MODAL LOGIC SATISFIABILITY PROBLEM AND ITS COMPLEXITY

Basudeb Roy

AGENDA

Introduction

Basic Definition

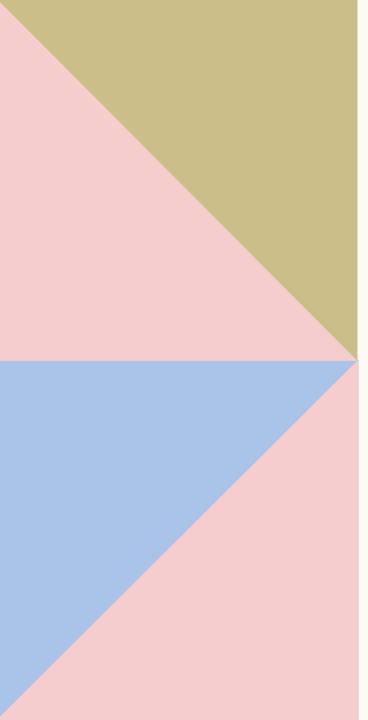
PSPACE

Forceing binary trees in modal logic PSPACE algorithm

Conclusion

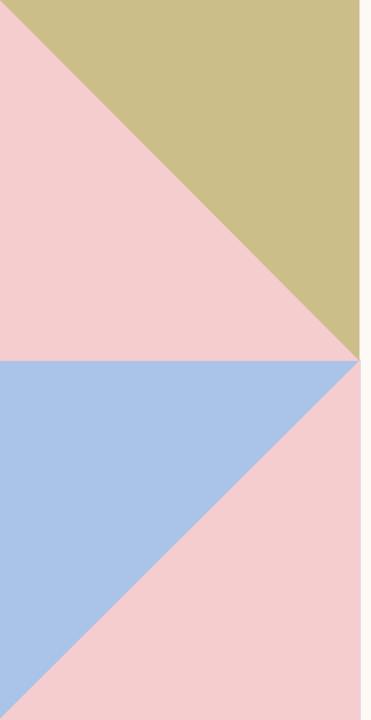
INTRODUCTION

- Expressing and proving constraints on mathematical models
- Modal logic is one of them.
- Obvious question is about computability and complexity.
- Investigate the computability of satisfiability problem
- Modal Satisfiability problem belongs to PSPACE.



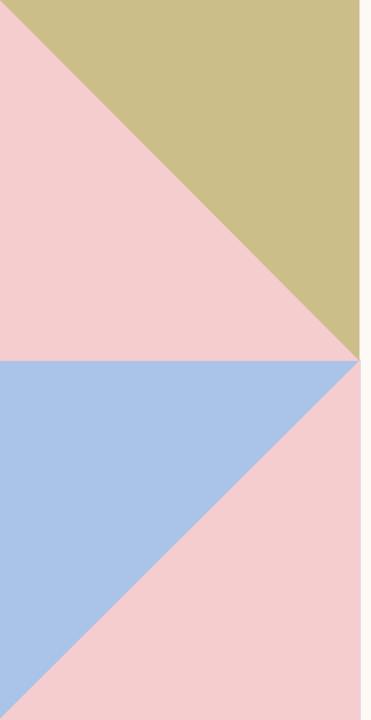
BASIC DEFINITION

- Modal Logic:-
 - A set of W of states or word
 - $R \subseteq W \times W$.
 - F = (W, R)
 - M = F, V
 - V: W $\rightarrow 2^{P}$
- P and Q propositional variables.
- Formula:- P| \neg P | P \land Q | P \lor Q | P \rightarrow Q | \Box P | \diamond P
- QBF:-
 - Generalised Boolean formula
 - existential quantifiers
 - Universal quantifiers
 - Both applied to each variables
- Example: $\forall x \exists y \exists z ((x \lor z) \land y)$



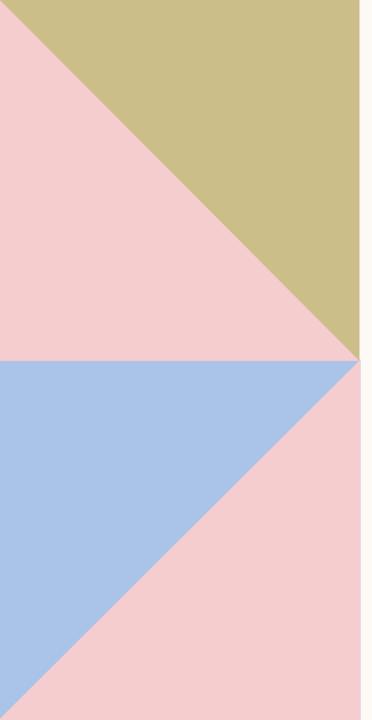
PSPACE

- Class of problem
 - Solvable by deterministic Turing mechine
 - Polynomial space
- Relevent complexity class
- Intuitively PSPACE-complete problems are the haredest problem.
- Some PSPACE-complete problem:
 - Given a regular expression, does it match all possible strings, or is there a string it doesn't match?
 - Given a formula with no free variables, check whether it is true.
- Modal satisfiability problem is belongs to PSPACE.



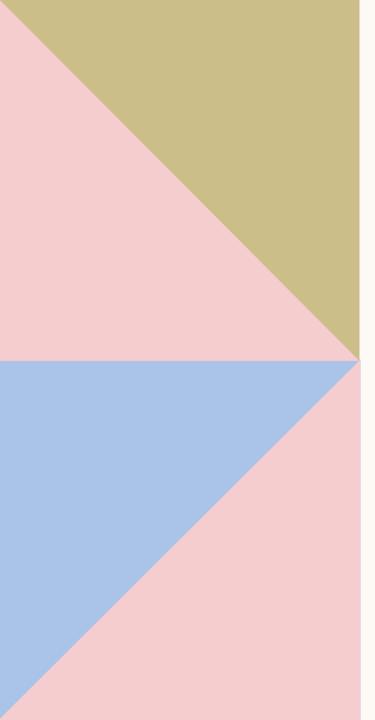
FORCING BINARY TREE

- For any natural number m, devise $\varphi^{\beta}(m)$:
 - Size of $\varphi^{\beta}(m)$ is polynomial in m
 - If satisfied in M at a node w₀, then
 - Submodel generated by w₀ contains isometric copy of binary tree of depth m.
- binary branching tree of depth m contains 2^m nodes
- smallest satisfying model of φ^{β} (m) is exponential in $|\varphi^{\beta}(m)|$
- $\varphi^{\beta}(m)$ will be constructed out of the following variables:
 - q₁, q₂, q3, ..., q_m
 - P₁, p₂, p₃, ..., p_m
- q_i used to mark the level.
- every possible combination of truth values for p_i's will be realized at some node



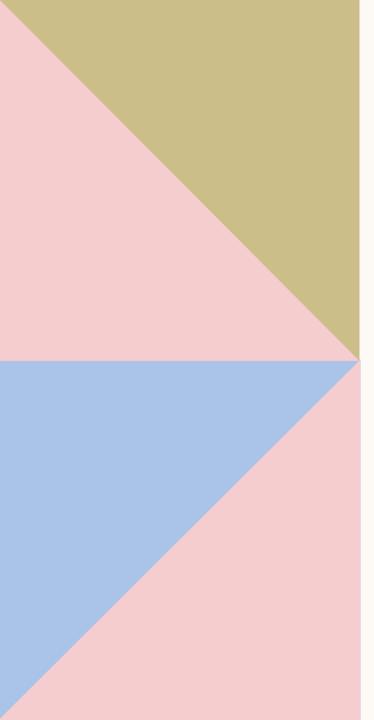
MACROS:-

- $B_i := q_i \rightarrow (\diamond(q_{i+1} \land p_{i+1}) \land \diamond(q_{i+1} \land \neg p_{i+1}))$
 - qi's to mark the levels
 - force a branching to occur at level i
- $S(p_i, \neg p_{i+1}) := (p_i \rightarrow \Box p_i) \land (\neg p_i \rightarrow \neg \Box p_i)$
 - sends the truth values assigned to pi and its negation one level down.
 - once B_i has forced a branching in the model
 - ensures that these newly set truth values are sent further down the tree
- ultimately we want them to reach the leaves



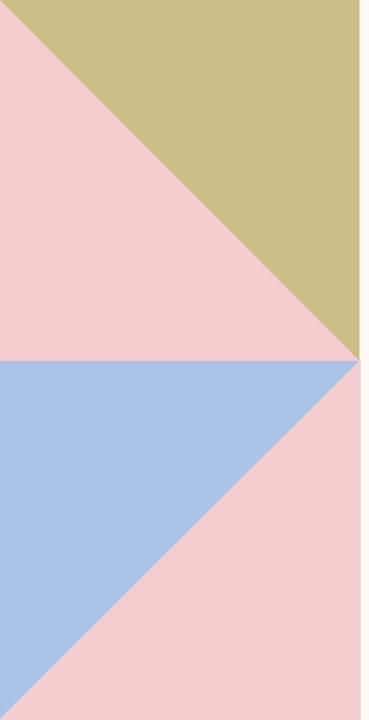
DEFINE $\Phi^{B}(M)$

- Conjunction of the formula listed below:-
 - q₀
 - $\Box^m(q_i \wedge_{i \neq j} q_j) \ (0 \ge i \ge m)$
 - $B_0 \wedge \Box B_1 \wedge \Box^2 B_2 \wedge \Box^3 B_3 \wedge \cdots \wedge \Box^{m-1} B_{m-1}$
 - $\Box S(p_1, \neg p_1) \land \Box^2 S(p_1, \neg p_1) \land \cdots \land \Box^{m-1} S(p_1, \neg p_1)$ $\land \Box^2 S(p_2, \neg p_2) \land \cdots \land \Box^{m-1} S(p_2, \neg p_2)$ $\land \Box^{m-1} S(p_{m-1}, \neg p_{m-1})$
- Theorem 1:- Modal logic lacks the polysize model property.



DEFINITIONS:-

- Closed:- A set of formulas Σ is said to be closed if it is closed under subformulas and single negations.
- Closure(Γ):- If Γ is a set of formulas, then Cl(Γ), the closure of Γ, is the smallest closed set of formulas containing Γ. Note that if Γ is finite then so is Cl(Γ)
- Hintikka Set:- Let Σ be a subformula closed set of formulas. A Hintikka set Hover Σ is a maximal subset of Σ that satisfies the following conditions:
 - 1. \perp not belongs to H.
 - 2. If $\neg \phi \in \Sigma$, then $\neg \phi \in H$ iff $\phi / \in H$.
 - 3. If $\phi \land \psi \in \Sigma$, then $\phi \land \psi \in \Sigma$ iff $\phi \in H$ and $\psi \in H$.



PSPACE ALGORITHM WITNESS(H, Σ)

- Require: Η, Σ Ensure: Boolean
- if (H is a Hintikka set over Σ and for each subformula ◊ψ ∈ H there is a set of formula I ∈ H◊ψ such that witness(I, Cl(Dem(H, ◊ψ))) then
 - return true
- else
- return false

Presentation title

SUMMARY

- Modal satisfiability problem is PSPACE-complete.
- We left the proof the algorithm.

THANK YOU

Basudeb Roy basudebroy82@gamil.com