Lecture 18
Recap of modal logic syntax and semantics.
Syntax
Let 8 be a countable set of propositional variables. Then, formulas of the basic modal logic (BML) is given by:

$$
\varphi, \psi:=p|\neg \varphi| \varphi \vee \psi|\varphi \wedge \psi| \varphi \rightarrow \psi|\square \varphi| \diamond \varphi,
$$

where, $p \in 8$
Semantics
$M=(W, R, V)$, where W is a none empty set of states, $R \subseteq W \times W$ and $V: P \rightarrow 2^{W}$

Truth definition
Given a modal formula φ, a model M and a world $w \in W$ in M, φ is satisfied at (M, ω)
the following hold d $[M, \omega F \varphi]$ if:
$(M$ pointed model

$$
M, \omega \vDash p \text { if } w \in V(p)
$$

$$
\mu, w \vDash \neg \varphi \text { ifs } \mu, w \vDash \varphi
$$

$M, \omega \vDash \varphi \vee \psi$ if $M, \omega F \varphi$ or $\mathcal{M}, \omega F \psi$
$M_{1} \omega F \varphi \wedge \psi$ if $M_{1} \omega F \varphi$ and $M_{1} \omega F \psi$

$$
M_{1} \omega \vDash \phi \rightarrow \psi \text { if } M, \omega \vDash \psi \text { whentwn } M, \omega \neq \varnothing
$$

$M, w F \square \varphi$ eff for all $v \in W, w R v$ imphes $M, v \neq \varphi$
$M, w F \Delta \varphi$ iff there instr $v \in \omega$ ret. $\omega R v$ and $\mu, v \neq \varphi$

We have done a lot of examples in the last class and here we are just recapitulating the definitions
Satisfiability and Validity of formulas - q is satisfiable if there is a model $\mathcal{M}=(W, R, V)$ and some $\omega \in W$ s.t. $\mu_{1} w \vDash \varphi$

- Psis satisfiable its negation is
H.W. Check whether the following formulas are valid:
- $\square(p \vee \neg p)$
- $\square p \vee \square \neg p$
$-\square \neg p \rightarrow 7 \square p$
$-\Delta(\varphi \wedge \psi) \rightarrow(\Delta \varphi \wedge\rangle \psi)$
$-(\diamond \phi \wedge \diamond \psi) \rightarrow \diamond(\varphi \wedge \psi)$
$-\amalg \varphi \rightarrow \varphi$
$-\square \varphi \rightarrow \square \square \varphi$
$-\neg \square \varphi \rightarrow \square \neg \square \varphi$
$-\square \varphi \rightarrow \Delta \varphi$
$-\Delta \varphi \leftrightarrow \neg \square\urcorner \varphi$
Now, continuing from the last class, let us consider the following model.
M :

Io it passible los distingush ω_{2} and ω_{3} in this model
by modal formulas?
H.W. Prove that $\left(\mu, \omega_{2}\right)$ and $\left(\mu, \omega_{3}\right)$ satisfy the same modal formulas. In other words, prove that for all modal forme las Q, $\mu, \omega_{2} F \varphi$ if $M, \omega_{3} \vDash \varphi$.

From defining states to distinguishing states

Q. Can you distinguish between the pointed models $\left(M, w_{1}\right)$ and ($\left.N, v\right)$ by a modal formula (Informally, can you distinguish bet ween the woulds w_{1} in M and v_{1} in N)?

$$
\begin{gathered}
p, \Delta q, \square q, \forall \square p \\
x, x, x
\end{gathered}
$$

So, $\diamond \square p$ holds at $\left(N, v_{1}\right)$ lust does not hold at $\left(\mu, w_{1}\right)$. Thus, the formulas distinguishes the pointed models.

In fact, no modal formulas can distingueish between $\left(M, w_{1}\right)$ and $\left(N, v_{1}\right)$

How will you prove this?
Generally, we prove statements regarding formulas by applining induction on the size of formulas. But, how ls prove this in terms of these particular models?

Before going into the detailed disc. ussion, let us introduce some concepts.

Modal equivalence
Two pointed models (M, ω) and (N, v) are said to be modally equivalent if for all modal formulas φ, $M, \omega F Q$ iff $N, v \not F \varphi$, that is, (H, ω) and (N, v) satisfy the same nodal formulas.

Bis imu Cation
Let $M_{1}:\left(W_{1}, R_{1}, V_{1}\right)$ and $M_{2}:\left(W_{2}, R_{2}, V_{2}\right)$ be two (Kripke) models Let $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. we say that $\left(M_{1}, w_{1}\right)$ is bisimitas to $\left(\mu_{2}, \omega_{2}\right)$ if there is a binary relation $Z \subseteq W_{1} \times W_{2}$, r.t. $\omega_{1} \mathbb{Z} \omega_{2}$, and for all $x \in W_{1}$, $y \in W_{2}$, if $x \not Z y$, then,
(1) [atomic harmony] fr all propositional vainables $p \in \beta, p \in V_{1}(x)$ if $p \in V_{2}(y)$ (2) [zig] if $x R_{1} x^{\prime}$ in M_{1}, then there crusts $y^{\prime} \in W_{2}$ r.t. $y R_{2} y^{\prime}$ in M_{2} and $x^{\prime} Z y^{\prime}$.
(3) $[z a g]$ if $y R_{2} y^{\prime}$ in M_{2}, then there exists $x^{\prime} \in W_{1}$ s.t. $x R_{1} x^{\prime}$ in M_{1} and $x^{\prime} z y^{\prime}$
wee wite $\mu_{1}, \omega_{1} \simeq \mu_{2}, \omega_{2}$

μ_{1}

Let's refer back to the example we had before

$$
Z=\left\{\left(w_{1}, v_{1}\right),\left(w_{2}, v_{z}\right),\left(w_{1}, v_{3}\right)\right\}
$$

We have : $\underline{M, w_{1} \cong \mathcal{N}, v_{1}}$
Mou en amples.

$$
M_{1}, \omega_{1} \cong M_{2}, \omega_{2}
$$

$$
\mu_{1, w} \cong \mu_{2, w_{2}}
$$

H. W

2.

Connecting the notions of modal equivalence' and 'bisimulation Invariance Lemma:

Let (M, s) and (N, t) be two pointed modes. If $(M, s) \cong(N, t)[(M, s)$ is bisimilar to (\mathcal{N}, t), then
(M, s) and (N, t) are modally equivalent
Proof: Let $(M, s) \cong(N, t)$. To prove that for all modal formulas $\varphi,(M, s) F \phi$ if $(N, t) E \Phi$. We prove this by applying induction on the size of a formula Q
Base case: Let $\varphi=p$. Then the result holds by Condition (L) of the definotion of bisimulation
Induction Hypothesis: Suppose the result holds for all formulas of size $\leq n$.

Induction Step: Let the size of ϕ be $n+1$. Then we have the following cases.
Case L: $\phi:=7 \psi$. Then $M, s F p$ if $\mu, s \neq \sim \psi$ if $\mu, s \neq \psi$ if $\mathcal{N}, t \neq \psi$ (by I.H.) ifs $N, t F 7 \psi$ if $~ N, t \vDash \varphi$

Case $2: \varphi:=\psi v x$. Then, $\mu, s F \phi$ if $\mu, s \neq \psi v x$ iff $\mu, s \neq \psi \quad n, \mu, s \neq X$ if $N, t \vDash Y$ a $N, t \vDash X$ (by I.H.) if $\mathcal{N}, t \neq \psi \vee \mathcal{X}$.
Case 3: $\varphi:=\rangle \psi$. Suppose $M, s \neq \varphi$, ie. $M, s F \diamond \psi$. Then, there is s^{\prime} in M, pt. $s R_{\mu} s^{\prime}$ and $M, s^{\prime} F \psi$. Now, by the Zig-condition, since $\mu, s \cong \mathcal{N}, t$, then is a t^{\prime} in \mathcal{N} s.t. $t \mathcal{R}_{\mathcal{N}} t^{\prime}$ and $M, s^{\prime} \cong \mathcal{N}, t^{\prime} \cdot S_{0}$, by I.H., $N, t^{\prime} \vDash \psi$

Fence, $N, t \vDash \diamond \psi$. So we have $\mu, s F \diamond \psi$ implies $\mathcal{N}, t F \Delta \psi$. The otter dissection can be proved similarly using the Zag-condition.
This completes the proof
What about the converse?
If two pointed model (μ, s) and (N, t) satisfy the same modal formulas, are they bisimilar? NO ! !

M

\mathcal{N}
H.W Prove that (μ, s) and (N, t) are modally equivalent but $(\mu, s) \not \approx(N, t)$ -

