Lecture 23
Some definitions
Size of a Kipper model $M:(W, R, V)$ is the cardinality of W, denoted by $|W|$

Given a modal formula φ, the set of subformular of φ is defined as follows: $\operatorname{Sub}(p)=\{p\}$.
$\operatorname{Sub}(* \varphi)=\{* \varphi\} \cup \operatorname{Sub}\{\varphi\}, * \in\{\imath, \Delta, \square\}$
$\operatorname{Sub}(\varphi \cdot \psi)=\{\varphi \cdot \psi\} \cup \operatorname{Sun}\{\varphi\} \cup \operatorname{Sat}(\psi)$,

- $\in\{\Lambda, v, \rightarrow\}$

Proof of stoning finite model property
Let φ be a modal formula. Let Silo φ) denote the set of all sulformulas of φ Then Sue (Q) is a finite set of formulas We assume that φ is satisfiable. Then, there is a model $M=(W, R, V)$ and a
world w in M s.t. M, w φ. Now, the question is hos to make the is zs of M, small, in fact, maker it finite. A natural way is to think about partitioning the set W. Now, to form a partition, we need to define an equivalence relation on W. And, we also need to relate the formula Q in some way so that the satisfaction of the formula Q gets foresuved in the smaller model.

Let us define an equivalence relation on W with respect to the set Sub (φ) as follows
Let $u, v \in W$. We say u is equivalent to v with respect to $\operatorname{sun}(q)$ if the follow. ing holds
for all $\psi \in \operatorname{Sub}(a), \mu, u \neq \psi$ if $\mu, v \neq \psi$

We denote this relation by $u \sim_{\varphi} v$ Clii: \sim_{φ} is an equivale var relation H.W. Prove the clam Now, \sim_{φ} partitions W into equivalence classes. Let $[v$] denote the equivalence class of v in W_{1}, and let $W_{\sim}=$ $\{[v] \mid v \in W\}$
Q. How many elements does W_{\sim} have? Let us define a mate $f: W_{\sim} \rightarrow 2^{\operatorname{sub}(Q)}$ as follows: $f([v])=\{\psi \in \operatorname{Sub}(Q): M, v \vDash \psi\}$
So, $f([v]) \subseteq \operatorname{Sub}(\varphi)$
(i) f is will-difined

To show that, if $u \sim v$, then $f([u])=f([0])$. Let $u, v \in W$ sit $u \sim v$. Them, $\mu, u \neq \psi$ $M, v \vDash \psi$ fa all $\psi \in \operatorname{Sab}(Q)$. So, by define ton of $f, f([u])=f([v])$.
(ii) f is injection

Let $u, v \in W$ st. $f([u])=([v])$
Then, $\{\psi \in \operatorname{Sul}(\varphi): M, u \neq \psi\}$

$$
=\{\psi \in \operatorname{Sub}(\varphi): M, v F \psi\}
$$

So, $M, n \neq \psi$ if $\mu, v \neq \psi$ fa all $\psi \in \operatorname{Sub}(\varphi)$. So, $u \sim v$, that is, $[u]=[v]$.
Thus f is an infective male from W_{\sim} to $2^{\sin (\varphi)}$. Now $\left|2^{\sin (\varphi)}\right|=2^{|\varphi|}$ Hence, $\left|W_{\sim}\right| \leqslant 2^{|\varphi|}$

Thus starting from W, we get to a finite bounded set W~. Now, we need to define a binary relation $R_{\sim} \sim$ on W_{\sim} aid a valuation function V_{\sim}, say , such that the satisfaction of formulas in $\operatorname{Sul}(Q)$ do not get affected, that is, $M, \cup F \psi$ iff $M_{\sim},[v] F \psi$ for all $\psi \in \operatorname{Sul}(\varphi)$, where

$$
\mu_{\sim}=\left(w_{\sim}, R_{\sim}, v_{\sim}\right)
$$

- Let us first define V_{\sim} as follows

$$
V \sim(p)=\{[v]: v \in V(k)\}, p \in \delta
$$

Q. How do we define R_{\sim} ?

Let us postpone this discussion for now and get to the proof of the following
Lemma : Io all formulas $\psi \in \operatorname{Sub}(Q)$ and far all v in $M, M, v \neq \psi$ of $\mu_{\sim}[\omega] \neq \psi$ Proof We prove by applying induction on the size of ψ
Base case: $\psi=p$. Then, $\mu, v / p$ if $v \in V(b)$ if $[v] \in V_{\sim}(b)$ (by difuition of $\left.V_{\sim}\right)$ if $M_{\sim},[u] \neq p$
Induction Hypoth iss: Suppose the result hold fo all former ψ of size $\leq m$

Induction Step: let ψ be a formula of size $m+1$
Case L. $\psi=\neg x$. Then, $\mu, v \neq \neg x$ if $\mu, v \neq x$ if $\mu_{N},[v]$ H x (I.H.) if $M_{\sim},[u] \vDash \neg x$
Case 2: $\psi=\eta \vee \delta$. Then, $\mu, v \neq \eta \vee \delta$ if $M, v F \eta$ or $\mu, v \vDash \delta$
ifs $\mu_{\sim},[v] \vDash \eta$ a $\mu_{\sim},[v] \vDash \delta$
if $M_{\sim},[v] \neq \eta \vee \delta$
Case 3: $\psi=\Delta x$.

- Suppose $M, v \diamond X$. Then there esusto $u \operatorname{in} M$ s.t $O R u$ and $M, u \neq X$ To show that $M_{\sim},[v] \vDash \Delta x$, that is to show that there exists $[z]$ in M_{\sim} pt. $[u] R_{\sim}[z]$, and $M_{\sim},[z] \neq x$.
Now, since $\mu, u \neq \chi$, by $I \cdot H, \mu_{\sim},[u] \neq \chi$. So, if we can show that $[v] R_{\sim}[u]$.
we are dowse,
Condition (L) on R~ if $v R_{u}$ then $[v] R_{\sim}[u]$.
Let us assume (1). Then, we have on r required result, that is, $M_{\sim},[u] \neq \Delta x$.
- Conversely, suppose that $M_{\sim},[v] \vDash \forall x$ To show, $M, v \nLeftarrow\left\langle x\right.$. $N_{\text {ow, since }}$ $M_{\sim},[v] F\left\langle X\right.$, there exists $[u]$ in M_{\sim}, pt. $[v] R_{\sim}[u]$ and $M_{\sim},[u] \vDash x$ By I.H., or have that $M, n \neq X$. We some now need to show that $M, v F \diamond X$. Condition (2) on R ~
If $[u] R_{\sim}[u]$, then for all $\Delta \delta \in \operatorname{sul}(\varphi)$, if $M, u F \delta$, then $M, v \neq \diamond \delta$
Let us assume Condition (2). Then, we have $M, v \vDash \diamond x$.

This completes the proof once we have an $R \sim$ on W_{\sim} satisfying conditions (1) and (2)

A definition of R_{\sim} satisfying condiliono
(1) and (2)

- $[v] R_{\sim}[u]$ iff there inuits $v^{\prime} \in[v]$ and $u^{\prime} \in[u]$, s.t. $v^{\prime} R u^{\prime}$
H.W Show that R_{\sim} satrofies (1) and (2)

This completis the proof of strong finite model proputy
Q. How do we get decidability from strong finite model property? Were start with a formal P we chave the bound $2^{|e|}$. We consider all possible models of size $1,2,3$, $2^{|9|}$ and check
whet the φ is satisfiable in any such model. How do we check? We construct a Training machine to generate all such models of size at most $2^{|\phi|}$ and checking the satiofiability If we get a sati sfiable model we can say that ' Q is satisfiable'. If there are no models of Q till the size $2^{|Q|}$, we can say that ' Q is unsatisfiable' by the strong finite model propurf.

Thus, basie modal logis is decidable
Note: Fisst-order loge is undecidable

