LECTURE 20
Proof of 1
we prove this by induction on the ser of the facula φ
Bes case: $\varphi:=p$. Then, μ, w It p if $\omega \in V(\varphi)$ if $\omega \in I(P)$ if $M_{[x \rightarrow \omega]} F P_{x}$ if $M_{[x \rightarrow \omega]} F S T_{x}(b)$
I.H. Suppose the result holds for all framer of size $\leqslant n$
I.S: Suppose 9 has size $n+1$.

Case I: $\varphi:=7 \psi$ Then, $\mu, \omega \mathbb{H} \varphi$ if
$\mu_{, \omega \mid 1-7 \psi}$ if $\mu_{1, w} \| \psi$ if $M_{[x \rightarrow \infty]} \mid$
$S T_{x}(\psi)\left[\right.$ by $[. H]$ iff $M_{[x \rightarrow \omega]} E 7 S T_{x}(\psi)$
if $M_{[x \rightarrow \omega]} \mid=S T_{x}(7 \psi)$ ifs $\mu_{[x+\omega]} \mid=S T_{2}(\varphi)$
Case II: $\phi:=\psi \vee x:$ Similar

Case III: $\varphi:=\Delta \psi$
(a) Suppose $\mu, w \| t \varphi$, that is $\mu, \omega 0 \| t \psi$ Then, there exists v in M att. $w R v$ and $M, v \mathbb{H} \psi$. Now, consider $t \overline{\text { woo }}$ distinct variables, x and y, say Since who in \mathcal{M}, or have $M_{[x \rightarrow w, y \rightarrow v]} F R_{x y}$. Also, by I.H. we have $M_{[y \rightarrow v]} F \operatorname{ST}_{y}(\psi)$. Then, we how $M_{[x \rightarrow w, y \rightarrow v]} \vDash \operatorname{ST}_{y}(\psi)$ as x does not occur free in $S T_{y}(\psi)$ Thus, $M_{[x \rightarrow w, y \rightarrow v]} \vDash \operatorname{Rry}_{x y} \wedge \operatorname{ST}_{y}(\psi)$
Then, $M_{[x \rightarrow \omega]} F \neq \exists y\left(R_{x y} \wedge S T_{y}(\psi)\right)$ that is, $M_{[x \rightarrow \omega]} \vDash S T_{x}(\nu \psi)$ that is, $M_{[x \rightarrow \infty]} F S T_{x}(\varphi)$
(b) Conversely, suppose that $\mu_{[x \rightarrow \omega]} \neq S T_{x}(\varphi)$, that is $M_{[x \rightarrow \infty]} F S T_{x}(\Delta \psi)$. Then, $M_{[x \rightarrow \infty]} \vDash \exists y\left(R_{x y} \wedge S_{y}(\psi)\right)$.Then, $M_{[x \rightarrow \infty, y \rightarrow v]} F R_{x y} \wedge S T_{y}(\psi)$ fr some v in M. Then we have

$$
\begin{aligned}
& M_{[x \rightarrow \infty, y \rightarrow \infty]} \neq R_{x y} \text { and } \mu_{[x \rightarrow \infty, y \rightarrow 0]} F S T_{y}(\psi) \\
& w R v \quad \text { and } \quad M_{[y \rightarrow v]} \neq \operatorname{STy}_{y}(\psi) \\
& \mathbb{\|} I . H \\
& \mu, v \text { it } \psi
\end{aligned}
$$

So, combining both, there is v in M r.t. $w R \cup$ and $M, v \mathbb{H} \psi$. Thus $\mu, w \| \forall \psi$, that is, $\mu, w \|-\varphi$ This completes the proof

Appications

- Compactness Theorem: An infinite set of modal famular is satisfiable eff every finite subset of it is satisfiable
- Lowenheim-Skolem Theorem: If a set of modal formulas is satisfiable in at least one infinite model, then it is satisfiable in model of every infinite cardinality

Now, let us ask the converse question. Can wiry first - order forme la (with appropriate parameters) be equivalent $\frac{\text { to a translation of a modal fromula? }}{\text { NO! }}$

Modal formulas are invariant for bisimulation but first-order formulas may not be. Consider

$$
\begin{aligned}
& \varphi(x): \exists y_{1} \exists y_{2} \exists y_{3}\left(y_{1} \neq y_{2} \wedge y_{1} \neq y_{3} \wedge y_{2} \neq y_{3}\right. \\
&\left.\wedge R x y_{1} \wedge R x y_{2} \wedge R y_{1} y_{3} \wedge R y_{2} y_{3}\right)
\end{aligned}
$$

This guars us a comntir-example (See the model discussion earlier)
Q. What are those first-order formulas which are equivalent to the translation of modal formulas 2
A. The first-order formulas that are invariant under bisimulation

- Modal logic is the bisimnlation invariant fragment of First-arder loge

What is the definition of such formulas? A first order formula $\phi(x)$ is invariant under bisimulation if for all Kripke model M and \mathcal{N} and for all states w in M and v in \mathcal{N}, and all bisunntations Z between M and \mathcal{N} pet. w $Z v$, we have

$$
M_{[x+w]} F \varphi(2) \text { if } \mathcal{N}_{[x+v]}=\varphi(x)
$$

The Theorem
Let $q(x)$ be a firsat-order formula. Then $\varphi(x)$ is invariant under bi simulation if $\varphi(x)$ is logically equivalent to a standard trans la ton of a modal formula.

- The proof is outside the scope of this course.

Correspondence Theory
Modal logie Syrtan :

$$
\begin{aligned}
\varphi, \psi:= & \varphi|\perp| \neg \varphi|Q \vee \psi| \rho x \psi|\varphi \rightarrow \psi| \rho \leftrightarrow \psi \mid \\
\Delta \varphi \mid \diamond \varphi ; & p \in 8
\end{aligned}
$$

Modal logie Sumantieo
Models: $M:(w, R, V)$

Trult difinition: $M, \omega \vDash \varphi$
Focus on frames

$$
F:(w, R)
$$

Q: Cen we exporess fersperthes of thio relation R in leims of model formulas?

Satisfiabiluty and Validily

- A modal for molar Q is satisfiable of there is a model M and a world ω in M cot. $M, w \neq \varphi$
- A modal formula r ϕ is valid if for every model M and for every wold w in $M, M, \omega \nLeftarrow \varphi$

Some variants of the notion of validity - Given a model $M=(W, R, V)$, we call a formula φ-invalid $(M F \varphi)$ if for every $\omega \in W, M, \omega F Q$.

- Guin a frame $F=(W, R)$, we call a formula ϕ - valid $(F F \varphi)$ if for eng mo del $\mathcal{M}=(F, V), \phi$ is M-valid.
- A modal formula φ is said to Character rye a class of frames, C, say, of $C=\{F \mid Q$ is F-valid $\}$

Examples

1. Let $C=\{(\omega, R): R$ is reflexive $\}$ Q: Can we find a modal formula

$$
A: Y_{e s .} \quad \square p \rightarrow p \quad\left(\begin{array}{l}
p \text { is a propositional } \\
\text { setter })
\end{array}\right.
$$

Proof: We meed to show that for any frames $F, F \not F \square p \rightarrow p$ if R_{F} is seflenov

- Let F be a frame pot. R_{F} is refleinure. To show: $F \neq \square p \rightarrow p$
So, we have to show that for all model M, based on F, and for all worlds w in $\mu, \mu, \omega F \square p \rightarrow p$
Suppose $M, \omega \neq \square p$. To show $M, \omega \neq p$ Since R_{F} is seflimive, $\omega R_{F} \omega$ So, an $\mu, \omega \mid \vDash \nabla p, \quad \mu$, is $\vDash p$ as well
we ane dove
- Conversely, let F be a frame sit $F F D p \rightarrow p$. To show that R_{F} is refleinve Let us prove a contrapositive statement, that is, if R_{F} is not seflexure then $F \not \forall \square p \rightarrow p$. Then be will be dove. Let F be a frame s. t. R_{F} is not reflenure To show $F H \square p \rightarrow p$. It is enough to construct a model M based on the frame F and a world w in M s.t Mew H $\square p \rightarrow p$. Now, as R_{F} is not reflexive there is some $w \in W$ s.t. $w R / F w$. Consider the model $M=(F, V)$, where $V(p)=W \backslash\{\omega\}$
Then, $M, w F D p$, but $M, \omega H b$
So, $M, \omega \nexists \square p \rightarrow p$
So, F $\neq \square p \rightarrow p$
This completes the proof

2. Let $D=\{(W, R) \mid R$ is transitive $\}$
Q. Can we characterize D by a modal for mola?
A. Yes. $\square p \rightarrow \square \square p$

Proof We mud to show that fer all framer $F, F \not F \square p \rightarrow \square \square p$ iff R_{F} is Tiansitur
(a) Let F be a frame s.t. R_{F} is tiansitive. To show $F F \square p \rightarrow \square \square p$. Let M be a model based on F and w be a world in \mathcal{M}. To show $\mathcal{M}, \omega F D p \rightarrow D D p$ Suppose $M, \omega F \square p$. To show: $M, w \vDash \square \square p$. Now, Mi FDDP if for all v with $\omega R_{F} v$, $M, v E D P$, and $M, v F D p$ if far all with $v R_{F} u, M_{1} u k p$ \qquad
Now, since R_{F} is trancilive, whenever
$w R_{F} v$ and $v R_{F} u$, we have $w R_{F} u$ And then, as $M, w F \square p$, we have: $M, n F P$. To show (*), take any v sot w $R_{F} v$ and u sit. $v R_{F} u$ We have, by our assumption c above, $M_{i} \sim 1=p$. So, we have $M_{,} w F \square \square p$, and, we are done
(b) Conversely suppose that $f \neq \square p \rightarrow D D p$ To show that R_{r} is transitive We prove this contsapositively Suppose that R_{F} is not tiansiture. To show: $F \notin \square p \rightarrow \square \square p$. It is enough bo show the existince of a model M based on F and a wold ω in μ, put $\mu, \omega \# \square p \rightarrow \square \square p$ Since R_{F} is not thansilive, there
ane $w, v, u \in W$ st. $w R_{F} v$ and $v R_{F} u$, but $w f_{F} u$
Let M be a model based on F with V given ley: $V(p)=W \backslash\{u\}$ Then, M,w $F \square p$ and $\mu, \omega \notin \square \square p$ So, $\mu, w \nexists \square \varphi \rightarrow \square \square p$. So $F H \square p \rightarrow \square \square p$ This completes the proof.

MW.

1. (a) R_{F} is serial
(b) R_{F} is symmetice.
2. What conditions on R_{F} do these formulas characterize. Justify your answer.
(a) $\Delta p \rightarrow \square p$
(b) $\square(\square p \rightarrow p)$
(c) $\Delta \square p \rightarrow \square\rangle p$
