Lecture 1

- matte matical loge
study of mathematical reasoning
What is our language to do such

A game of Y / N questions!

- Guess a number

1. Io the number even? Y
2. Is the number <100 ? Y
3. Io the number <50? N

- Guess a group!

1. Is it finite? Y
2. Is it cyclic? Y
3. Is the order of the group prime? N

- Guess a graph !

1. Is it a complete graph? y
2. Is the graph connected? Y
3. Are the number of nodes ≤ 5 ? y

Natural numbers

$$
\overline{0, S,\langle,\rangle, t, \cdots}, 1=(\exists x((a+x=b)
$$

$\frac{\text { Group e }}{\text { * }, ~ e}$
Commutativity $\wedge\urcorner(x=0))$
$\frac{\text { Graphs }}{E: \text { edge relation }}$
 not and or implies of
I, \forall : quantifiers.

$$
x_{1}, x_{2}, x_{3}, \ldots . . \quad \text { variables }
$$

Common syubts tret we use to talk about matte matics

- Language of naturnal numbers

$$
(0, S,+,,<) \quad(=)
$$

$$
\begin{gathered}
S: \mathbb{N} \rightarrow \mathbb{N} \\
S(0): 1 \\
S(S(0)): 2
\end{gathered}
$$

constant function relation
symbol symbols symbol

- Language of groups

$$
(=)
$$

constant function
syrubol symbol

- Language of graphs

$$
\begin{aligned}
(,, & E) \\
& \downarrow \\
& \text { relation } \rightarrow \text { predicate } \\
& \text { symbol }
\end{aligned}
$$

First - order languages.
Parameters of the language $(l, f, 8)$
$l:$ a countable collection of constant symbols
I: a countable collection of function syn bold.
Pe a countable collection of predicate. symbols

- fer each $f \in \mathcal{F}$, \#(f) given the airily of f.s. f.
- far rack $p \in f O, \#(p)$ ques the arity of $p . s$. p

Examples: $2 x+3 y, 5 x_{1}+7 x_{2}+9 x_{3}+10 x_{y}$.

$$
\left.\begin{array}{l}
2 x+3 y=5 x+7 y \\
5 x+2 y+6 z=0
\end{array}\right\} \frac{\text { terms }}{\text { formulas }}
$$

Formulas

- A primitive formula is formula
- If φ and ψ are formulas then. $\varphi \wedge \psi, \phi \vee \psi, \varphi \rightarrow \psi, \varphi \leftrightarrow \psi, \tau \varphi, \tau \psi$ are formulas
- It φ is a formula and x is a variable then $\forall x \varphi, \exists x \varphi$ are formulas

What is a primitive formula?
We answer this in the next class

