accepted as useful.

 Abelian *p*-groups: Ulm sequence plus dimension of the divisible part—complicated, but accepted as useful by some people.

Torsion-free Abelian groups

Let TFA_n be the class of torsion-free Abelian groups of rank n. These are the groups isomorphic to subgroups of \mathbb{Q}^n with n \mathbb{Z} -linearly independent elements.

We can describe a group in TFA_1 by taking a non-zero element *a* and saying which prime powers divide *a*. For a different non-zero element *a'*, the sets we obtain differ only finitely. Baer gave invariants based on this fact. According to Hjorth and Thomas, the invariants for TFA_1 are generally accepted as useful

For $n \ge 2$, Maltsev and Kurosh gave invariants for groups in TFA_n . Hjorth and Thomas report that Fuchs dismissed these as no better than the group itself—they are not generally accepted as useful. Borel cardinality increases with n

Theorem (Hjorth, 1999). $TFA_1 <_B TFA_2$

Theorem (Thomas, 2001). For $n \ge 2$, $TFA_n <_B TFA_{n+1}$.

Current project, joint with Ho, Miller: Use tools from computability to show, in simpler way, that

 $TFA_1 <_{tc} TFA_2 <_{tc} TFA_3 <_{tc} \cdots$.

Also, show that the Paolini-Shelah embedding of graphs in torsion-free Abelian groups does not come from a uniform interpretation.