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Abstract

This project investigates the expressive power of Graph Neural Networks (GNNs) by establishing connections
between their reasoning capabilities and different logic classes. The analysis of the representational power of GNNs
through the lens of logic relies on the classification (true or false) of a node-colour in a graph or a suitable logical
formula evaluating to a property based on the color of a node. Ultimately, the project seeks to selectively characterise
the structure of the GNNs in such a way that modifications to the components of its structure results into establishing
the equivalence (or, proper inclusion) between different classes of logic formalism.

1 Introduction
Graph Neural Network (GNN) has gained a tremendous popularity in various real world task that typically comes
under categories such as node classification, edge prediction and graph morphisms. A Weisfeiler Leman (WL) test
performs partitioning nodes in a graph depending on the heuristic it follows. The partition is done under the well-
known paradigm of graph coloring. The key observation that a WL-Test provides is – after partitioning the vertex set
of two graphs independently, if the test outputs do not agree on the partitioning the given graphs are non-isomorphic.
On such a backdrop, there exists a rigours study connecting a fragment of first order logic, often termed as FOC2
class with the execution of WL test. Thus,1 a question that is natural to ask, is how well the GNN structures are
associated to FOC2.

The rudimentary structure of a graph neural network depends on the functions called aggregation and combi-
nation. Such an AC-GNN takes an one-hot embedding of nodes as parameter and executes classification after a
predefined number of iterations over all the embedded nodes. As the structure gets defined in section 2, it can be
shown that the AC-GNN is strictly less powerful than FOC2 logic class, while being equivalent to the expressiveness
of graded modal logic – a fragment of FOC2 logic that is constrained to be local as defined in section 2.

In contrary, if a global ReadOut function is applied to nodes in every iteration (calling such a model as ACR-GNN)
or even only in final iteration (calling such a model as AC-FR-GNN), the expressiveness of such models can capture
FOC2 logic. However, the other side of the inclusion has not been studied. A local (or, global) characteristic of a
function or logical expression applied to a node in a graph hint to whether that entity is capturing information only
from the neighbourhood of that node (or, considering all the nodes).

This project is built on a recent exploration by Barceló et al. in The Logical Expressiveness of Graph Neural
Networks. We will be covering only a portion that is related to AC-GNN only.

2 The Model and its Variants
This section deals with defining the model and it’s properties.

2.1 Aggregate-Combine Graph Neural Network
A graph neural network (GNN) is a dynamics map F : Qn×d → Qn×d where n is the number of vertices in the graph
G and d be the embedding dimension of the vertex. Given a finite numbers of colours (d), each vertex v is embedded
as a eye vector 1Col(v) where all the components are 0 except at the index Col(v) i.e the color of vertex v. Having said
that we are good to proceed with the definition of a GNN as a node-color classifier.

Definition 2.1 (Model - Aggregate Combine GNN). Given a graph G, a vertex v and L ∈ N; the Aggregate Combine-
Graph Neural Network (AC-GNN) model A performs a partitioning task (similar to vertex colouring) on v as follows:

x(l)
v =COM(l)

(
x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N (v)}}
))

l ∈ [L] and x(0)
v = 1Col(v) (1)

1Even though there are established results on the equivalence of performance between WL-Test and GNNs, we can look into the practical
applications of GNNs which may lead to such questions.
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where AGG(l) is an aggregation function (in this case, it a point-wise sum) applied on the embedding of the vertices
neighbour to v at some iteration l ∈ [L] and COM(l) is a combination function which may vary from being a learnable
function, weighted sum but in this case it is restricted to some

COM(l)(v,u) = f(A(l)v +C(l)u+ b)

where f can be any non-linearity which is min(max(x, 0), 1) in this case. Let X l)
G be the set of all vertex-embeddings in

the graph at l-th iteration. Then

F l = F(X
l)
G) = {{x(l+1)

v | for all vertex v in G }}.

Finally, given a function CLS the node classification of a vertex v in G is defined by

A(G, v) = CLS(x(L)
v ) ∈ {true, false}.

Before defining another model of our use, let us characterise the property of AC-GNN. An iteration in a AC-
GNN can only capture the local behaviour of nodes being processed meaning throughout the predefined number of
iterations if an information does not flow through the neighborhood of a vertex, there will be a loss of information
that to procure true bature of that vertex – this is exactly what described in Proposition 3.1. To add to this, we will
be calling a model homogeneous if all constituent functions AGG and COM are kept identical throughout all the
iterations.

Now we are ready to define another model – Aggregate Combine Readout GNN as a node-colour classifier, over-
coming the short-coming of the earlier one.

Definition 2.2 (Model - Aggregate Combine Readout GNN). A node-colour classifier AC-GNN A is called a ACR-
GNN if the update function Eqn 1 is defined as follows

x(l)
v = COM(l)

(
x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N (v)}}
)
,ReadOut(l)

(
{{x(l−1)

u | xu ∈ G}}
))

(2)

where, l ∈ [L] and x
(0)
v = 1Col(v) and the combination function is modified as

COM(l)(v,u,w) = f(A(l)x+C(l)u+R(l)w + b).

Keeping the homogeneity property identical as earlier, now let us see the following execution on vertex v1 for a
path graph K3,3:

Now we can define the relationship between a node-colour classification model with a logical formula:

Definition 2.3. A node-colour classifier GNN A captures a logical formula φ(x) if for every graph G and node v in
G, A(G, v) = true if and only if (G, v) |= φ.

2.2 Some selected families of logic
In this subsection, we will be discussing the class of logic and its properties that are required to express the repre-
sentation capability of the above mentioned models. Instead of defining the subclasses of FO logic formally, let us
have an example as follows:

α(x) = Green(x) ∧ ∃y(¬E(x, y) ∧ Blue(y)) ∧ ∃z(E(x, z) ∧ Red(z)).

The logical formula α involves three variables. We can introduce a subclass of FO formulas, FO2 that is express-
ible by two variables only. For example, we can express α in FO2 by replacing z with y. Unfortunately, we cannot
have an equivalent formula to α having less number of variables.

Now let us have another example of first order formula

β(x) = Green(x) ∧ ∃y(¬E(x, y) ∧ Blue(y)) ∧ ∃z1∃z2(E(x, z1) ∧ E(x, z2) ∧ ¬(z1 = z2) ∧ Red(z1) ∧ Red(z2)).

This formula ensures existence of three distinct vertices y, z1, z2 where y is a non-neighbour to x and z1, z2 are
neighbour to x which is coloured as red. In this formula we can apply the earlier trick to get a β involving 3 variables
but cannot have no less than that. To this end, let us consider an operator ∃≥n implying existence of at least n ≥ 1
distinct variable satisfying the succeeding formula. The segment of FO2 logic that involves such a counting quantifier
is known as FOC2 logic class. As an example we can consider the following

γ(x) = Green(x) ∧ ∃≥2yBlue(y).
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Now if every bound variable in a FOC2 formula involves an edge constraints with it we will call them graded
modal logic. Thus a graded modal formula φ is of form:

φ(x) : Col(x) | ¬φ(x) | φ(x) ∧ ψ(x) | ∃≥ny(E(x, y) ∧ φ(x)). (3)

CLearly, the logical expressiveness of FOC2 is strictly less than that of FO2 and similarly, graded modal logic
shares a portion of FOC2 logic class. As we have introduced, we will be noticing the equivalence of the node-colour
classifier model with such family of logics.

3 Logical Expressiveness of Node-Colour Classifier AC-GNN
This section deals with formally characterising the expressive power of AC-GNN only. For models like ACR-GNN it
involves discussions that may not befit the stipulated time frame.
Proposition 3.1. There is an FOC2 classifier that is not captured by any AC-GNN.
Proof. Let us consider an FO2 formula δ(v) = Red(v)∧∃uBlue(u). To prove the above statement using contradiction
let us consider, an AC-GNN A with number of layers L ∈ N can satisfy δ(v) that is for any graph G, A(G, v) |= δ.
Then, we consider a path graph PL+2 of length L+2 such that to vertices v, u1, . . . , uL are all red except for the vertex
uL+1 which is blue. No matter what choice of AGG,COM and CLS be, A(PL+2, v) = false although δ is satisfiable
in such a PL+2. Thus a contradiction.

Suppose, for adding more power to AC-GNN we let the GNN run for at least |G.E| times or f(|G.E|) times . Then
the above statement holds. The trick2 is to construct a disconnected graph having all red nodes in one component
(where the vertex v lies) and a single blue node in another. For such a graph, although A(G, v) = false, (G, v) |= δ(v).

Now, it not hard to see why introducing counting quantifiers would not also help in terms of capturing the logical
representational power of AC-GNN.

Thus the apparent questions are - (1) what are the family of logic that are representaed by an AC-GNN and (2)
what class of node-colour classification models can capture the FOC2 logic family? We will answer the first question
in Theorem 3.4. To answer the second question it is claimed that ACR-GNN can express FOC2 class of logic –
however, the proof is out of scope of this project.
Proposition 3.2. Each graded modal logic classifier is captured by a simple homogeneous AC-GNN.
Proof. Please recall the syntax of graded modal logic as given in Eqn 3. Because, we are trying to construct an
AC-GNN Aφ satisfying φ we are free to choose the embedding dimension of the nodes. Suppose the graded modal
logic formula φ involves L sub-formulas (φ1, φ2, . . . , φL) such that if φk is a sub-formula of φl then k < l. We will be
considering the embedding dimension of each node to be L that is the number of sub-formula present in it. Also, it is
easy to apprehend that the number of iterations the model Aφ need should not be more than L. The ℓth component
of the feature vector of node v at iteration ℓ, (x(ℓ)

v )ℓ should evaluate to 1 if and only if the formula φℓ is satisfied at
node v. Note that φL = φ and hence (x

(L)
v )L = 1 for all the nodes v if and only if φ is satisfied at the node.

Now the construction of the homogeneous functions viz.

AGG(U) =
∑
u∈U

u

COM(v,u) = f (Av +Cu+ b) where A,C ∈ RL×L and b ∈ RL and f(x) = min(max(x, 0), 1)

is all that we need show to ensure existence of Aφ. Let us then fill up the matrices A and C and bias b as follows:

Case 0. if φℓ(v) = Col(v) with Col one of the (base) colors, then Aℓℓ = 1,

Case 1. if φℓ(v) = φj(v) ∧ φk(v) then Ajℓ = Akℓ = 1 and bℓ = −1,

Case 2. if φℓ(v) = ¬φk(v) then Akℓ = −1 and bℓ = 1,

Case 3. if φℓ(v) = ∃≥n(E(v, u) ∧ φk(u)) then Ckℓ = 1 and bℓ = −n+ 1

Now unrolling the update equation 1 as

x(i)
v = f

Ax(i−1)
v +

∑
u∈N (v)

Cx(i−1)
u + b


the formulas can be satisfied directly.

2IThe paper suggests a different one which I could not understood.
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Proposition 3.3. The logical expression an AC-GNN can express is exactly what captured by a graded modal logic.

Proof. We would take help of the following propositions:

1. If the WL test assigns the same color to two nodes in a graph, then every AC-GNN classifies either both nodes
as true or both nodes as false. [Xu et al., 2018]

2. Let α be a unary FO formula. If α is not equivalent to a graded modal logic formula then there exist two graphs
G,G′ and two nodes v in G and u′ in G′ such that UnrvLG(v) ≃ isomorphic UnrvLG′(u′) for every L ∈ N and such
that u |= α in G but u′ ̸|= α in G′. [Otto, 2019].

Let G be a graph (simple, undirected and node-colored), v be a node in G, and L ∈ N. The unravelling of v in G at
depth L, denoted by UnrvLG(v), is the (simple undirected nodecolored) graph that is the tree having:

− a node (v, u1, . . . , ui) for each path (v, u1, . . . , ui) in G with i ≤ L,

− an edge between (v, u1, . . . , ui−1) and (v, u1, . . . , ui) when {ui−1, ui} is an edge in G (assuming that u0 is v), and

− each node (v, u1, . . . , ui) colored the same as ui in G.

Then we can observe that

3. Let G and G′ be two graphs, and v and v′ be two nodes in G and G′, respectively. Then for every L ∈ N, the WL
test assigns the same color to v and v′ at round L if and only if there is an isomorphism between UnrvLG(v) and
UnrvLG′(v′) sending v to v′.

Now from observation 1 and 3, we can conclude the follow:

4. Let G and G′ be two graphs with nodes v in G and v′ in G′ such that UnrvLG(v) is isomorphic to UnrvLG′(v′) for
every L ∈ N. Then for any AC-GNN A, we have A(G, u) = A(G′, u′).

We will now prove the contrapositive of the statement to be proved – If a logical classifier α is not equivalent to
any graded modal logic formula, then there is no AC-GNN that captures α.

Let α be a logical classifier that is not equivalent to any graded modal logic formula. To contradict, let us assume
there exists an AC-GNN Aα capturing α. By observation 2, there exist two graphs G,G′ and two nodes v in G and
u′ in G′ such that i) UnrvLG(v) ≃ UnrvLG′(u′) for every L ∈ N and ii) such that u |= α in G but u′ ̸|= α in G′. But as
i) holds by observation 4, we can say A(G, u) = A(G′, u′) – violating to ii) and hence the contradiction that Aα can
capture α.

Theorem 3.4. A logical classifier is captured by AC-GNNs if and only if it can be expressed in graded modal logic.

Proof. Using Propositions 3.2 and 3.3, we can conclude to this.

4 Conclusion
This project tried to explore the established result by Barceló et al. that bridges the gap between the theoretical
representational power of a graph neural network and its wide application in tasks coming under the category of
node classification. The distinction between local and global information processing is the key idea that segregates
the models in terms of their logical expressiveness. One of the obvious extensions could be introducing FOCk logic
class and study the expressiveness of the proposed models. Seeming the study of logical expressiveness of AC-GNN
depends on the well-defined studies of WL-test, graded modal logic and connection with WL-test and AC-GNN.
However, had we extend graded modal logic by allowing a path of length 2 instead of 1 that is an edge and allowing
AC-GNN to access information at depth 2, instead of aggregating the neighbourhood information, can we conclude
similar result – this may worth investigation for further studies.
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