Lecture \uparrow
Our target is to show the following:

$$
\mu_{\Delta}^{\prime} \vDash \forall x \psi \text { if } \forall x \psi \in \Delta
$$

Now we know that $F \forall x \psi \leftrightarrow \imath \exists x^{\urcorner} \psi$. With this we would p rove one side of the above 'Af' result using the properties of the formula $V_{x} \Psi$ and for the otter side, or would use the properties of $\exists x y$.
How would we go abs it that? We would try to show the following
(I) if $\forall x \psi \in \Delta$, then $\psi[t / x] \in \Delta$ for all terms t.
(2) if $\exists x \psi \in \Delta$, then $\psi[t / \sim] \in \Delta$ for some lem t
In (1), let us fir at prove the following:

Proposition: $F \forall x \varphi \rightarrow \varphi[t / x]$, where, t is substitutable for x in φ. Proof: $\operatorname{det} M$ be a model s.t. MFVxp. Then, for any d in $D_{\mu}, \mathcal{M}_{[x \rightarrow d]} F \varphi$. So, in particular, we have $\left.M_{\left[x \rightarrow y_{H}\right.}(t)\right] F \varphi$, where t is substitutable for x in φ. Then, we have: MF Q[t/x]. Thus MF $\forall x \varphi$ implies $M \neq \varphi\left[\frac{t}{n}\right]$ fr any model M, where t is substitutable for x in φ. Hence, $F \forall x \varphi \rightarrow \phi[t / 2]$, where t is substitutable for x in φ. This completes the proof
So, we get (1) for all loose terms t which are substitutable for x in ψ. Let us now move on to (2). Ta get the condition (2), let us introduce the following concept. of witness fulfilled sets of formulas

Witners-fulfilled.
A set of famulus Δ is said to be witness fulfilled if for every formula of the form $\exists x \varphi$, if $\exists x \varphi \in \Delta$, then $\phi[t / x] \in \Delta$ pr some term t.

An example
Consider the language of arittruetic. Let P be any unary perdicate symbol. Consider the sit $\Delta=\{\exists \lambda P(a), 7 P(0)\}$

$$
U\left\{7 P\left(s^{k}(0)\right): k \geqslant 1\right\}
$$

This is an infinite set of formulas which is fir-sat. This should be satisfiable by 'compactness theorem,' And, it actually is. To ensure such a property, we introduced the above concept of witness fulfilledress

Proposition: Any fin-sat, complete set of formulas $\Gamma^{\text {con be extended lo a fin resat }}$ complete and wilñes-fulfilled set of for molas.
Proof: We note that a constant symbol c not occuring un a formula q cam always be substitutable for x in ϕ. We use this idea below.
We expand our language \mathcal{L} with a countable set of new constant symbols, D), say, where $D=\left\{d_{1}, d_{2}, \ldots.\right\}$. So the panameliss of the new language L^{\prime} is given by the parameters of \mathcal{L}, the language we started off to getter with the set D. In otter words, $\mathcal{L}:(l, f, 8)$ and $L^{\prime}:(l \cup D, F, \beta)$.
As \mathcal{L} is constable, \mathcal{L}^{\prime} is also countable

Let us enumerate the formulas in α^{\prime} as follow: $\beta_{0}, \beta_{1}, \beta_{2}$,
We now conslinct sets of formulas Δ_{0}, Δ_{1}, Δ_{2}, \ldots as follows:
$-\Delta_{0}=\Gamma \quad$ (fin-nat and completer).

- If $\beta_{k}=\exists x \varphi$, then,

$$
\Delta_{k+1}=\left\{\begin{array}{l}
\Delta_{k} \cup\left\{\exists x \varphi, \varphi\left[\frac{d}{x}\right]\right\} \text {, if it is fin- } \\
\text { sat, where } d \text { is the least-indexed }
\end{array}\right.
$$ sat, where d is the least-indexed constant symbol, not occurring. $\cdots \Delta_{k}$

Δ_{k}, otherwise

- else,

$$
\Delta_{k+1}=\left\{\begin{array}{l}
\Delta_{k} \cup\left\{\beta_{k}\right\}, \text { if it is fin- sat } \\
\Delta_{k \cdot}, \text { otherwise } .
\end{array}\right.
$$

We have : $\Delta_{0} \leq \Delta_{1} \subseteq \Delta_{2} \subseteq$
Let $\Delta=\bigcup_{n \geqslant 0} \Delta_{n}$
Claim: Δ is fir-sat, complete, witness fulfilled

