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Dynamic Reachability in Practice: Social Networks
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The Dynamic Setting: Reachability
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The Dynamic Setting
Dynamic Evaluation of a query

changes
Input data

Auxiliary data

Query result

‚ DynFO: Auxiliary relations are updated using first-order logic

...queries “maintainable” by first-order logic
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Example 1: Reachability, Insertions only
Example
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Simple idea

‚ Store the transitive closure of the edge relation in a binary auxiliary

relation T ☞[Dong, Su 93/95; Patnaik, Immerman 94/97]

Update rule

‚ on insert pu, vq into E

update T px, yq as T px, yq _
`

T px, uq ^ T pv, yq
˘

‚ determines the pairs px, yq in T after insertion of pu, vq to E

‚ Transitive closure does not suffice for edge deletions [Dong, Libkin, Wong 95]
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Example 2: Reachability, with Deletions, Acyclic Graphs Basics

and Recent Directions
Example
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‚ For directed acyclic graphs, Reachability can be maintained with first-

order updates [Dong, Su 93/95; Patnaik, Immerman

94/97]

Challenge

‚ How to express, that there is still a path p from x to y after deleting

edge pa, bq?

Simple cases Epx, yq, T px, aq, T pb, yq, . . .
Otherwise p must have a last node u “ y from which a can be

reached

¨ ¨ ¨ _ Du, v
`

pu “ a _ v “ bq^

T px, uq ^ Epu, vq ^ T pv, yq^

T pu, aq ^  T pv, aq
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Why DynFO?
‚ A query can be maintained in DynFO, if

and only if it can be maintained

‚ by polynomially many parallel processors

in time Op1q

‚ by means of the relational algebra

☞ aka core SQL

‚ in AC0
☞ the “lowest complexity class”
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Goals of this Research
General goals of our research

‚ Understand the expressive power of

DynFO

‚ Which queries are in DynFO?

§ General techniques for DynFO pro-

grams

‚ Which queries are not in DynFO?

§ Methods for inexpressibility results?

Lessons learned:

‚ In the dynamic setting, first-order logic

is much more powerful than in the static

setting

‚ Inexpressibility results are hard to obtain
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Dynamic Complexity: Our Setting in More Detail
‚ Our setting, in a nutshell

Simple change operations

‚ Insertion of a single tuple: insert pu, vq

‚ Deletion of a single tuple: delete pu, vq

Fixed universe

‚ Set of nodes is fixed, for each computation

☞ n “ number of nodes

Dynamic program

‚ One update formula per change operation and

auxiliary relation

‚ One auxiliary relation yields the output

Initialisation

t

s

In principle

‚ empty input and empty auxiliary data

‚ But we can always˚ assume the nodes are

numbers 1, . . . , n and formulas can use

☞ ˚: almost

§ a linear orderď on the nodes, and

§ addition and multiplication relations
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Short History of Dynamic Complexity

(TZ)
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queries

Lower bounds

for restricted
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Undirected Reachability in DynFO (1/3)
‚ We already know:

Theorem [Patnaik, Immerman 94/97]

‚ ACYCLIC REACH P DynFO

SYM-REACH

‚ Reachability for undirected graphs

‚ There are several proofs for

SYM-REACH P DynFO

‚ We look at the simplest and first proof by

[Patnaik, Immerman 94/97]
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Undirected Reachability in DynFO (2/3)

(NV)

Example: Insertion

1

2 3 4 5

6 7

8 9 10 11

Basic idea

‚ Maintain a spanning forest F and its transi-

tive closure T

‚ On arrival of a new edge, add it to F , if it

connects two distinct components

Example: Deletion

1

2 3 4 5

6 7

8 9 10 11

a b

u v

‚ Deletion is more tricky, again

‚ How to modify the spanning tree if an edge pa, bq
is deleted but its component remains connected?

§ Determine nodes u and v in the subtrees of a
and b, respectively, such that pu, vq P E, and

add pu, vq to F

‚ This can be done with

§ a more sophisticated relation T with all triples

pd, e, gq for which there is a path in F from d
to e through g

§ some order on the edges to choose pu, vq
uniquely
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Undirected Reachability in DynFO (3/3)
Theorem [Patnaik, Immerman 94/97]

‚ SYM-REACH P DynFO

‚ Is the ternary auxiliary relation T neces-

sary? ☞ No

k-ary DynFO

‚ Queries in DynFO that can be main-

tained with (at most) k-ary aux relations

Theorem [Dong, Su 95/98]

‚ SYM-REACH P binary DynFO

‚ SYM-REACH R unary DynFO
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Results about Directed Reachability
Conjecture [Patnaik, Immerman 97]

‚ Reachability is in DynFO

Reachability is in DynFO for

‚ acyclic graphs [Patnaik, Immerman 94/97]

‚ undirected graphs

[Patnaik, Immerman 94/97; Dong, Su 98, Grädel,

Siebertz 12]

‚ embedded planar graphs [Datta, Hesse,

Kulkarni 14]

Reachability is in DynFO extended by

‚ counting quantifiers [Hesse 01]

‚ modulo-2 counting quantifiers [Datta,

Hesse, Kulkarni 14]

Theorem [Datta, Kulkarni, Mukherjee, TS, Zeume 15]

‚ Reachability is in DynFO
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Directed Reachability in DynFO: Outline
Definition: REACH

Input: Directed Graph G

Result: All pairs ps, tq for which there is a path

from s to t in G

Definition: FULLRANK

Input: pmˆmq-matrix A with values

from t0, . . . ,mu

Question: Does A have full rank m?

Definition: FULLRANKMODP

Input: pmˆmq-matrix A with values

from t0, . . . ,mu, prime p ď m2

Question: Does A have full rank m over Zp?

Structure of the proof

‚ We show:

(1) REACH ďbfo-ttr`,ˆs FULLRANK

(2) FULLRANK ďbfo-tt FULLRANKMODP

(3) FULLRANKMODP P DynFOp`,ˆq
(4) For domain independent Q:

Q P DynFOp`,ˆqñQ P DynFO

Further ingredients

‚ DynFO is closed underďbfo-tt-reductions

‚ DynFOp`,ˆq is closed underďbfo-ttr`,ˆs-

reductions

‚ REACH is domain independent

‚ All steps (1)-(4) are relatively simple and build

on previous work
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REACH vs. FULLRANK (1/2)
Example
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REACH vs. FULLRANK (2/2)
Proof idea

‚ Let G be a graph with n vertices and

AG its adjacency matrix

‚ pAGq
irs, ts “ 0 ðñ

there is a path of lengthď i from s to t

Observation (e.g.: Laubner 11)

‚ I ´ 1

n
AG is invertible and

pI ´
1

n
AGq

´1 “ I `
8
ÿ

i“1

p
1

n
AGq

i

➨ the s, t-entry of this matrix is zero

ðñ t is not reachable from s

‚ B
def

“ nI´AG ☞ integer matrix

The following are equivalent:

‚ t is not reachable from s

‚ B´1rs, ts “ 0

‚

B x et
¨
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˝
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¨

¨
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˚
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‚
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˚
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A Corollary: Regular Path Queries
Regular Path Queries and Reachability

‚ Let R be a regular language over Σ

‚ The regular path query qR over graph databases asks

for all pairs pu, vq, for which there is a path from u to v
with label sequence in R

‚ Let G “ pV,Eq with edge labels from alphabet Σ

‚ Let A be an NFA for R with state set Q and unique

initial and final states p0 and pf

‚ Let the product graph G ˆA have

§ node set V ˆQ,

§ edge pi, pq Ñ pj, qq

if i
σ
Ñj and p

σ
Ñq, for some σ P Σ

‚ There is an R-path in G from u to vðñ
pv, pf q is reachable from pu, psq in G ˆA

‚ ... and every change in G yieldsď |Q| changes in

G ˆA ☞ bfo-reduction

➞ Since Directed Reachability is in DynFO, Regular Path

Queries are in DynFO as well
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A Useful Technique: Muddling
Gt´ℓ Gtδ1 δ2

Basic idea of muddling

‚ To give the correct answer for graph Gt

(at time t) do the following:

(1) For a suitable ℓ, start the computation of

a solution from scratch at time t ´ ℓ for

Gt´ℓ ☞ Start over

(2) Update the computed solution for the

ℓ changes between t ´ ℓ and t with

constant speed-up ☞ Muddle through
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Muddling: basic idea
Gt´ℓ Gtδ1 δ2

Start over Muddle through
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Muddling Lemma
Muddling Lemma [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ A query Q is in DynFO, if it has the following property:

§ From a graph G of size n

§ ... one can compute auxiliary relations in AC1 ...

§ ... based on which the query can be FO-maintained

for logn change steps

What is AC1?

‚ AC1 is a complexity class based on circuits of logarith-

mic depth

‚ LOGSPACE Ď NL Ď AC1

‚ It can be characterised in terms of a limited fixed-point

process: ☞ Immerman

‚ AC1 “ INDplognq,
i.e., all queries that can be evaluated by Oplognq
many applications of the same FO-formula

Example

‚ logn`1 applications of

ϕpx, yq “ Epx, yq _ DzpT px, zq ^ T pz, yqq
yield the transitive closure of a graph
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Application: 3-COL on bounded tree-width Graphs
Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ 3-COL can be maintained in DynFO on

graphs of bounded tree-width

Thomas Schwentick Dynamic Complexity: Basics and Recent Directions . �� 22



Tree decompositions

(NV)

An input graph ...
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Application: 3-COL on bounded tree-width Graphs
Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ 3-COL can be maintained in DynFO on graphs

of bounded tree-width

Challenge

‚ A small change of the graph might induce a big

change of the tree decomposition

Muddling can help!

‚ Tree decompositions can be computed in loga-

rithmic space ☞ [Elberfeld, Jakoby, Tantau 10]

‚ ...thus in AC1

‚ ...thus in INDplognq

‚ Therefore muddling allows us, in principle, to

compute a tree decomposition

Question

‚ Can we maintain it for Oplognq change steps?

‚ Probably not

‚ But with a slightly outdated tree decomposition

we can muddle through for Oplognq many

changes
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3-COL on btw-graphs: Illustration
Gt´ℓ Gtδ1 δ2

1. Compute tree de-

composition for

Gt

2. Check colourability

of triangles

3. Apply recent

change opera-

tions and mark

nodes as special

4. Check colourability

‚ Phase 1&2:
1

2
logn steps

‚ Phase 3:
1

2
logn steps

‚ Phase 4: 1 step ☞ ℓ “ 1 ` logn
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3-COL on btw-graphs: More detail (1/2)

(NV)

‚ Compute colourability information for all trian-

gles of the decomposition

Triangle

‚ Three bags B1, B2, B3

§ B2 is in the subtree of B1

§ B3 is in the subtree of B1

§ B2 is no predecessor or descendant of B3

Boundary

‚ All nodes in B1, B2, B3

Basic Idea

‚ Maintain all colourings of boundaries of

triangles that can be extended to valid 3-

colourings of the inner part of the induced

graph ☞ slightly simplified
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3-COL on btw-graphs: More detail (2/2)

(NV)

‚ If v is affected by a change: declare one bag of

v as special ☞ special nodes

‚ After logn changes:

Oplognq nodes are special

‚ Existentially quantify colouring C of special

nodes

➞ MSO on subgraph with Oplognq nodes

☞ to be addressed later

‚ Check: C is a valid 3-colouring of the graph

induced by the special nodes

‚ Use auxiliary relations to check that C can be

extended for the whole graph

5

6

7

45

7

2

4

3

45

1 3

5

7 8

9

7 8

10

8

10

12

1011

7

13

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ Every MSO-definable query can be maintained

in DynFO on graph classes of bounded tree-

width
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Towards a more Practical Setting
‚ Allow more complex changes

‚ Consider overall work
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Complex Changes
‚ So far we only considered very simple

change operations:

§ Insertion or deletion of a single tuple

§ No change of the universe/domain

‚ What about other kinds of changes?

“Arbitrary Changes”?

‚ If the database can change arbitrarily

in one step, only FO-properties can be

maintained in DynFO

‚ We consider two kinds of “non-arbitrary”

complex changes

‚ ... with a limited number of changed

tuples

‚ ... complex changes that are defined by

formulas ☞ core SQL updates
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Undirected Reachability under Complex Changes
Theorem [S., Vortmeier, Zeume 17]

‚ Reachability is in DynFO for undirected graphs in the pres-

ence of

§ single-tuple insertions and deletions and

§ FO-defined insertions

‚ Technique relies on a “bridge bound”

‚ Builds on spanning tree approach

s t

b1 b2

¨ ¨ ¨

bm
bm`1

‚ In a nutshell each sufficiently long path between connected

components has a shortcut

‚ In general, the “bridge bound” can be non-elementary

‚ But for insertions defined by certain simple formulas (unions

of conjunctive queries, UCQs), the number of bridges is

small ☞ 2ˆ #-of-CQs

➞ Prototypical implementation works quite well
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Reachability under logn insertions (1/2)
Theorem [Vortmeier, Zeume 19 (unpublished)]

‚ Reachability is in DynFO˚ under

logn insertions

☞ ˚: If formulas can use ` and ˆ

Proof idea

(1) Compute Reachability for the logn
affected nodes, and

(2) Combine this information with the

Reachability information for the rest

of the graph

Idea for (1)

‚ Reachability between two nodes x, y can be expressed

by a monadic second-order (MSO) formula:

@X
`

Xpxq ^ @v@w
`

Xpvq ^ Epv, wq Ñ Xpwq
˘

Ñ Xpyq
˘

Insight

‚ In our context, quantification of X is a-priori restricted to

the subset W of affected nodes of size logn

➨ The second-order DX quantification ☞ restricted to W!

can be replaced by a first-order quantification Dx
☞ over all nodes!

Because:

‚ one node of the graph carries logn bits of information

‚ and this information can be decoded with the help of`
andˆ
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Reachability under logn insertions (1/2)

(NV)

Proof idea (cont.)

‚ Assume that the transitive clo-

sure TG of graph G is given

‚ After insertion of logn nodes

‚ ... let H be the graph induced

by the affected nodes in the

resulting graph G1 ...

‚ ... with the newly inserted edges

‚ ... and additional edges for paths

in G

‚ Compute transitive closure TH

of H

‚ Combine TH with TG to get

TG1

Proof idea (cont.)

G:

H :H :

G1
:
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Work-efficiency
‚ q P DynFOñ
q can be maintained in time Op1q on a

PRAM

‚ That sounds quite efficient?

‚ But is it?

‚ An important quantity of a parallel algo-

rithm is its work, i.e., the overall number

of steps of all processors

Work of a dynamic program

‚ Rough upper bound: Opna`dq
§ a: arity of auxiliary relations

§ d: quantifier depth of update formulas

Question

‚ Which queries can be maintained in a

(reasonably) work-efficient way?

‚ First study: word membership queries for

formal languages
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Dynamic complexity of formal languages: setting
Definition

‚ A word structure W representing a string w
consists of

§ a set of positions t1, ..., nu,
§ with an orderingă,

§ and one unary relation Sσ for each alpha-

bet symbol σ.

‚ For every i, there is at most one σ with

i P Sσ

§ In that case: Wi
def

“ σ

§ Otherwise: Wi
def

“ ǫ

‚ The word represented by W is W1 ¨ ¨ ¨Wn

Example

‚ The word structures

§ b b c c and

§ b b c c

both represent the same string bbcc

‚ We allow two kinds of update operations:

§ operation insσpiq, inserts i in Sσpiq and

deletes it from all Sσ1piq, for σ1 ‰ σ,

§ operation delpiq, setting all Sσpiq to false.

‚ The linear order can not be changed!

Example

b c b c

‚ inscp2q , delp4q, insbp6q
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Dynamic Complexity of Formal Languages
Definition

‚ DynProp:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux rela-

tions

‚ DynQF:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux func-

tions (and relations)

✎ DynQF formulas can use “if-then-else”-terms

Theorem [Patnaik, Immerman 94/97]

‚ Reg Ď DynFO

‚ All Dyck languages can be maintained in

DynFO

Theorem [Hesse 03]

‚ Reg Ď DynQF

Theorem [Gelade, Marquardt, TS 09/12]

‚ With respect to formal languages: DynProp “
Reg

Theorem [Gelade, Marquardt, TS 09/12]

‚ CFL Ď DynFO

‚ All Dyck languages can be maintained in

DynQF

Corollary

‚ DynProp Ĺ DynQF
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Reg Ď DynProp
Proof idea

‚ Let A “ pΣ, Q, δ, s, F q be a DFA for the regular language L

‚ Maintain Rp,qpi, jq ” δ˚pp,wi`1 ¨ ¨ ¨wj´1q “ q

Example

w1 ¨ ¨ ¨ wi wi`1 ¨ ¨ ¨ ¨ ¨ ¨ wj´1 wj ¨ ¨ ¨ wn

p q

wk´1 wk`1

p1 p1

Proof sketch (cont.)

‚ on insert k into Sσ update Rp,qpi, jq as
„

pi ă k ă jq ^
ł

δpp1,σq“q1

pRp,p1pi, kq ^Rq1,qpk, jqq



_ ¨ ¨ ¨

‚ on delete k from Sσ update Rp,qpi, jq as
„

pi ă k ă jq ^
ł

p1

pRp,p1pi, kq ^Rp1,qpk, jq



_ ¨ ¨ ¨

‚ Work: θpn2q
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First Results (FoSSaCS 2021)
‚ Introduction of PRAM-like syntax for DynFO programs

‚ Upper bound results for maintaining formal language membership

queries

‚

Language class Sequential time DynFO work

FO definable Oplog lognq Oplognq

Regular Op logn

log logn
q Opnǫq for ǫ ą 0

Dyck1 Oplogn log lognq Oplog3 nq

Dyckk Oplog3 n log
˚ nq Opn log

3pnqq

(Sequential update time bounds: [Frandsen et al. 95/97])

‚ Currently: graph queries
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Lower bounds: a sad state
Easy observation

‚ q P DynFO ñ q P PTIME

§ Just insert the tuples of D into an

empty database one by one, and

compute all updates

‚ So far there are no other general lower

bound results for DynFO

‚ We cannot rule out that: DynFO “ P

‚ Most existing lower bounds apply to

§ auxiliary relations of bounded arity or

§ restricted logics or

§ both...
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Reachability is not in unary DynFO (1/2)
Theorem [Dong Su 95/98]

‚ REACH R unary DynFO

‚ unary DynFO: Update programs with unary auxiliary

relations

Proof sketch

‚ Proof by contradiction with a locality argument

‚ Assume there is a unary dynamic program for REACH

with m unary aux relations and a rule

on delete pu, vq from E
update Qpx, yq as ϕpu, v, x, yq

with ϕ of quantifier-depth k

‚ The aux relations induce, for each node, one of 2m

colours

‚ Consider a graph consisting of a sufficiently long path

withě 4p2 ¨ 4k ` 2q2mp2¨4k`2q nodes
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Reachability is not in unary DynFO (2/2)
Example

p1 p2 p3 p4

u1v1 u2v2 u3v3 u4v4

Proof sketch (cont.)

‚ Since the path is long enough, there must exist four disjoint subpaths of length 2 ¨ 4k ` 2 each

with identical color (relations) sequence

‚ Let pu1, v1q, . . . , pu4, v4q be the innermost edges of these subpaths

‚ After deletion of pu3, v3q,
§ u2 is still reachable from v1, but

§ u4 is no longer reachable from v1

‚ The 4k-neighborhoods of pv1, u3, v3, u2q and pv1, u3, v3, u4q are isomorphic

➨ ϕpu3, v3, v1, u2q ” ϕpu3, v3, v1, u4q by Gaifman’s Theorem

➨ After deletion of pu3, v3q, the program gives the same answer for pv1, u2q and pv1, u4q

➨ The program is wrong with respect to either pv1, u2q or pv1, u4q, the desired contradiction
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Dynamic programs with quantifier-free formulas
‚ Hesse initiated the study of dynamic programs

with quantifier-free update formulas [Hesse 03]

Definition

‚ DynProp:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux rela-

tions

‚ DynQF:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux func-

tions (and relations)

✎ DynQF formulas can use “if-then-else”-terms

‚ Quantifier-free update formulas? Isn’t that ex-

tremely weak?

Theorem [Hesse 03]

‚ Reachability is in DynProp for deterministic

graphs ☞no quantifiers, aux relations

Theorem [Hesse 03]

‚ Reachability is in DynQF for undirected graphs

☞ no quantifiers, unary aux functions & relations
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Some Further Inexpressibility Results
Theorem [Gelade, Marquardt, Schwentick 08/12]

‚ Alternating Reachability R DynProp

‚ FO Ď DynProp

Theorem [Zeume, Schwentick 13]

‚ REACH R binary DynProp

Theorem [Zeume 14]

‚ If only edge insertions are allowed:

§ k-CLIQUE can be maintained in

pk´1q-ary DynProp

§ k-CLIQUE R pk´2q-ary DynProp
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Conclusion
‚ DynFO is far more powerful than ex-

pected

‚ Upper bound results might be even

“practical”

‚ Lower bounds for DynFO seem hope-

less

‚ A lot remains to be done

§ Applications of the Reachability result

§ Implementations

§ Further exploration of linear algebra

approaches

§ ...
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