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Topics to be discussed

I. Describing specific structures—Scott complexity
Il. Characterizing classes—Borel complexity

I1l. Classification problems—Borel cardinality



Conventions

1. Structures are countable, with universe w or a subset.
2. Languages are countable. usually computable.

3. Classes consist of structures for a fixed language, and are
closed under isomorphism.



Lwlw

In L,,., we allow countably infinite disjunctions and conjunctions,
but only finite strings of quantifiers.

Sample formulas

1. The following sentence says of a real closed ordered field that
it is Archimedean:

v 1441
(X)\n/x< +--+

2. The following formula says of an element in an Abelian group
that it has infinite order.

/\x+ +x#£0



Normal form

Note. We do not have prenex normal form for L, .-formulas.
We cannot, in general, bring the quantifiers to the front.

New normal form. For L, formulas, we can bring the negations
inside. This gives a new normal form.

For formulas in this normal form, we measure complexity by
considering alternations of \/ 3 and A V.



Complexity of L, ,-formulas

1. ¢(X) is o and My if it is finitary quantifier-free.
2. For a countable ordinal o > 0,

(a) @(x) is X4 if it has form \/(3di)vi(X, U;), where each 9; is
Mg, for some B; < «,

(b) @(x)is My if it has form A\;(VT;)Yi(X, Gj), where each 1); is
Y g, for some 3; < a.

Further terminology. A formula is d-X,, if it has form (¢ & ),
where ¢ is X, and 1 is [1,.



Complexity of sample formulas

1. The sentence (Vx)\,x <1+---+ 1is [y

n

2. The f I 0is IMy.
e formula A\, x+---+x#0is

n

There is a natural d-X; sentence saying of a (Q-vector space that it
has a specific finite dimension. We will see more examples of this
kind.



Computable infinitary formulas

The computable infinitary formulas are L,,,, formulas in which the
infinite disjunctions and conjunctions are over computably
enumerable (c.e.) sets.

We classify these formulas as computable ¥, computable N, for
computable ordinals c.

1. Th t v <I14---41i table T1,.
e sentence (Vx)\/, x + -+ + 1 is computable MM

n

2. The formula A, x + -+ x # 0 is computable ;.

n

Remark: Computable infinitary formulas seem comprehensible.



Describing a structure

Theorem (Scott, 1965). For each structure A, there is an
L., .-sentence ¢ whose countable models are the copies of A.
(Such a sentence is called a Scott sentence for A.)

Proof sketch. Scott determined a family of formulas @5 that
define the orbits of tuples 3. Then ¢ = A; ps, where

po = (7y) \/ n(y) & AGy)esl(y) .
b b

and for other 3,

ps = (V0)[pa(@) = ((7y) \/ @ap(d,y) & \(3y)esp(d ).
b b

Note: If the formulas @5 are all X, then ¢ is [y41.



Scott sentence for Z

(1) For the additive group of integers, we obtain a (computable)
¥ 3 Scott sentence from the conjunction of a sentence
characterizing the torsion-free Abelian groups and a sentence
saying that some non-zero element generates everything.

We can do better.

(2) There is a (computable) d-X, Scott sentence—the conjunction
of a I, sentence characterizing the torsion-free Abelian groups, a
[T, sentence saying that for any pair x, y, there is some z that
generates both, and a ¥, sentence saying that there is some x not
divisible by n > 1.



The free group F,

Theorem (Carson-Harizanov-K-Lange-McCoy-Quinn-
Morozov-Safranski-Wallbaum, 2012). For all finite n > 1, the
free group of rank n has a (computable) d-¥, Scott sentence.

Proof sketch. We have seen the Scott sentence n = 1. For n > 2,
we take the conjunction of:

(1) a Ny sentence saying that for every tuple y, there is an n-tuple
X that generates y,

(2) a X, sentence saying that there is an n-tuple X satisfying no
non-trivial relations, s.t. for all n-tuples y, no “imprimitive” n-tuple
of words takes y to X.

Note: Nielsen (1917, 1918) described the primitive tuples of
words, and showed that the set of these is computable.



Complexity of orbits

The complexity of an optimal Scott sentence for a structure is
connected to the complexity of the orbits.

Theorem (Montalban, 2015). A has a M,41 Scott sentence iff
the orbits of all tuples in A are defined by ¥, formulas.

Theorem (Alvir-K-McCoy, 2020). If A has a computable My
Scott sentence, then the orbits are defined by computable ¥,
formulas.



Mod(L)

For a countable language L, Mod(L) is the set of L-structures with
universe w.

Identifying Mod(L) with Cantor space. For simplicity, we
suppose L is a relational language. Let C be a set of new
constants representing the natural numbers. Let (ap)new be a list
of the atomic sentences Ra, where R is a relation symbol of L and
3 is a tuple from C.

We identify A € Mod(L) with the function f € 2“ s.t.

f(n):{ 1 ifAEa,

0 otherwise



Borel classes

There is a natural topology on Cantor space, generated by the
clopen sets N, = {f € 2¥ : f D p}, for p € 2<“. The Borel sets
are those in the o-algebra generated by these N,,.

1. Bis X and My if it is a finite union of basic clopen sets.
2. For a countable ordinal a > 0,

(a) Bis X, if B=U;B;, where each B; is Mg, for some §; < «,

(b) Bis N, if B=nN;B;, where each B; is X, for some 3; < a.



Axiomatizing Borel classes

Theorem (Lopez-Escobar, 1965): For K C Mod(L), closed
under automorphism, K is Borel iff it is axiomatized by a sentence
of Ly, w-

Theorem (Vaught, 1974): For K C Mod(L), closed under
automorphism, K is X, (for a > 1) iff it is axiomatized by a ¥
sentence.

Vaught's proof involved “Vaught transforms.” Vanden Boom (in
his senior thesis at ND), gave a different proof, and an effective
version.



Vanden Boom

Effective Borel hierarchy. The effective Borel sets are obtained
from the basic clopen neighborhoods using c.e. unions and
intersections.

Theorem (Vanden Boom, 2007). A set B C Mod(L), closed
under isomorphism, is effective X, (for o > 1) iff it is axiomatized
by a computable ¥, formula.

Vanden Boom's proof used forcing. The formulas that define
forcing substitute for Vaught transforms. Relativizing Vanden
Boom's Theorem, we get Vaught's.



Borel embeddings and Borel cardinality

Definition (H. Friedman & Stanley, 1989). Let K C Mod(L),
K’ C Mod(L"), both closed under isomorphism. A Borel
embedding of K in K’ is a Borel function ¢ : K — K’ s.t. for

A Be K, A= Biff &(A) = &(B).

Notation: We write K <g K’ if there is such an embedding. We
write K <g K" if K <g K" and K’ £5 K, and we write K =g K’
if K<g K" and K' <g K.

Definition. The Borel cardinality of K is its =g-class.



On top

Theorem (Lavrov, Maltsev, Mekler, Friedman-Stanley,
Marker). The following classes lie on top under <g:

1. undirected graphs

2. fields

3. 2-step nilpotent groups
4. linear orderings

5. real closed ordered fields

New result (Paolini and Shelah). Torsion-free Abelian groups
also lie on top.



Embedding Mod(L) in undirected graphs

Theorem (Lavrov, 1963). Mod(L) <g undirected graphs.

There are slightly different embeddings due to Marker, Nies. We
follow Marker.

We start with the case where L has just one binary relation
symbol-Mod(L) is the class of directed graphs. The embedding ¢
takes a directed graph (A, —) to an undirected graph (B, —) with
a special point b, representing each a € A and a special point
P(a,2') representing each ordered pair (a,a’). The following picture
shows how the embedding works.



Picture

P(a,a’)



More

To see that ® is 1 — 1 on isomorphism types, we note that there is
a copy of A defined in ®(.A)—the definition uses finitary
existential formulas.

To embed Mod(L) in undirected graphs, we use more special
points and more n-gons.



fields <pg 2-step nilpotent groups

Maltsev, 1960. Let ¢ take each field F to its Heisenberg group
H(F), consisting of matrices of form

O O =
O~ L
= O 0

where a,b,c € F.

Maltsev gave finitary existential formulas that define a copy of F in
H(F) with an arbitrary non-commuting pair as parameters.

Theorem (Alvir-Calvert-Goodman-Harizanov-K-Miller-
Morozov-Soskova-Weisshaar). There are finitary existential
formulas that, for all fields F, effectively interpret F in H(F).



graphs <g linear orderings

Friedman and Stanley defined an embedding ¢ of graphs in linear
orderings. The proof that ® is 1 — 1 does not involve a definition
or interpretation.

Theorem (Harrison-Trainor-Montalban, 2020;
K-Soskova-Vatev, 2020). There do not exist L., formulas that,
for all graphs G, define an interpretation of G in ®(G).



Below the top

The following classes lie strictly below the top, for different reasons:

1. @Q-vector spaces—only Ry isomorphism types,

2. subfields of the algebraic numbers—isomorphism relation is
Borel,

3. Abelian p-groups—subtler reason.



Turing computable embeddings

Kechris suggested that my students and | consider effective
embeddings.

Definition (Calvert-Cummins-K-Quinn, 2004). For classes

K, K’, closed under isomorphism, a Turing computable embedding
of K in K" is a Turing operator ® : K — K’ s.t. for A,B € K,
A= Biff O(A) = O(B). We write K < K.

The Borel embeddings of Friedman-Stanley, Lavrov, Mekler,
Maltsev, Marker are Turing computable.



Pullback Theorem

Theorem (K-Quinn-Vanden Boom, 2007). Suppose K <; K’
via . For any computable infinitary sentence ¢ in the language of
K’, we can find a computable infinitary sentence ¢* in the
language of K s.t. for all A € K, A |= ¢* iff ®(A) = . Moreover,
for0<a< wch, if ¢ is computable ¥, then so is ¢*.

Example. For each n > 1, there is a ¥ >-sentence @, saying of a
QQ-vector space that the dimension is at least n. If

K < Q-vector spaces, then the pullbacks of the sentences ¢,
describe invariants for K.



Relativizing the Pullback Theorem

Corollary. Let ® be a continuous embedding of K in K’. For
0 < a < wz, for any X, sentence ¢ in the language of K’, there is
a X, sentence ¢* in the language of K s.t. for A € K, A = ¢* iff

®(A) F ¢

Proof: There is a set X s.t. ® is X-computable, the ordinal « is
X-computable, and ¢ is X-computable ¥ . Then we have a
pullback ¢* that is X-computable ¥,.



Invariants

Suppose K <g K’ via . The embedding ® reduces the
classification problem for K to that for K’. If we have useful
invariants for K’, then we do for K as well.

Having the same Borel cardinality means essentially having the
same invariants. Exactly what counts as useful invariants is vague.

1. Q-vector spaces: dimension—universally accepted as useful.

2. Abelian p-groups: Ulm sequence plus dimension of the
divisible part—complicated, but accepted as useful by some
people.



Torsion-free Abelian groups

Let TFA, be the class of torsion-free Abelian groups of rank n.
These are the groups isomorphic to subgroups of Q" with n
Z-linearly independent elements.

We can describe a group in TFA; by taking a non-zero element a
and saying which prime powers divide a. For a different non-zero
element &', the sets we obtain differ only finitely. Baer gave
invariants based on this fact. According to Hjorth and Thomas,
the invariants for TFA; are generally accepted as useful

For n > 2, Maltsev and Kurosh gave invariants for groups in TFA,.
Hjorth and Thomas report that Fuchs dismissed these as no better
than the group itself—they are not generally accepted as useful.



Borel cardinality increases with n

Theorem (Hjorth, 1999). TFA; <g TFA;
Theorem (Thomas, 2001). For n > 2, TFA, <g TFA +1.

Current project, joint with Ho, Miller: Use tools from
computability to show, in simpler way, that

TFAl <tc TFA2 <tc TFA3 <tc

Also, show that the Paolini-Shelah embedding of graphs in
torsion-free Abelian groups does not come from a uniform
interpretation.



