Homework 3 Logic for Computer Science

- 1. Show that a formula of modal logic is satisfiable iff it is satisfiable in an acyclic model (one where the frame is (W, R) such that for no $w \in W$, we have wR^*w).
- 2. Let (M, u) and (N, v) be model point pairs, and E_1 and E_2 be bisimulations on them. Then is $E_1 \cap E_2$ also a bisimulation on them (and why / why not) ?
- 3. In each case below, consider modal logic defined over frames where the accessibility relation R satisfies the property as specified. In each case, give formulas valid over models based on these frames, and discuss whether the canonical model has the property given below.
 - (a) for all $w, w_1, w_2 \in W$, if $(w, w_1) \in R$ and $(w, w_2) \in R$, then there exists $w_3 \in W$ such that $(w_1, w_3) \in R$ and $(w_2, w_3) \in R$.
 - (b) R is reflexive, transitive and has no maximal elements.
- 4. Are the properties of irreflexivity and anti-symmetry definable in basic modal logic? Justify your answers.
- 5. Consider modal logic over equivalence frames. Give a complete axiom system for its valid formulas and a decision procedure for satisfiability.
- 6. Give an algorithm to check satisfiability of a given modal formula over reflexive and transitive models.
- 7. Consider modal logic with the accessibility relation $R = (W \times W) \setminus Id$. That is, the modality is a difference operator, interpreted over worlds different from the current world. Is this logic decidable? Is this operator already definable in basic modal logic? Give a complete axiom system for its valid formulas.