LECTURE 5
24.01 .2024

The use/abuse of the symbol F

$$
\mu \neq \varphi
$$

(satiquio)
Models and Theous
Given any formula φ, define $M_{0} d(\varphi)$ $=\{M \mid M 1 \rho\}$. Given a set if formulas Γ^{2}, define $\operatorname{Mod}(\Gamma)=\{\mu \mid \mu \neq \Gamma\}$

Let K be a class of models. The theory of \mathcal{K}, denoted by $T h(K)$, is defined by $T_{n}(k)=\{\phi \mid M \neq p$ for all models M in $\mathbb{K}\}$
Let Γ_{1}, Γ_{2} be live sets of formulas pot $r_{1} \subseteq \Gamma_{2}$ Then,

$$
\operatorname{Mod}\left(\Gamma_{1}\right) \geqslant \operatorname{Mod}\left(\Gamma_{2}\right)
$$

Let $I \alpha_{1}, K_{2}$ be too classes of models nt. $\mathcal{K _ { 1 }} \subseteq \mathcal{K}_{2}$. Then,

$$
T h\left(K_{1}\right) \supseteq \operatorname{Th}\left(K_{2}\right)
$$

$\frac{\text { Consequence of a set of formulas }}{\text { Let } \Gamma \text { be a seb of formulas }}$ The consequence of Γ, denoted by $\operatorname{Con}(\Gamma)$ is defined as $\operatorname{Con}(\Gamma)=\pi \operatorname{Th}(\operatorname{Mod}(\Gamma))$

Proposition Let Γ be a set of formulas and φ be a formulas we have: $\varphi \in \operatorname{Con}(\Gamma)$ inf ${ }_{\mu} k=\varphi$.
Proof: Suppose $\Gamma \vDash \varphi$. To show: $\varphi \in \operatorname{Cov}(r)$. Now, all models in $\operatorname{Mod}(\Gamma)$ satisfy ϕ. So, $\varphi \in \operatorname{Th}(\operatorname{Mod}(r))$, that is, $\varphi \in \operatorname{Con}(\Gamma)$.

Conversely, suppose that $\varphi \in \operatorname{Con}(\Gamma)$ To show: $\mu \neq \varphi$. $N_{00}, \varphi \in T h\left(M_{0} d(\mu)\right)$
implies that $M F \varphi$ for all $M \in M$ od (Γ) Thus, $\Gamma \vDash \varphi$.
This completes the proof
H.W: Properties of $\operatorname{Con}(\Gamma)$
(2) $\Gamma \subseteq \operatorname{Con}(\Gamma)$.
(2) if $\Gamma_{1} \subseteq \Gamma_{2}$, then $\operatorname{Con}\left(\Gamma_{1}\right) \subseteq \operatorname{con}\left(\Gamma_{2}\right)$
(3) $\operatorname{Cov}(\operatorname{Con}(\Gamma))=\operatorname{Con}(\Gamma)$.

What does it mean to say that $\Gamma H \varphi 2$
$\Gamma \nLeftarrow \varphi$ if there is a model μ, st. $M F \Gamma$ and $M H \varphi$
if there is a model μ, st $\mu \not \mu$ and $\mu F i q$ if there is a model M, ct. $M \vDash \mu \cup\{T]\}$ ifs $\Gamma \cup\{\neg \varphi\}$ is satisfiable

More on satiofiabiluty
Let Γ be a set of formulas, φ be a formula - φ is satisfiable if there is a model of φ.

- Γ is satififible of there is a model of Γ.

Examples

- Consider an fol L, with paramiens $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$,
- $\Gamma=\left\{p_{1}^{\prime}, x\right\}$ Is Γ satisfiable?

Io answer in the affirmative we have to find a model (D, I, y) s.t. $(D, I, y) \neq P_{1}^{\prime} x$
(1) $D=\{a, b\}, I(P, 1)=\{a\}, \quad y: V \rightarrow D: g(y)=a$ for Then, $(D, I, f) \neq p^{\prime} x$, as $y(x) \in \mathbb{L}\left(p_{1}^{\prime}\right)^{-}$.
(2) $D=\{a, b\} . I(P!)=\{a\}, \quad y: V \rightarrow D: \quad y(y)=a, y=x$ b, $y \neq x$
Then, $(D, I, y) \neq P_{1}^{\prime} x$, as $y(x) \in I\left(P^{\prime}\right)$
(3)
$D=\mathbb{N} \quad I\left(P_{1}^{\prime}\right)=\{n \in \mathbb{N} \mid x$ is even $\}$
$y: V \rightarrow D: \quad y(y)=2$ if $y=x$
0 if $y \neq x$
Then, $(D, I, y) \neq P^{\prime}, x$, as $y(x) \in I\left(P^{\prime}\right)$. Thus, Γ is indeed satisfiable

$$
\begin{aligned}
& -\Gamma=\left\{p_{1}^{\prime} x, \neg p_{1}^{\prime} x\right\} ; \text { unsati skiable } \\
& -\Gamma=\left\{p_{2}^{\prime} x, r_{2}^{\prime} x, \neg\left(p_{1}^{\prime} x \wedge p_{2}^{\prime} x\right)\right\} \\
& \text { unsatisfiable } \\
& -\mu=\left\{p_{1}^{\prime} x_{1} p_{2}^{\prime} x, p_{3}^{\prime} x, 7\left(p_{1}^{\prime} x \wedge p_{2}^{\prime} \wedge p_{3}^{\prime} x\right)\right\}
\end{aligned}
$$

unsatisfiable
Similarly, we can find unsatisfiable sets of formulas of any fink size k with $k \geqslant 2$

What about infiimete sets of formulas? In the same way, if a set has any of the above finite collections of formulas

Now, suppose M is ans infinite set of formulas set. all finite subsets of Γ are satisficcle. What happens then?

Compactness Theorem of F.O.L
Let M be an infinite set of formulas. Then Γ is satisfiable if Γ is finitely satisfiable (every finite subset of M is satisfiable)
Nowtiveal part: If Γ is fimelely satisfiable (fin-sat), then M is satisfiable (sat)

How does this result connect with the consequence relation?
(1) If Γ is firs-sat then Γ is sat
(2) If $\Gamma \vDash \varphi$, then the is finite subset Γ_{0} of Γ s. $\Gamma_{0} \Gamma_{0} \varphi$

Result: (2) ifs (2)
Proof: (2) $\Rightarrow(1)$ Let Γ be fin sat. Fo show that Γ is sat. Suppose not. Then, $\Gamma \vDash \phi$ for all formulas φ. Then, there is a formula ψ, say st. $\Gamma F \psi$ and MF ψ, So, there are

$$
\begin{aligned}
& -\Gamma_{1} \subseteq_{\text {fin }} \Gamma \cdot t \cdot \Gamma_{1} \vDash \psi \\
& -\Gamma_{2} \subseteq_{\text {fin }} \Gamma \text { sit. } \Gamma_{2} \vDash \tau \psi \quad \text { by (2) } \\
& \Gamma_{1} \cup \Gamma_{2} \vDash \psi \wedge \tau \psi \quad \text { So, } \Gamma_{1} \cup \Gamma_{2} c_{\text {fin }} \Gamma
\end{aligned}
$$

and $M_{1} \cup M_{2}$ is not satisfiable, a contradiction. Hence, the result
(1) \Rightarrow (2): Let $\Gamma \neq \varphi$: To show that there is $\Gamma_{0} \subseteq_{\sin } \Gamma$ st. $\Gamma_{0} F \varphi$ Suppose not. So, for all $\Gamma_{0} \subseteq_{\text {fir }} \Gamma$, $\Gamma_{0} \notin \varphi$ So, for all $\Gamma_{0} \subseteq_{\operatorname{fin}} \Gamma, \Gamma_{0} U\{\tau \varphi\}$ is sat. Then by (1) $M \cup\{\neg q\}$ is sat. Then, $\Gamma \nLeftarrow \varphi$, a contradiction. Hence the result

More applications

- Let M be a set of sentences having arbitrarily large finite models. Then M has an infinite model.

Proof. Let $f=\left\{d_{1}, d_{2}, \ldots,\right\}$ be a countable collection of nu e constant symbols not occurring in Γ. Consider

$$
\Delta=\Gamma U\left\{\imath\left(d_{i}=d_{j}\right) \mid i, j \in \mathbb{N}, i \neq j\right\}
$$

Now, M is satisfiable. So, M is finitely satisfiable: Take any finite subset of $\left\{\tau\left(d_{i}=d_{j}\right) \mid i, j \in \mathbb{N}, i \neq j\right\}$.

Such a finite set vil be satisfiable in a model of Γ having that many distinct elements. So, we have that Δ is finitely satisfiable.

So, by compact ness theorem \& no satisfiable But, a model of Δ sea infinitely many elements Now, $\Gamma \subseteq \Delta$. So, a model of Δ is also a model of Γ. Thus M has an infinite model This completes the proof.

Definability
A class of ifirst-order structure K, say, is said to be first-ordur definable if there is a set of sentences Γ^{M} st. $\operatorname{Mod}(\Gamma)=k$
H.W. Let FIN denote the class of all finite stinctures - Show that FIN is not first-order definable

