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The Dynamic Setting: Reachability
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The Dynamic Setting

Dynamic Evaluation of a query

changes
———— | |- ——— > ---=> Input data
s \/R‘ h
.................. Auxiliary data
( 3 3 N
Query result
e DynFO: Auxiliary relations are updated using first-order logic

...queries “maintainable” by first-order logic
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Example 1: Reachability, Insertions only
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T 3 T/ 03

e Store the transitive closure of the edge relation in a binary auxiliary
relation T’ 12" [Dong, Su 93/95; Patnaik, Immerman 94/97]

Update rule

e oninsert (u,v) into E
update T'(z, y) as T'(z,y) v (T(z,u) A T(v,y))

e determines the pairs (x, y) in T after insertion of (u, v) to E

e Transitive closure does not suffice for edge deletions [Dong, Libkin, Wong 95]
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Example 2: Reachability, with Deletions, Acyclic Graphs Basics

e For directed acyclic graphs, Reachability can be maintained with first-
order updates [Dong, Su 93/95; Patnaik, Immerman
94/97]

Challenge

e How to express, that there is still a path p from x to y after deleting
edge (a, b)?
Simple cases E(x,y), ~T(x,a), T (b,y), ...
Otherwise p must have a last node u = y from which a can be
reached

v Iu,v((u=avv=>bA
T(x,u) A E(u,v) A T(v,y)A
T(u,a) A =T (v, a)
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Why DynFO?
e A query can be maintained in DynFO, if
and only if it can be maintained

e by polynomially many parallel processors

intime O(1)

e by means of the relational algebra
=" gka core SQL

e in AC 1= the “lowest complexity class”
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Goals of this Research
General goals of our research

e Understand the expressive power of
DynFO

e Which queries are in DynFO?
» General techniques for DynFO pro-
grams
e Which queries are not in DynFO?
» Methods for inexpressibility results?

Lessons learned:

e In the dynamic setting, first-order logic
is much more powerful than in the static
setting

e Inexpressibility results are hard to obtain
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Dynamic Complexity: Our Setting in More Detail
e Our setting, in a nutshell Initialisation

Simple change operations

@)
@)

e Insertion of a single tuple: insert (u, v) i © O

e Deletion of a single tuple: delete (u, v) PP

.

e Set of nodes is fixed, for each computation t ©
I5" 1 = number of nodes l

Dynamic program

e One update formula per change operation and !
auxiliary relation

e One auxiliary relation yields the output

In principle

e empty input and empty auxiliary data

e But we can always™ assume the nodes are
numbers 1, ..., 7 and formulas can use
= % almost

» alinear order < on the nodes, and
» addition and multiplication relations
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Complex Changes, Muddling,
Work

Reach in non-uniform  Reach in DynFO
DynAC? (D]

Lower bounds

Connections to for small syntactic
static complexity fragments

classes

E. Gréadel

Reach in dynamic TC®

Maintaining  Lower bounds
basic graph  for restricted
queries Arity

W. Hesse K. Etessami

Introduction of the setting

S. Patnaik N -~
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Undirected Reachability in DynFO (1/3)

e We already know:

Theorem [Patnaik, Immerman 94/97]

e ACYCLIC REACH € DynFO

SYM-REACH

e Reachability for undirected graphs

e There are several proofs for
SYM-REACH € DynFO

e We look at the simplest and first proof by
[Patnaik, Immerman 94/97]
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Undirected Reachability in DynFO (2/3)

2 3 4 5
7N\
]
@)
8 9 10 11
Basic idea

e Maintain a spanning forest F' and its transi-
tive closure T’

e On arrival of a new edge, add it to F', if it
connects two distinct components
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e Deletion is more tricky, again

10 11

e How to modify the spanning tree if an edge (a, b)
is deleted but its component remains connected?

» Determine nodes « and v in the subtrees of a
and b, respectively, such that (u, v) € F, and
add (u,v)to F’

e This can be done with

» a more sophisticated relation 1" with all triples
(d, e, g) for which there is a path in F" from d
to e through g

» some order on the edges to choose (u, v)
uniquely

10 (NV)
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Undirected Reachabiliti in DynFO (3/3)
Theorem [Patnaik, Immerman 94/97]

e SYM-REACH € DynFO

e |s the ternary auxiliary relation I' neces-
sary? =" No

k-ary DynFO

e Queries in DynFO that can be main-
tained with (at most) k-ary aux relations

Theorem [Dong, Su 95/98]

e SYM-REACH € binary DynFO
e SYM-REACH ¢ unary DynFO
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Results about Directed Reachability

Conjecture [Patnaik, Inmerman 97]

e Reachability is in DynFO

Reachability is in DynFO for

e acyclic graphs [Patnaik, Immerman 94/97]

e undirected graphs
[Patnaik, Immerman 94/97; Dong, Su 98, Gradel,
Siebertz 12]

e embedded planar graphs [Datta, Hesse,
Kulkarni 14]

Reachability is in DynFO extended by
e counting quantifiers [Hesse 01]

e modulo-2 counting quantifiers [Datta,
Hesse, Kulkarni 14]

Theorem [Datta, Kulkarni, Mukherjee, TS, Zeume 15]

e Reachability is in DynFO
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Directed Reachability in DynFO: Outline
Definition: REACH Structure of the proof

Input:  Directed Graph G e We show:
Result:  All pairs (s, t) for which there is a path (1) REACH Spfo-t[+,x] FULLRANK
fromstotin G (2) FULLRANK <ot FULLRANKMODP
(3) FULLRANKMODP € DynFO(+, X)
Definition: FULLRANK (4) For domain independent QQ:

Q € DynFO(+, x) = Q € DynFO
Input: (1 xm)-matrix A with values
from {0, ..., m}

Question: Does A have full rank 1m12.?

Further ingredients
e DynFO is closed under <-reductions

e DynFO(+, x) is closed under <pfo.u[+,x]-

Definition: FULLRANKMODP reductions
Input: (mxm)-matrix A with values e REACH is domain independent
- 2
from {0, . . . , m}, prime p < M o All steps (1)-(4) are relatively simple and build

Question:  Does A have full rank 1 over Z,? on previous work

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ﬂ <> 15



REACH vs. FULLRANK (1/2)

Example

Example
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REACH vs. FULLRANK (2/2

The following are equivalent:

e Let GG be a graph with n vertices and e t is not reachable from s
A its adjacency matrix e B 1[s,t] =0
e (Ag)'[s,t] =0 . B T et
there is a path of length < 2 fromsto t (w[l] \ 0
Observation (e.g.: Laubner 11) ( - \ ] (O \
1 _ : 1
o | — —AG is invertible and N : = |0

ot Sda L) L)

= the s, t-entry of this matrix is zero has a solution with z[s] = 0

<— t is not reachable from s

B’ T =
e B Z nl—Ag IS integer matrix ( \ (:13[1] \ (g\
. = z|s] o
X : = |
: . . : . ' 0
\0 1 0 0 0/ \e[n] ) 0/

has any solution
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A Corollary: Reqular Path Queries
Regular Path Queries and Reachability
e Let R be aregular language over X2

e The regular path query qr over graph databases asks
for all pairs (u, v), for which there is a path from u to v
with label sequence in R

o Let G = (V, FE) with edge labels from alphabet X

e Let A be an NFA for R with state set Q and unique
initial and final states pg and py

e Let the product graph G x A have
» node set V X Q,

> edge (¢, p) — (4, q)
if i—7 and p—gq, for some o € 3
e There is an R-path in G from u to v <
(v, pg) is reachable from (u, ps) in G x A

e ... and every change in (& yields < |Q| changes in
Gx A 1= bfo-reduction

— Since Directed Reachability is in DynFO, Regular Path
Queries are in DynFO as well

Dvnamic Complexity: Basics and Recent Directions
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A Useful Technique: Muddling

6 Q
@)
L

Basic idea of muddling

e To give the correct answer for graph G'¢
(at time %) do the following:

(1) For a suitable £, start the computation of
a solution from scratch attime t — £ for
Gt—e = Start over

(2) Update the computed solution for the
£ changes between t — £ and t with
constant speed-up 15" Muddle through

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions "F\U.ﬂ <> 19



Muddling: basic idea
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Muddling Lemma
Muddling Lemma [Datta, Mukherjee, S., Vortmeier, Zeume 17]

e A query @D is in DynFO, if it has the following property:
» From a graph G of size n
» ... one can compute auxiliary relations in AC! ...

» ... based on which the query can be FO-maintained
for log 1 change steps

What is AC1?

e AC! is a complexity class based on circuits of logarith-
mic depth

e LOGSPACE C NL < Ac!

e |t can be characterised in terms of a limited fixed-point
process: 5" Immerman

e AC! = IND(log n),
i.e., all queries that can be evaluated by O (log n)
many applications of the same FO-formula

e log n-+1 applications of

90(337 y) = E(:IZ, y) Vv EIZ(T(wv z) A T(z7 y))
yield the transitive closure of a graph

Dvnamic Complexity: Basics and Recent Directions
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Application: 3-COL on bounded tree-width Graphs

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

e 3-COL can be maintained in DynFO on
graphs of bounded tree-width

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions i'U.ﬂ <> 22



Tree decompositions

An input graph ... ... and its tree decomposition

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ”W.ﬂ <> 23 !(NV)



Application: 3-COL on bounded tree-width Graphs

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

e 3-COL can be maintained in DynFO on graphs
of bounded tree-width

Challenge

e A small change of the graph might induce a big
change of the tree decomposition

Muddling can help!

e Tree decompositions can be computed in loga-
rithmic space I [Elberfeld, Jakoby, Tantau 10]

e ..thusin AC!
e ..thusin IND(log n)

e Therefore muddling allows us, in principle, to
compute a tree decomposition

e Can we maintain it for O (log 1) change steps?
e Probably not

e But with a slightly outdated tree decomposition
we can muddle through for O (log 1) many
changes

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions "F\U.ﬂ <>
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3-COL on btw-graphs: lllustration

@ i 2 @ @
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e Phase 1&2: % log 1 steps

e Phase 3: % log n steps
e Phase 4: 1 step il =1+ logn
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3-COL on btw-graphs: More detail (1/2)

Compute colourability information for all trian- (@
gles of the decomposition 5 G‘
1
& J

Three bags B1, B2, B3 o r @

» B> is in the subtree of By

» B3 is in the subtree of By

» B is no predecessor or descendant of Bs &—® \ )

12

All nodes in B, B2, B3

Maintain all colourings of boundaries of
triangles that can be extended to valid 3-

colourings of the inner part of the induced

graph 1= glightly simplified

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions

26

(NV)



3-COL on btw-graphs: More detail (2/2)

e If v is affected by a change: declare one bag of

U as - 5" gpecial nodes o

e After log n changes: (5)
O(log n) nodes are special

e Existentially quantify colouring C' of special
nodes

— MSO on subgraph with O (log 1) nodes
=" to be addressed later

e Check: C'is a valid 3-colouring of the graph
induced by the special nodes

e Use auxiliary relations to check that C' can be
extended for the whole graph

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

e Every MSO-definable query can be maintained
in DynFO on graph classes of bounded tree-
width

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ‘ ﬂ <> 27 (NV)
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Towards a more Practical Setting

e Allow more complex changes

e Consider overall work

Dvnamic Complexity: Basics and Recent Directions
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Complex Changes

e So far we only considered very simple
change operations:

» Insertion or deletion of a single tuple
» No change of the universe/domain

e What about other kinds of changes?

“Arbitrary Changes”?

e If the database can change arbitrarily
in one step, only FO-properties can be
maintained in DynFO

e We consider two kinds of “non-arbitrary”
complex changes

e ... with a limited number of changed
tuples

e ... complex changes that are defined by
formulas 1= core SQL updates

Dvnamic Complexity: Basics and Recent Directions
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Undirected Reachability under Complex Changes
Theorem [S., Vortmeier, Zeume 17]

e Reachability is in DynFO for undirected graphs in the pres-
ence of
» single-tuple insertions and deletions and

» FO-defined insertions

e Technique relies on a “bridge bound”

e Builds on spanning tree approach

b1 b2 bm b +1
s t

e In a nutshell each sufficiently long path between connected
components has a shortcut

e In general, the “bridge bound” can be non-elementary

e But for insertions defined by certain simple formulas (unions

of conjunctive queries, UCQs), the number of bridges is
small 1 2 X H#-0f-CQs

— Prototypical implementation works quite well

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions



Reachability under log n insertions (1/2)
Theorem [Vortmeier, Zeume 19 (unpublished)] |dea for (1)

e Reachability is in DynFO™ under e Reachability between two nodes x, Yy can be expressed
log 1 insertions by a monadic second-order (MSO) formula:
I= %: If formulas can use 4+ and X VX

_ (X (z) A VoYw(X (v) A E(v,w) —> X (w))
)

(1) Compute Reachability for the log n.

affected nodes, and Insight

(2) Combine this information with the e In our context, quantification of X is a-priori restricted to
Reachability information for the rest the subset W of affected nodes of size log nn
of the graph P
drap = The second-order 3.X quantification 1= restricted to W!

can be replaced by a first-order quantification da

Because:

=" gver all nodes!

e one node of the graph carries log 1 bits of information

e and this information can be decoded with the help of +
and X

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ﬂ 1> 32



Reachability under log 1 insertions (1/2)
Proof idea (cont.)

Assume that the transitive clo-
sure T of graph G is given
After insertion of log 72 nodes

... let H be the graph induced
by the affected nodes in the
resulting graph G' ...

... with the newly inserted edges
... and additional edges for paths

in G

Compute transitive closure 1T'gy
of H

Combine T'gr with T to get
Te

Thomas Schwentick

G-

Dvnamic Complexity: Basics and Recent Directions
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Work-efficiency

e g € DynFO =
q can be maintained in time O (1) on a
PRAM

e That sounds quite efficient?
e Butis it?

e An important quantity of a parallel algo-
rithm is its work, i.e., the overall number
of steps of all processors

Work of a dynamic program

e Rough upper bound: @ (n*4)
» a: arity of auxiliary relations
» d: quantifier depth of update formulas

Question

e Which queries can be maintained in a
(reasonably) work-efficient way?

e First study: word membership queries for
formal languages

Dvnamic Complexity: Basics and Recent Directions
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Dynamic complexity of formal languages: setting

e We allow two kinds of update operations:
e A word structure W representing a string w » operation ins, (), inserts 2 in S (%) and
consists of deletes it from all S,/ (2), for o’ # o,
» a set of positions {1, ..., n}, » operation del(%), setting all S, (%) to false.
> with an ordering <, e The linear order can not be changed!

» and one unary relation S, for each alpha-
bet symbol o .

b|lc|b C

e For every 2, there is at most one o with

1€ S, . _
def ins.(2),del(4),insy (6
» Inthatcase: W; = o c(2) (4), insy,(6)

» Otherwise: W; = €

e The word represented by W is W7 - - - W,

e The word structures

»| b b | c c | and

» b | b | C C

both represent the same string bbcc

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ﬁ <> 36



Dynamic Complexity of Formal Languages
Theorem [Patnaik, Immerman 94/97]

Definition

Theorem [Hesse 03]

Theorem [Gelade, Marquardt, TS 09/12]

2 DynQF formulas can use ‘“if-then-else”-terms
Theorem [Gelade, Marquardt, TS 09/12]

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions t'U.i 1> 37



Proof idea

Reg < DynProp

o Let A = (X,Q, 9, s, F) be a DFA for the regular language L

e Maintain Ry, 4(,7) = 6*(p, wiy1- - wj_1) = q

Example
w1 w; |Wiy1] ... | Wk-1 We+1 Wj—1| Wy Wn
p / / q
p p

Proof sketch (cont.)

e oninsert k into S, update R, ,(¢, ) as

[(’i<k<j)/\

V

o(p',o)=q’

e on delete k from S, update R, ,(¢, ) as

e Work: 6(n?)

Thomas Schwentick

[(7: <k <3) A\ (Bpp (i, k) A Rp gk, j)

p

Dvnamic Complexity: Basics and Recent Directions
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First Results (FoSSaCS 2021)
Introduction of PRAM-like syntax for DynFO programs

Upper bound results for maintaining formal language membership
queries

Language class Sequential time DynFO work
FO definable O(loglogn) O(logn)
Regular O(—egn ) O(n€)fore >0

loglogn (
Dyck; O(lognloglogn) O(log®n)
O(

Dyckg, (’)(log3 n log>'< n) n 108 (n))

(Sequential update time bounds: [Frandsen et al. 95/97])

Currently: graph queries

Dvnamic Complexity: Basics and Recent Directions
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Lower bounds: a sad state

Easy observation

e g € DynFO = g € PTIME

» Just insert the tuples of D into an
empty database one by one, and
compute all updates

e So far there are no other general lower
bound results for DynFO
e We cannot rule out that: DynFO = P

e Most existing lower bounds apply to
» auxiliary relations of bounded arity or
» restricted logics or
» both...

Dvnamic Complexity: Basics and Recent Directions
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Reachabiliti is hot in unary DynFO (1/2)
Theorem [Dong Su 95/98]

e REACH ¢ unary DynFO

e unary DynFO: Update programs with unary auxiliary
relations

Proof sketch

e Proof by contradiction with a locality argument

e Assume there is a unary dynamic program for REACH
with m unary aux relations and a rule

on delete (u, v) from E
update Q(x, y) as p(u, v, T, y)

with ¢ of quantifier-depth k

e The aux relations induce, for each node, one of 2™
colours

e Consider a graph consisting of a sufficiently long path
k
with > 4(2 - 4F 4 2)2m(247+2) nodes

Dvnamic Complexity: Basics and Recent Directions
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Reachability is not in unary DynFO (2/2)

p1 D2 p3 y 22

Ui1v1 U2vV2 u3v3s UqV4

Proof sketch (cont.)

e Since the path is long enough, there must exist four disjoint subpaths of length 2 - 4% + 2 each
with identical color (relations) sequence
e Let (uy,v1),..., (g, vyq) be the innermost edges of these subpaths

e After deletion of (ug, v3),
» U- is still reachable from v, but
» U4 is no longer reachable from v

e The 4*-neighborhoods of (v1, us, v, uz) and (v1, Uz, V3, Ug) are isomorphic
» o(us, vz, V1, u2) = p(usz, V3, V1, Uy) by Gaifman’s Theorem

= After deletion of (ug, v3), the program gives the same answer for (v1, u2) and (v1, Ug)

= The program is wrong with respect to either (v1, uz) or (v1, u4), the desired contradiction

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ﬁ <> 43



Dynamic programs with quantifier-free formulas

e Hesse initiated the study of dynamic programs e Quantifier-free update formulas? Isn’t that ex-
with quantifier-free update formulas [Hesse 03] tremely weak?
Theorem [Hesse 03]
e DynProp: e Reachability is in DynProp for deterministic
» Queries that can be maintained in DynFO graphs ¥'no quantifiers, aux relations

\t/:/:;[: squan’ufler-free formulas and aux rela- Theorem [Hesse 03]

e Reachability is in DynQF for undirected graphs
e DynQF:

I=° no quantifiers, unary aux functions & relations
» Queries that can be maintained in DynFO
with quantifier-free formulas and aux func-
tions (and relations)

2 DynQF formulas can use “if-then-else”-terms

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions ﬂ 1> 44



Some Further Inexpressibility Results
Theorem [Gelade, Marquardt, Schwentick 08/12]

Theorem [Zeume, Schwentick 13]

Theorem [Zeume 14]

Thomas Schwentick Dvnamic Complexity: Basics and Recent Directions t'U.i 1> 45
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Conclusion
DynFO is far more powerful than ex-
pected

Upper bound results might be even
“practical”

Lower bounds for DynFO seem hope-
less

A lot remains to be done
» Applications of the Reachability result
» Implementations

» Further exploration of linear algebra
approaches

Dvnamic Complexity: Basics and Recent Directions
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