
On Logical Characterisation of Graph Neural Network

Debanjan Dutta
April 17, 2024

Table of Contents

1. Introduction

2. Representational Power of AC-GNN

1

Introduction

Models of Computation

Model of AC-GNN
A graph neural network (GNN) is a dynamics map F : Qn×d → Qn×d.

Given a graph
G, a vertex v and L ∈ N; the Aggregate Combine-Graph Neural Network (AC-GNN)
model A performs a partitioning task (similar to vertex colouring) on v as follows:

x(l)
v =COM

(l)
(

x(l−1)
v ,AGG

(l)
(
{{x(l−1)

u | xu ∈ N (v)}}
))

l ∈ [L] and x(0)
v = 1Col(v) (1)

where

AGG
(l)

: is any aggregation function

COM
(l)

(v, u) : f(A(l)v + C(l)u + b)
f(x) = min(max(x, 0), 1)

F l
= F(X(l)

G) = {{x(l+1)
v | for all vertex v in G }}.

Finally, given a function CLS the node classification of a vertex v in G is defined by

A(G, v) = CLS(x(L)
v) ∈ {true, false}.

Some Properties:
1. Parameters of A: COM(l),AGG(l) and

CLS.

2. Homogeneity: if COM(l) AGG(l) are
identical through out all l ∈ [L]

Some Variants:
1. Model ACR-GNN: x(l)

v =

COM(l)
(

x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N(v)}}
)

,

ReadOut(l)
(
{{x(l−1)

u | xu ∈ G.V}}
))

2. AC-FR-GNN: ReadOut applied only to the
last layer.

2

Models of Computation

Model of AC-GNN
A graph neural network (GNN) is a dynamics map F : Qn×d → Qn×d. Given a graph
G, a vertex v and L ∈ N; the Aggregate Combine-Graph Neural Network (AC-GNN)
model A performs a partitioning task (similar to vertex colouring) on v as follows:

x(l)
v =COM

(l)
(

x(l−1)
v ,AGG

(l)
(
{{x(l−1)

u | xu ∈ N (v)}}
))

l ∈ [L] and x(0)
v = 1Col(v) (1)

where

AGG
(l)

: is any aggregation function

COM
(l)

(v, u) : f(A(l)v + C(l)u + b)
f(x) = min(max(x, 0), 1)

F l
= F(X(l)

G) = {{x(l+1)
v | for all vertex v in G }}.

Finally, given a function CLS the node classification of a vertex v in G is defined by

A(G, v) = CLS(x(L)
v) ∈ {true, false}.

Some Properties:
1. Parameters of A: COM(l),AGG(l) and

CLS.

2. Homogeneity: if COM(l) AGG(l) are
identical through out all l ∈ [L]

Some Variants:
1. Model ACR-GNN: x(l)

v =

COM(l)
(

x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N(v)}}
)

,

ReadOut(l)
(
{{x(l−1)

u | xu ∈ G.V}}
))

2. AC-FR-GNN: ReadOut applied only to the
last layer.

2

Models of Computation

Model of AC-GNN
A graph neural network (GNN) is a dynamics map F : Qn×d → Qn×d. Given a graph
G, a vertex v and L ∈ N; the Aggregate Combine-Graph Neural Network (AC-GNN)
model A performs a partitioning task (similar to vertex colouring) on v as follows:

x(l)
v =COM

(l)
(

x(l−1)
v ,AGG

(l)
(
{{x(l−1)

u | xu ∈ N (v)}}
))

l ∈ [L] and x(0)
v = 1Col(v) (1)

where

AGG
(l)

: is any aggregation function

COM
(l)

(v, u) : f(A(l)v + C(l)u + b)
f(x) = min(max(x, 0), 1)

F l
= F(X(l)

G) = {{x(l+1)
v | for all vertex v in G }}.

Finally, given a function CLS the node classification of a vertex v in G is defined by

A(G, v) = CLS(x(L)
v) ∈ {true, false}.

Some Properties:
1. Parameters of A: COM(l),AGG(l) and

CLS.

2. Homogeneity: if COM(l) AGG(l) are
identical through out all l ∈ [L]

Some Variants:
1. Model ACR-GNN: x(l)

v =

COM(l)
(

x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N(v)}}
)

,

ReadOut(l)
(
{{x(l−1)

u | xu ∈ G.V}}
))

2. AC-FR-GNN: ReadOut applied only to the
last layer.

2

Models of Computation

Model of AC-GNN
A graph neural network (GNN) is a dynamics map F : Qn×d → Qn×d. Given a graph
G, a vertex v and L ∈ N; the Aggregate Combine-Graph Neural Network (AC-GNN)
model A performs a partitioning task (similar to vertex colouring) on v as follows:

x(l)
v =COM

(l)
(

x(l−1)
v ,AGG

(l)
(
{{x(l−1)

u | xu ∈ N (v)}}
))

l ∈ [L] and x(0)
v = 1Col(v) (1)

where

AGG
(l)

: is any aggregation function

COM
(l)

(v, u) : f(A(l)v + C(l)u + b)
f(x) = min(max(x, 0), 1)

F l
= F(X(l)

G) = {{x(l+1)
v | for all vertex v in G }}.

Finally, given a function CLS the node classification of a vertex v in G is defined by

A(G, v) = CLS(x(L)
v) ∈ {true, false}.

Some Properties:
1. Parameters of A: COM(l),AGG(l) and

CLS.

2. Homogeneity: if COM(l) AGG(l) are
identical through out all l ∈ [L]

Some Variants:
1. Model ACR-GNN: x(l)

v =

COM(l)
(

x(l−1)
v ,AGG(l)

(
{{x(l−1)

u | xu ∈ N(v)}}
)

,

ReadOut(l)
(
{{x(l−1)

u | xu ∈ G.V}}
))

2. AC-FR-GNN: ReadOut applied only to the
last layer.

2

A few Words regarding AC-GNN

On a drive to exploit the node classification with respect to our paradigm of logic we
introduce the definition as follows:

Example of a logical classifier:

φ(v) = Red(v) ∧ ∃u Green(u)

Definition (AC-GNN as Node-Colour Classifier)
A GNN classifier A captures a logical classifier φ(x) if for every graph G and node v
in G, it holds that A(G, v) = true if and only if (G, v) |= φ.

Observations:

1. The model suffers from the flow of information of local aggregations that cannot
travel further than a fixed distance L + 1.

2. Global information will only be captured when ReadOut function is incorporated.

Applications:

1. In the realm of geometric deep learning GNN are used vastly under tasks that fall
under node classification.

2. There are also some tasks that fall under Edge prediction: Citation prediction,
Probable Co-Author prediction.

3. Hybrid tasks.

3

A few Words regarding AC-GNN

On a drive to exploit the node classification with respect to our paradigm of logic we
introduce the definition as follows:

Example of a logical classifier:

φ(v) = Red(v) ∧ ∃u Green(u)

Definition (AC-GNN as Node-Colour Classifier)
A GNN classifier A captures a logical classifier φ(x) if for every graph G and node v
in G, it holds that A(G, v) = true if and only if (G, v) |= φ.

Observations:

1. The model suffers from the flow of information of local aggregations that cannot
travel further than a fixed distance L + 1.

2. Global information will only be captured when ReadOut function is incorporated.

Applications:

1. In the realm of geometric deep learning GNN are used vastly under tasks that fall
under node classification.

2. There are also some tasks that fall under Edge prediction: Citation prediction,
Probable Co-Author prediction.

3. Hybrid tasks.

3

Representational Power of
AC-GNN

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?

Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 Logic Family

Recall that, AC-GNN are shy to fetch the global information in a graph.

•
φ(x) = Red(x) ∧ ∃u(¬E(u, x) ∧ Green(u))

•
φ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ Blue(y))

∧∃u∃v(¬E(u, x)Green(u) ∧ (E(v, x) ∧ Blue(v) ∧ ¬(u = v))

• Can we reduce the number of variables?
Replace v by y.

Definition (FO2 Logic)
An FO2 logic family is subpart of first order logic that involves only two variables.

Still we are interested in computing in such logic. So consider an operator ∃≥n

implying existence of at least n ≥ 1 distinct variable satisfying the succeeding formula.

Definition (FOC2 Logic)
The segment of FO2 logic that involves such a counting quantifier is known as FOC2
logic class

γ(x) = Green(x) ∧ ∃≥2y Blue(y).

4

FOC2 and AC-GNN

Proposition

There is an FOC2 classifier that is not captured by any AC-GNN.

Let us consider an FO2 formula δ(v) = Red(v) ∧ ∃u Blue(u).

• Suppose AC-GNN A with number of
layers L ∈ N can satisfy δ(v) for any
graph G.

• Take G = PL+2 that is a path graph of
length L + 2 such that

v → u1 → . . . → uL → uL+1

• A(PL+2, v) can capture information up
to node uL.

• Although (PL+2, v) |= δ,
A(PL+2, v) = false, no matter what
we choose for CLS,AGG or COM.

Let us loosen the the constraint and let A
run for |G.E| times.

• Suppose AC-GNN A with number of
layers L = |G.E| can satisfy δ(v) for
any graph G.

• Consider a disconnected graph with
two components
G = ({v, v1, . . . , vn} ∪ {u},E).

• Even if (G, v) |= δ, A(G, v) = flase.

Clearly, AC-GNN neither satisfy FO2 formula nor FOC2.

1. So what kind of logic family can AC-GNN capture?

2. And what model should capture FOC2?

5

FOC2 and AC-GNN

Proposition

There is an FOC2 classifier that is not captured by any AC-GNN.

Let us consider an FO2 formula δ(v) = Red(v) ∧ ∃u Blue(u).

• Suppose AC-GNN A with number of
layers L ∈ N can satisfy δ(v) for any
graph G.

• Take G = PL+2 that is a path graph of
length L + 2 such that

v → u1 → . . . → uL → uL+1

• A(PL+2, v) can capture information up
to node uL.

• Although (PL+2, v) |= δ,
A(PL+2, v) = false, no matter what
we choose for CLS,AGG or COM.

Let us loosen the the constraint and let A
run for |G.E| times.

• Suppose AC-GNN A with number of
layers L = |G.E| can satisfy δ(v) for
any graph G.

• Consider a disconnected graph with
two components
G = ({v, v1, . . . , vn} ∪ {u},E).

• Even if (G, v) |= δ, A(G, v) = flase.

Clearly, AC-GNN neither satisfy FO2 formula nor FOC2.

1. So what kind of logic family can AC-GNN capture?

2. And what model should capture FOC2?

5

FOC2 and AC-GNN

Proposition

There is an FOC2 classifier that is not captured by any AC-GNN.

Let us consider an FO2 formula δ(v) = Red(v) ∧ ∃u Blue(u).

• Suppose AC-GNN A with number of
layers L ∈ N can satisfy δ(v) for any
graph G.

• Take G = PL+2 that is a path graph of
length L + 2 such that

v → u1 → . . . → uL → uL+1

• A(PL+2, v) can capture information up
to node uL.

• Although (PL+2, v) |= δ,
A(PL+2, v) = false, no matter what
we choose for CLS,AGG or COM.

Let us loosen the the constraint and let A
run for |G.E| times.

• Suppose AC-GNN A with number of
layers L = |G.E| can satisfy δ(v) for
any graph G.

• Consider a disconnected graph with
two components
G = ({v, v1, . . . , vn} ∪ {u},E).

• Even if (G, v) |= δ, A(G, v) = flase.

Clearly, AC-GNN neither satisfy FO2 formula nor FOC2.

1. So what kind of logic family can AC-GNN capture?

2. And what model should capture FOC2?

5

FOC2 and AC-GNN

Proposition

There is an FOC2 classifier that is not captured by any AC-GNN.

Let us consider an FO2 formula δ(v) = Red(v) ∧ ∃u Blue(u).

• Suppose AC-GNN A with number of
layers L ∈ N can satisfy δ(v) for any
graph G.

• Take G = PL+2 that is a path graph of
length L + 2 such that

v → u1 → . . . → uL → uL+1

• A(PL+2, v) can capture information up
to node uL.

• Although (PL+2, v) |= δ,
A(PL+2, v) = false, no matter what
we choose for CLS,AGG or COM.

Let us loosen the the constraint and let A
run for |G.E| times.

• Suppose AC-GNN A with number of
layers L = |G.E| can satisfy δ(v) for
any graph G.

• Consider a disconnected graph with
two components
G = ({v, v1, . . . , vn} ∪ {u},E).

• Even if (G, v) |= δ, A(G, v) = flase.

Clearly, AC-GNN neither satisfy FO2 formula nor FOC2.

1. So what kind of logic family can AC-GNN capture?

2. And what model should capture FOC2?

5

Graded Modal Logic

Definition
If every bound variable in a FOC2 formula involves an edge constraints with it we will
call them graded modal logic. Thus a graded modal formula φ is of form:

φ(x) : Col(x) | ¬φ(x) | φ(x) ∧ ψ(x) | ∃≥ny(E(x, y) ∧ φ(y)). (2)

Proposition

Each graded modal logic classifier is captured by a simple homogeneous AC-GNN.

•Aφ satisfies graded modal formula φ.
•Suppose the graded modal logic formula φ involves L sub-formulas (φ1, φ2, . . . , φL)

such that if φk is a sub-formula of φl then k < l.

•Embedding dimension of each node xv to be L.
•The number of iterations the model Aφ need should not be more than L.
•Suppose (x(ℓ)

v)i represents ith component of the feature vector of node v at iteration ℓ.
•(x(ℓ)

v)ℓ should evaluate to 1 if and only if the formula φℓ is satisfied at node v.

•(x(L)
v)L = 1 for all the nodes v if and only if φ is satisfied at the node.

6

Graded Modal Logic

Definition
If every bound variable in a FOC2 formula involves an edge constraints with it we will
call them graded modal logic. Thus a graded modal formula φ is of form:

φ(x) : Col(x) | ¬φ(x) | φ(x) ∧ ψ(x) | ∃≥ny(E(x, y) ∧ φ(y)). (2)

Proposition

Each graded modal logic classifier is captured by a simple homogeneous AC-GNN.

•Aφ satisfies graded modal formula φ.
•Suppose the graded modal logic formula φ involves L sub-formulas (φ1, φ2, . . . , φL)

such that if φk is a sub-formula of φl then k < l.

•Embedding dimension of each node xv to be L.
•The number of iterations the model Aφ need should not be more than L.
•Suppose (x(ℓ)

v)i represents ith component of the feature vector of node v at iteration ℓ.
•(x(ℓ)

v)ℓ should evaluate to 1 if and only if the formula φℓ is satisfied at node v.

•(x(L)
v)L = 1 for all the nodes v if and only if φ is satisfied at the node.

6

Graded Modal Logic

Definition
If every bound variable in a FOC2 formula involves an edge constraints with it we will
call them graded modal logic. Thus a graded modal formula φ is of form:

φ(x) : Col(x) | ¬φ(x) | φ(x) ∧ ψ(x) | ∃≥ny(E(x, y) ∧ φ(y)). (2)

Proposition

Each graded modal logic classifier is captured by a simple homogeneous AC-GNN.

•Aφ satisfies graded modal formula φ.
•Suppose the graded modal logic formula φ involves L sub-formulas (φ1, φ2, . . . , φL)

such that if φk is a sub-formula of φl then k < l.

•Embedding dimension of each node xv to be L.
•The number of iterations the model Aφ need should not be more than L.
•Suppose (x(ℓ)

v)i represents ith component of the feature vector of node v at iteration ℓ.
•(x(ℓ)

v)ℓ should evaluate to 1 if and only if the formula φℓ is satisfied at node v.

•(x(L)
v)L = 1 for all the nodes v if and only if φ is satisfied at the node.

6

Graded Modal Logic

Definition
If every bound variable in a FOC2 formula involves an edge constraints with it we will
call them graded modal logic. Thus a graded modal formula φ is of form:

φ(x) : Col(x) | ¬φ(x) | φ(x) ∧ ψ(x) | ∃≥ny(E(x, y) ∧ φ(y)). (2)

Proposition

Each graded modal logic classifier is captured by a simple homogeneous AC-GNN.

•Aφ satisfies graded modal formula φ.
•Suppose the graded modal logic formula φ involves L sub-formulas (φ1, φ2, . . . , φL)

such that if φk is a sub-formula of φl then k < l.

•Embedding dimension of each node xv to be L.
•The number of iterations the model Aφ need should not be more than L.
•Suppose (x(ℓ)

v)i represents ith component of the feature vector of node v at iteration ℓ.
•(x(ℓ)

v)ℓ should evaluate to 1 if and only if the formula φℓ is satisfied at node v.

•(x(L)
v)L = 1 for all the nodes v if and only if φ is satisfied at the node.

6

Model Construction

What we need to define is the matrices A, C and b.

x(i)
v = f

Ax(i−1)
v +

∑
u∈N(v)

Cx(i−1)
u + b


AGG(U) =

∑
u∈U

u

COM(v, u) = f (Av + Cu + b)
f(x) = min(max(0, x), 1) and x(0)

v = 1Col(v)

Case 0. if φℓ(v) = Col(v) with Col one of the (base) colors, then Aℓℓ = 1,
Case 1. if φℓ(v) = φj(v) ∧ φk(v) then Ajℓ = Akℓ = 1 and bℓ = −1,
Case 2. if φℓ(v) = ¬φk(v) then Akℓ = −1 and bℓ = 1,

Case 3. if φℓ(v) = ∃≥nu(E(v, u) ∧ φk(u)) then Ckℓ = 1 and bℓ = −n + 1

Lets take Case 3.
Say by Induction hypothesis (on the length of sub-formula) we know that (x(i−1)

u)k = 1
if and only if v |= φk and 0 otherwise. So

(x(i)
u)ℓ = f

−n + 1 +
∑

(u,v)∈G.E
(x(i−1)

u)k


Barceló et al. [2020] at ICLR 2020. Refer

7

Model Construction

What we need to define is the matrices A, C and b.

x(i)
v = f

Ax(i−1)
v +

∑
u∈N(v)

Cx(i−1)
u + b


AGG(U) =

∑
u∈U

u

COM(v, u) = f (Av + Cu + b)
f(x) = min(max(0, x), 1) and x(0)

v = 1Col(v)

Case 0. if φℓ(v) = Col(v) with Col one of the (base) colors, then Aℓℓ = 1,
Case 1. if φℓ(v) = φj(v) ∧ φk(v) then Ajℓ = Akℓ = 1 and bℓ = −1,
Case 2. if φℓ(v) = ¬φk(v) then Akℓ = −1 and bℓ = 1,

Case 3. if φℓ(v) = ∃≥nu(E(v, u) ∧ φk(u)) then Ckℓ = 1 and bℓ = −n + 1

Lets take Case 3.
Say by Induction hypothesis (on the length of sub-formula) we know that (x(i−1)

u)k = 1
if and only if v |= φk and 0 otherwise. So

(x(i)
u)ℓ = f

−n + 1 +
∑

(u,v)∈G.E
(x(i−1)

u)k


Barceló et al. [2020] at ICLR 2020. Refer

7

Model Construction

What we need to define is the matrices A, C and b.

x(i)
v = f

Ax(i−1)
v +

∑
u∈N(v)

Cx(i−1)
u + b


AGG(U) =

∑
u∈U

u

COM(v, u) = f (Av + Cu + b)
f(x) = min(max(0, x), 1) and x(0)

v = 1Col(v)

Case 0. if φℓ(v) = Col(v) with Col one of the (base) colors, then Aℓℓ = 1,
Case 1. if φℓ(v) = φj(v) ∧ φk(v) then Ajℓ = Akℓ = 1 and bℓ = −1,
Case 2. if φℓ(v) = ¬φk(v) then Akℓ = −1 and bℓ = 1,

Case 3. if φℓ(v) = ∃≥nu(E(v, u) ∧ φk(u)) then Ckℓ = 1 and bℓ = −n + 1

Lets take Case 3.
Say by Induction hypothesis (on the length of sub-formula) we know that (x(i−1)

u)k = 1
if and only if v |= φk and 0 otherwise. So

(x(i)
u)ℓ = f

−n + 1 +
∑

(u,v)∈G.E
(x(i−1)

u)k



Barceló et al. [2020] at ICLR 2020. Refer

7

Model Construction

What we need to define is the matrices A, C and b.

x(i)
v = f

Ax(i−1)
v +

∑
u∈N(v)

Cx(i−1)
u + b


AGG(U) =

∑
u∈U

u

COM(v, u) = f (Av + Cu + b)
f(x) = min(max(0, x), 1) and x(0)

v = 1Col(v)

Case 0. if φℓ(v) = Col(v) with Col one of the (base) colors, then Aℓℓ = 1,
Case 1. if φℓ(v) = φj(v) ∧ φk(v) then Ajℓ = Akℓ = 1 and bℓ = −1,
Case 2. if φℓ(v) = ¬φk(v) then Akℓ = −1 and bℓ = 1,

Case 3. if φℓ(v) = ∃≥nu(E(v, u) ∧ φk(u)) then Ckℓ = 1 and bℓ = −n + 1

Lets take Case 3.
Say by Induction hypothesis (on the length of sub-formula) we know that (x(i−1)

u)k = 1
if and only if v |= φk and 0 otherwise. So

(x(i)
u)ℓ = f

−n + 1 +
∑

(u,v)∈G.E
(x(i−1)

u)k


Barceló et al. [2020] at ICLR 2020. Refer

7

Converse

Proposition
If AC-GNN captures a logic formula α, then α is a graded modal formula.

1. Seeks help of Weisfeiler-Lehman (WL) test – a heuristic when applied to two
graphs separately it returns some partitions of vertices for each of the graphs. If
they do not agree on each other then we can say the graphs are non-isomorphic.

2. WL-Test and AC-GNN.

3. GML and WL-Test.

8

Converse

Proposition
If AC-GNN captures a logic formula α, then α is a graded modal formula.

1. Seeks help of Weisfeiler-Lehman (WL) test – a heuristic when applied to two
graphs separately it returns some partitions of vertices for each of the graphs. If
they do not agree on each other then we can say the graphs are non-isomorphic.

2. WL-Test and AC-GNN.

3. GML and WL-Test.

8

Converse (ii)

Otto [2019], Xu et al. [2018]

9

References

References

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and
Juan Pablo Silva. The logical expressiveness of graph neural networks. In
International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1lZ7AEKvB.

Martin Otto. Graded modal logic and counting bisimulation. ArXiv, abs/1910.00039,
2019. URL https://api.semanticscholar.org/CorpusID:203610381.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? ArXiv, abs/1810.00826, 2018. URL
https://api.semanticscholar.org/CorpusID:52895589.

10

https://openreview.net/forum?id=r1lZ7AEKvB
https://api.semanticscholar.org/CorpusID:203610381
https://api.semanticscholar.org/CorpusID:52895589

Thank You

10

	Introduction
	Representational Power of AC-GNN
	References

	digiclock.31:
	digiclock.30:
	digiclock.29:
	digiclock.28:
	digiclock.27:
	digiclock.26:
	digiclock.25:
	digiclock.24:
	digiclock.23:
	digiclock.22:
	digiclock.21:
	digiclock.20:
	digiclock.19:
	digiclock.18:
	digiclock.17:
	digiclock.16:
	digiclock.15:
	digiclock.14:
	digiclock.13:
	digiclock.12:
	digiclock.11:
	digiclock.10:
	digiclock.9:
	digiclock.8:
	digiclock.7:
	digiclock.6:
	digiclock.5:
	digiclock.4:
	digiclock.3:
	digiclock.2:
	digiclock.1:

