Lecture 14

As we mentioned in the last class, we have a model set \$, say . We need to find a model Ms = (Ds, Is, Ys) s.t. Ms Fq M qEA. Now, suppose that we have Ms (by magic, ray). To prove Ms Fq iff QEK, we apply induction on the size of q Base case : (1) $\varphi := t_1 \equiv t_2$ (2) $\varphi := p_1^n t_1 \cdots t_n$ Induction Mypollusis : Suppose the result holds for all formulas of size < m Induction Step: Consider q to be of size m+1. Then we have the following cases : (1) $q := \chi q$ (2) $q := \chi V \chi, \chi \Lambda \chi, \chi \to \chi, \chi \to \chi$ (3) q := Vr4, Jr4 Let us now suppose that the result for the

base cases hold fet us now consider the induction step cases (1) q := 74. [MD FQ iff QEA] MaFq iff MaF7Y iff Matty if YED H JYED H QED. (2) q != YVX [Matq iff QEA] Moto ill Motovill Moto n Moto HYEDOXED HEAVYED HEA (Sinicharly, the proofs for the cases YAX, Y-JX, YK-)X) For proving we need the CPL anions and rule Arion and rule set (1) $A1 q \rightarrow (\gamma \rightarrow q)$ $A2 \left(\varphi \rightarrow (\psi \rightarrow \chi) \right) \rightarrow \left(\left(\varphi \rightarrow \psi \right) \rightarrow (\varphi \rightarrow \chi) \right)$ $A3. (2q \rightarrow 4) \rightarrow ((2q \rightarrow 24) \rightarrow q)$ $R_{1} \xrightarrow{\varphi} \varphi \rightarrow \psi$ We still need to show the base cases and Induction Step (Case 3).

Let us move on to the base cases $q' = t_1 \equiv t_2$, $q' = p_1'' t_1 \cdots t_n$. what is Ms, i.e., what are Ds, Is, ys? het us de fine DA = {t: t is a term? Define Is as follows ! $I_{A}(c) = c$ for all $c \in C$ $T_{\Delta}(f_{i}^{n}): D_{\Delta}^{n} \rightarrow D_{A}: f_{i}^{n}$ $I_{\Delta}(p_{i}) \subseteq D_{\Delta}^{n}: (t_{i}, \dots, t_{n}) \in I_{\Delta}(p_{i})$ if $p_{i}t_{i} \dots t_{n} \in \Delta$ Define $y_A: V \to D_A: y_A(x) = x$ Now, we need to estend ys to get the values for all terms in the language De have . Proposition 'fa(t) = t for all terms t. H.W. Prove this proposition. So, we have Mo = (DA, JA, YA) We need to show Ms Fq iff QEA.

Base Cases (1) $t_1 \equiv t_2$ (2) p_i^n $t_i = t_n$, het us first try to prove (2). We want to prove : $M_{\Delta} \neq p_i^n t_1 - . t_n \quad \text{iff} \quad p_i^n t_i - . t_n \in \Delta$ We have : Mot pit, --. tr $\mathcal{H}\left(\mathcal{Y}_{\Delta}(t_{1}), \cdots, \mathcal{Y}_{\Delta}(t_{n})\right) \in \mathcal{I}_{\Delta}(p_{1}^{n})$ $\mathcal{M} \quad (t_1, \dots, t_n) \in \mathcal{I}_{\mathcal{S}} \left(p_i^{\mathsf{T}} \right)$ $i \not = p_i^n t_i - - t_n \in \Delta$ This completes the proof of (2). Let us now move on to Bese case (1). To prove : $M_{\Delta} \neq t_1 \equiv t_2$ iff $t_1 \equiv t_2 \in \Delta$. Now, $M_{\Delta} \neq t_1 \equiv t_2$ iff $l_{f_{\Delta}}(t_1) = l_{f_{\Delta}}(t_2)$ iff $t_1 = t_2 = (=t, say) *$ H $t_1 = t_2 \in \Delta$?? (im language of arithmetic

★ 1=1, 2=2, ~ , but there is no way to equate 2+1 and 3) Let's go back to our domain of definition We had $D_{\delta} = \{t : t \text{ is a lerm}\}$. ~ is an equivalence relation. Proof. (1) We have to show that ~ is reflexive, i.e., $t = t \in \Delta$ for all terms t Aniom ! t = t , for all terms t] ble shave I t = t , and hence $f \equiv t \in \Delta$. Cas f q implies $\Delta f q$ implies QED, as D is consistent and complete) (2) Anion ! $(t_1 \equiv t_2) \rightarrow (t_2 \equiv t_1)$ (3) Aniom: $(t_1 \equiv t_2) \rightarrow ((t_2 \equiv t_3) \rightarrow (t_1 \equiv t_3))$ So, we have ~ is an equivalence relation. We can define the equivalence

classes, and we have a new domann, $D_{\mathcal{S}} = \{ [t] : t \text{ is a term } \}, \text{ where } [t] \text{ densities}$ the equivalence class of t. Now, we have to define Is as follows ! $\left[\int_{A} (e) - [e] \right]$ $\overline{I}_{\Delta} \left(f_{i}^{n} \right) : D_{\Delta}^{n} \rightarrow D_{\lambda}^{n} : \overline{I}_{\Delta} \left(f_{i}^{n} \right) \left([t_{i}], \dots, [t_{n}] \right)$ $= \left[f_{i}^{n} t_{i} - \cdots t_{n} \right]$ $I_{\lambda}(p_{i}^{n}) \subseteq D_{0}^{\prime n}$; (Et,], ..., Etn]) $\in I_{\lambda}(p_{i}^{n})$ place, we need to check that I's(f") and Is (pr) are well defined. - I (f") is well - de fine d. $= f't' - t_h \in \Delta$

 $\left[Aniom \left(t_i = t_i' \land - \cdot \land t_n = t_n' \right) \rightarrow \left(f_i' t_i - t_n = f_i' t_i' - t_n' \right) \right]$ With this assiron we have our well-definedness of $I_{\Delta}(f_i^n)$, as before. - I (p) is well-defined. H.W. Prove the state ment above. Finally, let us define lys: V -> D's as follows: ly's(n) = [n] As earlier we can show the following : froposition: $f_A(t) = [t]$ for all terms $t \in J$. H.W. Prove the proposition het us go back to the proof of the main result; Mate iff 'qED, for all q. Bare case: O t_=t_: Mot t_=t_ iff

 $\mathcal{M}\left(\mathcal{Y}_{\mathcal{S}}(\mathsf{t}_{i}), \cdots, \mathcal{Y}_{\mathcal{S}}(\mathsf{t}_{n})\right) \in \mathcal{I}_{\mathcal{S}}\left(\mathsf{p}_{i}^{n}\right) \quad \mathcal{M}$ $([t_i], \dots, [t_n]) \in I_A(p_i^n)$ iff $p_i^n t_i \dots t_n \in A$ So, we are done with the base cases Now, by our previous arguments, we are also done for the formulas 74, $\forall \forall X$, $\forall A X$, $\forall \neg X$, $\forall \leftrightarrow X$. Thus, if we only consider atomic formulas and their Boolean combinations, which we term as , zeroth order logic , then we have the completines theorem for this logie. Now, let us consider the quantified formular, Yny and Iny We will be done if we can show My F VAY if VAYED Ma F J ay H J ay E A