Lecture 14
11.03 .2024

Classical Propositional Lo gre
Alphabet: $p, 1, \tau, \Lambda, V, \rightarrow, \leftrightarrow,($,
We will use the following abbreviation p followed by $n I^{\prime}$'s is denoted by p_{n}
Let 8 denote a countable set of these propositional variables $p_{n}{ }^{n}$

Language (ん):

$$
\left.\varphi, \psi=p_{n} \mid\right\urcorner \varphi|\varphi \wedge \psi| \varphi V \sim|\varphi \rightarrow \psi| \varphi \leftrightarrow \psi
$$ where $p_{n} \in P$.

Example: 2 is even: φ
Z is Prime : Ψ
2 is even and prime: $\varphi \wedge \psi$

Model:
$V: 8 \rightarrow\{0,1\}$, a function from the set of propositional variables to $\{0,1\}$. We lem this V as a valuation

Any $V: \beta \rightarrow\{0,1\}$ can be uniquely extended to $V^{\prime}: \mathcal{L} \rightarrow\{0,1\}$

Truth tables
(1) for 7

	7
0	1
1	0

(3) for V

v	0	1
0	0	1
1	1	1

(2) for λ

1	0	1
0	0	0
1	0	1

(4) $\mathrm{fr} \rightarrow:$| 7 | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 1 | 1 |
| 1 | 0 | 1 |

Example:
Consider a valuation V st.

$$
\begin{gathered}
V\left(p_{1}\right)=\alpha, V\left(p_{2}\right)=0, V\left(p_{3}\right)=1 . \\
\text { Then, } V^{\prime}\left(\left(p_{1}, p_{3}\right) \rightarrow p_{2}\right)=0 \\
V^{\prime}\left(\left(7 p_{1}, V p_{3}\right) \rightarrow p_{2}\right)=0 \\
V^{\prime}\left(\left(p_{1} \rightarrow p_{3}\right) \rightarrow p_{2}\right)=0
\end{gathered}
$$

Since V can bu uniquely extended bo V^{\prime}, we will denote V^{\prime} log V.

Let Γ be a set of formulas and φ be a formula in classical propositional logic. We define $\frac{\Gamma F \varphi}{\Gamma}$ (semantic consequence relation) and $\Gamma \vdash \varphi$ (deductive consequence relation) as earlier

Soundness sher an.
If $\Gamma \vdash \varphi$ then $\Gamma \vDash \phi$.
We have already discussed the proof proceduce for soundness theorem So, once we show that the aswoms are valid and the rules preserve consequence, we are done.

But, we do not know what these aruous and rules are. We now foin on the proof of completeness theorem to find them.

Let's find some valid formulas and some rules that preserve con sequence

$$
\begin{aligned}
& -\varphi \rightarrow \varphi \\
& -(\varphi \wedge \gamma) \rightarrow \varphi \\
& -\varphi \rightarrow(\varphi \vee \sim)
\end{aligned}
$$

valid
formulas

$$
\left.\frac{\varphi \varphi \rightarrow \psi}{\psi}-\frac{\varphi \vee \gamma \neg \varphi \vee \chi}{\psi \vee \chi}\right\} \begin{gathered}
\text { choosing } \\
\text { pecowing } \\
\text { comping }
\end{gathered}
$$

Completiwes Theorem
If $\mu \vDash \varphi$ then $\Gamma+\varphi$
How to prove the theoum? We explou some froputies of F and try to see whether or can prove such feropentris for t.

Property 1: It $\Gamma F q$ and $\Gamma \leqslant \Gamma^{\prime}$, thin $\Gamma^{\prime} k \varphi$. We want to show: If $\Gamma+\varphi$ and $\Gamma \subseteq \Gamma$, them $\Gamma^{\prime}+Q$: It follows from the definition of t.
Property 2:

$$
\begin{aligned}
& \left\{\varphi_{1}, \varphi_{2} \cdots, \varphi_{n}\right\} \vDash \psi \\
& \vDash f \\
& F\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \rightarrow \psi .
\end{aligned}
$$

In other vords we bave:

$$
\Gamma \cup\{\varphi\} F \psi \text { iff } \Gamma \nLeftarrow \rightarrow \psi
$$

Let us now try ta show:

$$
\Gamma \cup\{\varphi\} \vdash \psi \text { iff } \Gamma+\varphi \rightarrow \psi
$$

(Deduction Theonem)
Proof: (ip-pait) Suppose $\Gamma+\varphi \rightarrow \psi$
To prove that $\nabla \cup\{\varnothing\}+\tau$
Jow, $\operatorname{M} \cup\{\varphi\} \vdash 1$ (Premise)
2. $\varphi \rightarrow$ ir (Arsumption)

$$
\text { 3. Y (by M.P.on } 1,2)
$$

[Let us consides the rule $\frac{q q \rightarrow \psi}{\psi}$ which we linm as Modus Pouns) $\left.\frac{(M . P) \text {. }}{}\right]$ This completes the proof of if-part (only-if pait) het $\Gamma \cup\{\varphi\})+Y$

We hair to show that $\Gamma+Q \rightarrow Y$. prove this by applying induction on the length of a dirivation/proof of ψ from $M \cup\{\varphi\}$
Base Case: $n=1$. Then ψ is either a member of $\Gamma \cup\{\varphi\}$ or Ψ is an axiom
Case 1. $\psi=9$
Then, we have to show $\Gamma \vdash \varphi \rightarrow \varphi$.
[Let us consider an anon $\beta \rightarrow \varphi$] we have $\Gamma \vdash \phi \rightarrow \varphi$
Cause $2 \quad \psi \in M$
We have to show $\Gamma+\varphi \rightarrow \psi$
Since $\psi \in \Gamma$, we have $\Gamma \vdash \psi$
Leet us considu an axiom

$$
\psi \rightarrow(q \rightarrow \psi)]
$$

Then, we have the following
derivation of $\phi \rightarrow \psi$ from Γ !

$$
\begin{aligned}
M H & \text { L. }
\end{aligned} \begin{aligned}
& (\text { Premise }) \\
2 \psi & \rightarrow(q \rightarrow \psi) \quad(\text { Anion }) \\
3 . \varphi & \rightarrow \psi \quad(M \cdot P . \text { on } L, 2)
\end{aligned}
$$

Case 3 in an amon.
To show $\Gamma \vdash \phi \rightarrow \psi$
We have MH Li Y (Anion)

$$
\begin{aligned}
& \text { 2. } \psi \rightarrow(q \rightarrow \psi) \\
&(\text { Axiom }) \\
& \text { 3. } Q \rightarrow \Psi(M . P . \\
&(M 1,2)
\end{aligned}
$$

We ane done with the bases cases So, to prove the base cases we cousidi anions : (1) $\varphi \rightarrow \varphi$

$$
\text { (2) } \varphi \rightarrow(\psi \rightarrow \phi) \text {, and }
$$

mole $\therefore \frac{Q Q \rightarrow \Psi}{\Psi} \quad(M . P)$.

