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1 Introduction

Logic is about expressing and proving constraints on mathematical models.
There exists various logic to do that. From the computer scientist’s perspective,
it is obvious questions come into the mind about computability and complexity.
In this presentation, we investigate the computability of satisfiability problems.
Here we will prove that the Modal Satisfiability problem belongs to PSPACE.

The remainder of this paper is structured as follows. In Sect. 2 we recall
some definitions. In Sect. 3 we define graph predicates and provide a translation
to FOL; in Sect. 4 we define the reverse translation. Finally, in Sect. 5 we
summarize the results and discuss related work, variations, and extensions.

2 Basic Definition

2.1 Modal Logic:-

So Before we define modal logic let us first understand the the meaning of
modality. So, a modality is just a word or phrase that can be applied to a given
statement S to create a new statement that asserts. There exist di↵erent types
of modality. For example, temporal, epistemic, preference, deontic, dynamic,
metalogic, etc. Now, we are ready to define modal logic. So, a Kripke modal
logic constitutes:

- A set W of states or worlds(each one specifying truth values for all proposi-
tional variables).

- A relation on the set of states(specifying the ’relevant situations’). Therefore,
we viewed this relation R ✓ W ⇥ W.

- So, a frame F is a pair of the W and R i.e., F = (W,R).

- A model is a pair M = (F , V ). Where V is a valuation function such that
V : W ! 2P .

Now, given a model, M and a world w in M is called a ’pointed model’. Now,
in Kripke modal logic any propositional variable is a formula. If P and Q
are formulas, then ¬P, P ^ Q,P _ Q,P ! Q, ⇤P , ⇧P are also formulas. For
example, in the following figure 1 the set of world W = {w1, w2, w3, w4, w5}.
The valuation functions are V(P) = {w1, w5}, V(Q) = {w2, w3, w5} and V(R)
= {w4}. P, Q, and R are the propositional variables.

2.2 Quantified Boolean Formula:-

The quantified Boolean formula problem (QBF) is a generalization of the Boolean
satisfiability problem in which both existential quantifiers and universal quan-
tifiers can be applied to each variable. Put another way, it asks whether a
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Figure 1: Example of modal logic

quantified sentential form over a set of Boolean variables is true or false. For
example, the following is an instance of QBF:

8x 9y 9z ((x _ z) ^ y)

3 PSPACE:-

PSPACE, the class of problems solvable by a deterministic Turing machine us-
ing only polynomial space, is the complexity class of most relevance to the
basic modal language. Intuitively, PSPACE-complete problems are the hard-
est problems in this category. Here are some problems that are known to be
PSPACE-complete:

- Given a regular expression, does it match all possible strings, or is there a
string it doesn’t match?

- Given a formula with no free variables, such as “ 9x18x29x38x4 : (x1 _¬x3 _

x4) ^ (¬x2 _ x3 _ ¬x4)”, check whether it is true.

In this presentation, we will show that modal satisfiability problems belong
to PSPACE. We will show that modal logic does not have the polysize model
property.

4 Forcing binary trees in Modal Logic:-

Let �� be a satisfiable formula. For any natural number m, we are going to
devise a satisfiable formula ��(m) with the following properties:

- the size of ��(m) is polynomial (indeed, quadratic) in m,but

- when �� is satisfied in any model M at a node w0, then the submodel of M
generated by w0 contains an isomorphic copy of the binary tree of depth m.
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As we know that the binary branching tree of depth m contains 2m nodes, the
size of the smallest satisfying model of ��(m) is exponential in |�

�(m)|. Thus
we will have shown that small formulas can force the existence of large models.

We will define these formulas by mimicking truth tables. For any natural
number m, ��(m) will be constructed out of the following variables: q1, · · ·, qm,
and p1, · · ·, pm. The qi’s play a supporting role. They will be used to mark
the level (or depth) in the model; that is, they will mark the number of upward
steps that need to be taken to reach the satisfying node. But any satisfying
model for ��(m) will give rise to a full truth table for p1, · · ·, pm: every possible
combination of truth values for p1, · · ·, pm will be realized at some node, and
hence any model for ��(m) must contain at least 2m nodes. Let us first define
two macros to carry out the above idea.

1. Bi:- Bi is defined as follows:

Bi := qi ! (⇧(qi+1 ^ pi+1) ^ ⇧(qi+1 ^ ¬pi+1)) (1)

Given that we are going to use the qi’s to mark the levels, the e↵ect of
Bi should be clear: it will force a branching to occur at level i, set the
value of pi+1 to true at one successor at level i +1, and set pi+1 to false
at another.

2. S(pi, ¬pi+1):= S(pi, ¬pi+1) is defined as

S(pi,¬pi+1) := (pi ! ⇤pi) ^ (¬pi ! ¬⇤pi) (2)

This formula sends the truth values assigned to pi and its negation one
level down. The idea is that once Bi has forced a branching in the model
by creating a pi+1 and a ¬pi+1 successor, S(pi+1, ¬pi+1) ensures that these
newly set truth values are sent further down the tree; ultimately we want
them to reach the leaves.

Now, we will define the ��(m), which is the conjunction of the formula listed
below:-

1. q0

2. ⇤m(qi ^i 6=j qj) (0 � i � m)

3. B0 ^⇤B1 ^⇤2
B2 ^⇤3

B3 ^ · · · ^⇤m�1
Bm�1

4. ⇤S(p1,¬p1) ^⇤2
S(p1,¬p1) ^⇤3

S(p1,¬p1) ^ · · · ^⇤m�1
S(p1,¬p1)

^⇤2
S(p2,¬p2) ^⇤3

S(p2,¬p2) ^ · · · ^⇤m�1
S(p2,¬p2)

^⇤3
S(p3,¬p3) ^ · · · ^⇤m�1

S(p3,¬p3)

...

^⇤m�1
S(pm�1,¬pm�1)
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The first conjunct q0, ensures that any node that satisfies ��(m) is marked as
having level 0. The e↵ect of (2) is to ensure that no two distinct level marking
atoms qi and qj can be true at the same node (at least, this will be the case
out to level m, which is all we care Thus our level markers are beginning to
work as promised. about). To see this, recall that ⇤(m)

� is shorthand for
� ^ ⇤� ^ ⇤2

� ^ · · · ^ ⇤m
�. Thus our level markers are beginning to work as

promised. Because of the prefixed blocks of ⇤ modalities, the Bi macros in (iii)
force m successive levels of branching; and each such branching ‘splits’ the truth
value of one of the pi’s. Then, again because of the prefixed 2 modalities, (iv)
uses the S(pi,¬pi) macro to send each of these newly split truth values all down
to the m-th level. In short, (iii) creates branching, and (iv) preserves it. So, it
is clear that any satisfying model for ��(m) must contain a submodel that is
isomorphic to the binary branching tree of depth m. It follows that any model
of ��(m) must contain at least 2m nodes, as we claimed. Hence, the following
theorem comes into this place. Similarly, each row in (iv) gains an extra conjunct
(as does the next empty row) thus we gain a new column containing m formulas.
The biggest change occurs in (ii). If you write (ii) out in full, you will see that
it gains an extra row, and an extra column, and an extra atomic symbol in each
embedded conjunct, and this means that —�

�(m)— increases by O(m2log(m))
(that is, slightly faster than quadratically). This is negligible compared with
the explosion in the size of the smallest satisfying model: this doubles in size
every time we increase m by one.

Theorem 1 Modal logic lacks the polysize model property.

5 PSPACE algorithm for Modal Logic:-

We will now define a PSPACE algorithm called Witness whose successful termi-
nation guarantees the modal logic satisfiability of the input. Since we have just
seen that there are satisfiable formulas ��(m) whose smallest satisfying model
contains 2m nodes.

Definition 1 A set of formulas ⌃ is said to be closed if it is closed under

subformulas and single negations.

Definition 2 If � is a set of formulas, then Cl(�), the closure of �, is the

smallest closed set of formulas containing �. Note that if � is finite then so is

Cl(�).

Definition 3 Let ⌃ be a subformula closed set of formulas. A Hintikka set H

over ⌃ is a maximal subset of ⌃ that satisfies the following conditions:

1. ?62 H.

2. If ¬� 2 ⌃, then ¬� 2 H i↵ � 62 H.

3. If � ^  2 ⌃, then � ^  2 ⌃ i↵ � 2 H and  2 H.
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If a Hintikka set is satisfiable we call it an atom. Witness will take two finite
sets of formulas H and ⌃ as input, and determine whether or not H is an atom
over ⌃. next, we will define the demands.

Definition 4 Suppose H is a Hintikka set over ⌃, and ⇧ 2 H. Then the de-

mand that ⇧ creates in H is

{ } [ {⇠ ✓|¬ ⇧ ✓ 2 H}

The demand is denoted by Dem(H, ⇧ ). Now, we are ready to give the algorithm
to check whether the witness is satisfiable or not.

Definition 5 Suppose H and ⌃ are finite sets of formulas such that H is a

Hintikka set over ⌃. Then H ✓P(⌃) is a witness set generated by H on ⌃ if H

2 H and

1. if I 2 H, then for each ⇧ 2 I, there is a J 2 I⇧ such that J 2 H

2. if J 2 H and J 6= H then for some n¿ 0 there are I
0
,... ,I

n
2 H such that

H = I
0
, J = I

n
, and for each 0 � i ¡ n there is some formula ⇧ 2 Ii

such that I
i+1

2 I
i
⇧ .

Algorithm 1 Witness(H,⌃)

Require: H, ⌃
Ensure: boolean
if H is a Hintikka set over ⌃ and for each subformula ⇧ 2 H there is a set
of formula I 2 H⇧ such that witness(I, Cl(Dem(H, ⇧ ))) then

return true
else if then

return false

6 Conclusion

We have presented that the modal satisfiability problem is PSPACE-complete.
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