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In the first place, one should ask that ”Why even bother about second-order logic while
we were doing pretty fine with our first-order logic, which we already learnt, and are familiar
with?”. Well, as most of the new ideas and concepts were born, so did the second-order
logic, which arose from some drawbacks of the first-order logic, which can not talk about
things like ”for all properties”. In the philosophy of mathematics the second-order logic is
often the centre of some heated arguments among scholars. It is stronger than first order
logic in that it incorporates “for all properties” into the syntax, while first order logic can
only say “for all elements”. At the same time it is arguably weaker than set theory in that
its quantifiers range over one limited domain at a time, while set theory has the universalist
approach in that its quantifiers range over all possible domains. This stronger-than-first-
order-logic/weaker-than-set-theory duality is the source of lively debate, not least because
set theory is usually construed as based on first order logic. How can second-order logic be
at the same time stronger and weaker? To make things worse, it was suggested that a first
order set-theoretic background has to be assumed to make use of the strength of second
order logic to full extent, and give an exact interpretation to the “for all properties”. This
not only undermines the claimed strength of second order logic as well as its role as the
primary foundation of mathematics, but also fails to bypass the set theoretic aspects that
the second order logic would have wanted to, namely - the higher infinite, the independence
results, and the difficulties in finding new convincing axioms. We still use set theory as
the metatheory for modern mathematics, although second order logic aimed to be a better
substitute for it (That would make mathematics complicated, since set theory is much more
well developed). Setting aside philosophical questions, it is undeniable and manifested by
a continued stream of interesting results, that second-order logic is part and parcel of a
logician’s toolbox, especially in computer science logic and finite model theory. Central
questions of theoretical computer science, such as the P = NP? question, can be seen as
questions about second-order logic in the finite context.
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1 Introduction

Consider elementary number theory. The objects of our study are the natural numbers 0,
1, 2,. . . and their arithmetic. With first order logic we can formulate statements about
number theory by using atomic expressions x = y, x+y = z and x∗y = z combined with the
propositional operations ∧,∨,¬,−→,←→ and the quantifiers ∀x and ∃x. Here the variables
x, y, z,. . . are thought to range over the natural numbers. With second-order logic our scope
of variables grow larger: in addition to the already existing interpretation for variables, we
have variables X, Y, Z,. . . for properties of numbers and relations between numbers as well
as quantifiers ∀X and ∃X for these variables. We have the atomic expressions of first order
logic and also new atomic expressions of the form X(y1, . . . , yn).

One may ask, ”Which properties of natural numbers can be expressed/proved in/by sec-
ond order logic but not first order logic?”.

With just the constant 0 and the unary function n 7→ n+ (where n+ means n+1) we
can express in second-order logic the Induction Axiom of natural numbers:

∀X([X(0) ∧ ∀y(X(y) −→ X(y+))] −→ ∀yX(y)) (1)

This, together with the axioms ∀x¬(x+ = 0) and ∀x∀y(x+ = y+ −→ x = y) characterizes
the successor operation of natural numbers (up to isomorphism).

In first order logic any theory which has a countably infinite model has also an uncount-
able model (by Upward Löwenheim Skolem Theorem). Hence (1) cannot be expressed in
first order logic.

Another second-order expression is the Completeness Axiom of the linear order ≤ of the
real numbers:

∀X([∃yX(y) ∧ ∃z∀y(X(y) −→ y ≤ z)] −→ ∃z∀y(∃u(X(u) ∧ y ≤ u) ∨ z ≤ y)) (2)

This, together with the axioms of ordered fields characterizes the ordered field of real
numbers (up to isomorphism). In first order logic any countable theory which has an infinite
model has also a countable model (by Downward Löwenheim Skolem Theorem). Hence (2)
cannot be expressed in first order logic.

In early days, logicians including Russell, Löwenheim, Hilbert and Zermelo didn’t think
second order logic was much different form first order logic. In 1929 Gödel proved his
Completeness Theorem and the next year his Incompleteness Theorem. This, along with
later developments emphasized that second order logic is much different. Gödel showed
that any effective axiomatization of number theory is incomplete. On the other hand, there
was a simple finite categorical (hence complete) axiomatization of the structure (N,+, ∗)
in second-order logic. This showed that there cannot be such a complete axiomatization of
second-order logic as there was for first order logic.

Later, Henkin proved the Completeness Theorem for second-order logic, allowing us to
think of both first and second order logic as the same way, just keeping in mind that the
semantics is based on general models.
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2 The Syntax of Second-Order Logic

A vocabulary in second-order logic is similar to a vocabulary in first order logic. Remember
that first order logic vocabulary consists of :

A Logical symbols

i Parentheses: ( , )

ii Sentential connective symbols: −→,¬,←→.

iii Variables (one for each positive integer n): v1, v2, ....

iv Equality symbol (optional): =

B Parameters

i Quantifier symbol : ∀,∃
ii Predicate symbols: For each positive integer n, some set (possibly empty) of symbols,

called n-place predicate symbols

iii Constant symbols: Some set (possibly empty) of symbols

iv Function symbols: For each positive integer n, some set (possibly empty) of symbols,
called n-place function symbols.

In second order logic, we have some more logical symbols.

• Predicate variables (Also called Property or Relation variables): For each positive
integer n, we have the n-place predicate variables Xn

1 , X
n
2 , ....

• Function variables: For each positive integer n, we have the n-place function variables
Fn
1 , F

n
2 , ....

The usual variables v1, v2, ... will now be called individual variables, to avoid confusion.
It is noteworthy that although we have property variables we do not have variables for

properties of properties. Such variables would be part of the formalism of third order logic.

Definition Terms: The terms are as before defined as the expressions that can be built
up from the constant symbols and the individual variables by applying the function symbols
(both the function parameters and the function variables)

• Constant symbols and individual variables are terms

• If t1, t2, ....., tn are terms, U is an n-ary function symbol and F is an n-ary function
variable, then U(t1, t2, ....., tn) and F (t1, t2, ....., tn) are terms. Note that terms denote
individuals, not relations or properties. Thus X alone is not a term but x is.

Definition Atomic Formulas: Atomic formulas are defined from terms as follows:

• If t and t′ are terms, then t = t′ is an atomic formula

• If R is an n-ary relation symbol (parameter or variable) and t1, t2, ....., tn are terms,
then R(t1, t2, ....., tn) is an atomic formula
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• If X is an n-ary relation variable, then also X(t1, t2, ....., tn) is an atomic formula.

Definition Formulas: The formulas of second-order logic are defined as follows -

• Atomic formulas are formulas

• If ϕ and ψ are formulas, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ −→ ψ and ϕ←→ ψ are formulas

• If ϕ is a formula, x an individual variable, X a relation variable and F a function
variable, then ∃xϕ, ∀xϕ, ∃Xϕ, ∀Xϕ, ∃Fϕ and ∀Fϕ are formulas

It is interesting to note that in second order logic we can actually define the identity
t = t′ as ∀X(X(t) ←→ X(t′)) and prove the familiar axioms of identity from properties of
the implication.

An important special case is monadic second-order logic where no function variables are
allowed and the relation variables are required to be monadic (a.k.a. unary), i.e., of arity
one.

Remark 1 i We did not take X = Y as an atomic formula (although we could have) but
having introduced the quantifiers we can use

∀x1∀x2.....∀xn(X(x1, x2, ....., xn)←→ Y (x1, x2, ....., xn))

as a substitute for X = Y . This gives the identity X = Y an extensional flavour in
contrast to a possibly different intensional construal

ii The concepts of a free and bound occurrence of a variable in a formula are defined in
the usual way (as done in first order logic).

iii A formula σ is called a sentence if it has no free variable.

3 The Semantics of Second-Order Logic

Here we discuss about a set-theoretical interpretation of second-order logic, interpreting
“properties” as sets.

Structure:

Formally, a structure M for our given second-order language is a function whose domain
is the set of parameters and such that :

1. M assigns to the quantifier symbol ∀ a nonempty set |M| called the universe (or domain)
of M

2. M assigns to each n-place predicate symbol P an n-ary relation PM ⊆ |M|n ; i.e., PM

is a set of n-tuples of members of the universe

3. M assigns to each constant symbol c a member cM of the universe |M|

4. M assigns to each n-place function symbol f an n-ary operation fM on |M|; i.e., fM :
|M|n −→ |M|
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5. |=M ∀Xn
i ϕ[s] iff for every n-ary relation R on |M|, we have |=M ϕ[s(Xn

i |R)]

6. |=M ∀Fn
i ϕ[s] iff for every n-ary function f : |M|n −→ |M|, we have |=A ϕ[s(Fn

i |f)]

Assignment Function:

Given an L-structure M, an assignment is a function s from variables to the domain M
of M such that:

• if x is an individual variable, then s(x) ∈ M

• if X is relation variable of arity n, then s(X) ⊆ Mn

• if F is function variable of arity n, then s(F ) : Mn −→ M

We use s(P/X) to denote the assignment which is otherwise as s except that the value at
X has been changed to P. Similarly s(a/x) and s(f/F ).

Note 1. 0-ary relation variables are essentially propositions. Their interpretations un-
der an assignment are the truth values (true, false). 0-ary function variables are
essentially individual variables as an assignment maps a 0-ary function symbol simply
to an element of M

2. The value tM<s> of a term t in a model M under the interpretation s is defined as
in first order logic.

3. It is easy to see that only the values of s at variables occurring free in the formula are
significant. For a sentence σ, we may unambiguously speak of it being true or false in
M. Logical (semantical) implication is defined exactly as before, while truth definition
is given below -

Definition Tarski’s Truth Definition: The truth definition for second-order logic ex-
tends the respective truth definition for first order logic by the clauses :

1. M |=s X(t1, t2, ....., tn) iff (tM1 < s >, tM2 < s >, ....., tMn < s >) ∈ s(X)

2. M |=s ∃Xϕ iff M |=s(P/X) ϕ for some P ⊆ Mn

3. M |=s ∃Fϕ iff M |=s(f/F ) ϕ for some f : Mn −→ M

and similarly for the universal quantifiers. For a sentence ϕ, we define M |= ϕ to mean M
|=s ϕ for all (equivalently some) s, and then say ϕ is true in M

Validity and Equivalence of Formulas:

We say that ϕ is (logically) valid if M |=s ϕ holds for all M and all s. Likewise, we define
ϕ and ψ to be logically equivalent (i.e., ϕ ≡ ψ), if ϕ ←→ ψ is valid. Two models M and N
are said to be second-order equivalent (in symbols, M ≡L2 N if for all sentences ϕ we have
M |= ϕ ⇐⇒ N |= ψ.

For infinite M the collection of subsets of Mn and the set of functions Mn −→ M are
famously complex. To reflect the difficulties involved with finding a P ⊆ Mn or an f :
Mn −→ M we sometimes say we “guess” a P ⊆ Mn or an f : Mn −→ M.
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3.1 The Ehrenfeucht-Fräıssé game of Second-Order Logic

The main idea behind the game is that we have two structures, and two players – Spoiler
(player I) and Duplicator (player II). Duplicator wants to show that the two structures are
elementarily equivalent (satisfy the same first-order sentences), whereas Spoiler wants to
show that they are different. The game is played in rounds. A round proceeds as follows:
Spoiler chooses any element from one of the structures, and Duplicator chooses an element
from the other structure. In simplified terms, the Duplicator’s task is to always pick an
element ”similar” to the one that the Spoiler has chosen, whereas the Spoiler’s task is to
choose an element for which no ”similar” element exists in the other structure. Duplicator
wins if there exists an isomorphism between the eventual substructures chosen from the two
different structures; otherwise, Spoiler wins.

The game lasts for a fixed number of steps n (which is an ordinal – usually a finite
number.

For simplicity we disallow function and constant symbols as well as function variables
in this section. Suppose A and B are two models of the same finite relational vocabulary.

The Game:

The game is denoted by G2
n(A,B). 2 players I and II pick subsets (or elements) of A

and B one at a time. The steps are as following -

• Round 1 : player I can pick a relation Ai on A (or an element ai of A) and then
player II has to pick a relation Bi on B of the same arity as Ai (or an element bi of
B) and vice versa. player I can instead pick a relation Bi on B (or an element bi of
B) and in that case player II has to pick a relation Ai on A of the same arity as Bi

(or an element ai of A).

• Next Rounds : Subsequent rounds go the same way till n-th step.

• Decider : After n rounds, the pairs of chosen elements (ai, bi) form a binary relation
R on A×B. If this relation is a partial isomorphism of the structures A and B expanded
by the played relationsAi andBi, i.e., it preserves atomic formulas and their negations,
we say that Duplicator has won.

Strategy:

Unfortunately, unlike the first order case, the game G2
n(A,B) is much more complex and

the Spoiler is always at an advantage. Duplicator, in generality, has no winning strategy
except the trivial case where A ≡ B. However, if we restrict to monadic second-order logic,
which in terms of the Ehrenfeucht-Fräıssé game means restricting the game to unary pred-
icates, the situation changes. A unary predicate just divides the model into two parts. If
Player I divides A into two parts, Player II should find a similar division in B. This is more
reasonable and there actually are useful strategies for Player II.

4 Some Examples

Let’s see some concrete examples of second order logic structures to feel that we are in
control -
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Example 1 A well-ordering is an ordering relation such that any nonempty set has a least
(with respect to the ordering) element. This last condition can be translated into the second-
order sentence :

∀X(∃ y Xy −→ ∃y(Xy ∧ ∀z(Xz −→ y ≤ z)))

Example 2 One of Peano’s postulates (the induction postulate) states that any set of nat-
ural numbers that contains 0 and is closed under the successor function is, in fact, the set
of all natural numbers. This can be translated into the second-order language for number
theory as

∀X(X0 ∧ ∀y(Xy −→ XSy) −→ ∀yXy)

Where S is the successor operator. Any model that satisfies

∀xSx ̸= 0 and

∀X∀y(Sx = Sy −→ x = y)

and the above Peano induction postulate is isomorphic to NS = (N; 0, S). Thus this set of
sentences is categorical; i.e., all its models are isomorphic.

Example 3 For any formula ϕ in which the predicate variable Xn does not occur free, the
formula

∃Xn∀v1∀v2.....∀vn[Xnv1v2.....vn ←→ ϕ]

is valid. (Here other variables may occur free in ϕ in addition to v1, v2, ....., vn.) It says
that there exists a relation consisting of exactly the n-tuples satisfying ϕ. Formulas of this
form are called relation comprehension formulas. There are also the analogous function
comprehension formulas. If ψ is a formula in which the variable Fn does not occur free,
then

∀v1∀v2.....∀vn∃!vn+1ψ −→ ∃Fn∀v1∀v2.....∀vn+1(F
nv1v2.....vn = vn + 1←→ ψ)

is valid.

Example 4 In the ordered field of real numbers, any bounded nonempty set has a least
upper bound. We can translate this by the second-order sentence -

∀X[∃y∀z(Xz −→ z ≤ y) ∧ ∃zXz −→ ∃y∀y′(∀z(Xz −→ z ≤ y′)←→ y ≤ y′)]

It is known that any ordered field that satisfies this second-order sentence is isomorphic
to the ordered field of real numbers R.

Example 5 For each n ≥ 2, we have a first-order sentence λn which translates, “There
are at least n things.” For example, λ3 is

∃x∃y∃z(x ̸= y ∧ x ̸= z ∧ y ̸= z)

The set {λ2, λ3, ...} has for its class of models the EC△ class consisting of the infinite
structures. There is a single second order sentence that is equivalent. A set is infinite iff
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there is an ordering on it having no last element. Or more simply, a set is infinite iff there is
a transitive irreflexive relation R on the set whose domain is the entire set. This condition
can be translated into a second-order sentence

λ∞ : ∃X[∀u∀v∀w(Xuv −→ Xvw −→ Xuw) ∧ ∀u¬Xuu ∧ ∀u∃vXuv].

Another sentence (using a function variable) that defines the class of infinite structures is

∃F [∀x∀y(Fx = Fy −→ x = y) ∧ ∃z∀xFx ̸= z]

which says there is a one-to-one function that is not onto.

5 The Infamous Power of Second-Order Logic

5.1 The Collapse of Compactness Theorem

The Compactness Theorem is one of the cornerstones of our understanding of first order
logic. We shall now see that there is no hope of a Compactness Theorem for second-
order logic! (although that can be done by modifying the semantics as in Henkin models
or general model setup)

Theorem 1 There is an unsatisfiable set of second-order sentences every finite subset of
which is satisfiable.

Proof. We have already seen the counter-example in example 5 of section 4. The desired
set of infinite formulas is, in the notation of that example, {¬λ∞, λ2, λ3, .....} 2

The Löwenheim Skolem Theorem also fails for second-order logic! By the
language of equality we mean the language (with =) having no parameters other than ∀.
A structure for this language can be viewed as being simply a nonempty set. In particular,
a structure is determined to within isomorphism by its cardinality. A sentence in this
language is therefore determined to within logical equivalence by the set of cardinalities of
its models (called its spectrum).

Theorem 2 There is a sentence in the second-order language of equality that is true in a
set iff its cardinality is 2ℵ0 .

Proof. (Using concepts from Algebra and Analysis) Consider first the conjunction of the
(first-order) axioms for an ordered field, further conjoined with the second-order sentence
expressing the least-upper-bound property (see Example 4 of section 4). This is a sentence
whose models are exactly the isomorphs of the real ordered field (i.e., the structures isomor-
phic to the ordered field of real numbers). We now convert the parameters 0, 1, +, ·, < to
variables (individual, function, or predicate as appropriate) which we existentially quantify.
The resulting sentence has the desired properties. 2

We now state a theorem about undefinability of validity in second order logic. But we
will not delve into the proof since that requires a bit more understanding of first order logic
and its analogues in second order case.
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Theorem 3 (Hintikka 1955; Montague 1963) : Validity in second-order logic is not
second-order definable over (N,+,.,0).

Theorem 4 (Alternate Statement of the above) : The set of Gödel numbers of valid
second-order sentences is not definable in N by any second-order formula.

Note A fortiori, the set of Gödel numbers of second-order validities is not arithmetical and
not recursively enumerable. That is, the enumerability theorem fails for second-order logic.
(In the other direction, one can show that this set is not definable in number theory of order
three, or even of order ω. But these are topics we will not cover here.

5.2 ”Set Theory in Sheep’s Clothing”

”Second-order logic hides in its semantics some of the most difficult problems of set theory”
- Resnik

In Philosophy of Logic [Quine, 1970 ], the author summed up a popular opinion among
mathematical logicians by referring to second-order logic as “set theory in sheep’s clothing”.

Let us see where this opinion might come from. First we observe that a very basic,
second-order formula can say that two sets have the same cardinality: Suppose P and R
are unary relation variables. Let θ≤(P,R) be the formula

∃F (∀x∀y((F (x) = F (y) −→ x = y) ∧ (P (x) −→ R(F (x))))

Now M |=s θ≤(P,R) ⇐⇒ |s(P )| ≤ |s(R)|. Let ϕ(P,R) be the formula θ≤(P,R)∧θ≤(R,P ).
Then M |=s ϕ(P,R) ⇐⇒ |s(P )| = |s(R)|. Let θ′EC(Y ) be

F (∀x∀y((F (x) = F (y) −→ x = y) ∧R(F (x))) ∧ ∀x∃y(R(x) −→ x = F (y)))

Now M |=s ϕ(P,R) ⇐⇒ the sets M and s(R) have the same cardinality. We will use
these formulas to launch an attack on the Continuum Hypothesis or C.H.(there is no set
whose cardinality is strictly between that of the integers and the real numbers, or equivalently,
that any subset of the real numbers is finite, is countably infinite, or has the same cardinality
as the real numbers.

Let θCH be the sentence -

∃E∃U∃G∃z(θPow(E,U) ∧ θPA(U,G, z) ∧ ∀Y (θ′EC(Y ) ∨ θ ≤ (Y, U)))

Now θCH , which is a sentence of the empty vocabulary, has a model if and only if the
C.H. holds. Similarly, there is a sentence θ¬CH , which has a model if and only if the C.H.
does not hold. This shows that the dependence of the semantics of second-order logic on
the metatheoretic set theory is so deep that even questions that ZFC cannot solve can
determine the truth or falsity of a sentence in a model.

6 Model Theory of Second-Order Logic

6.1 Second-Order Characterizable Structures

A structure A is second-order characterizable if there is a second-order sentence θA such
that B |= θA ⇐⇒ B ≡ A for all structures B of the same vocabulary as A.
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Example 6 The following structures are second-order characterizable:

1. Natural numbers: (N,+, .)

2. Real numbers: (R,+, ., 0, 1)

3. Complex numbers: (C,+, ., 0, 1, i)

4. The first uncountable ordinal (ω1, <)

5. The level (Vκ, ϵ) of the cumulative hierarchy, where κ is the first strongly inaccessible
cardinal > ω

6. The well-order (κ,<) of the first weakly compact cardinal > ω

Are all structures second-order characterizable? There are only countably many second-
order sentences, hence only countably many (up to isomorphism) second-order characteriz-
able structures. Therefore there are lots of structures of every infinite cardinality which are
not second-order characterizable. However, it is not easy to give examples. One example
is (κ,<), where κ is the first measurable cardinal (> ω). Another example is (N, <,A),
where A is the set of Gödel numbers of valid second-order sentences in the vocabulary of
one binary relation.

A special property of second-order characterizable structures is that their reducts are
also second-order characterizable, because we can use existential second-order quantifiers
to “guess” the missing relations and functions. Therefore it is interesting to find charac-
terizable structures that have as many (but only finitely many) relations and functions as
possible. We can endow N with any finite number of recursive functions f1, ....., fn and rela-
tions R1, .....,Rm obtaining the structure (N, f1, ....., fn,R1, .....,Rm) and this is second-order
characterizable. We can endow R with any familiar analytic functions such as trigonometric
functions or any other functions given by a convergent power series the coefficients of which
are given by a recursive function, and the result is second-order characterizable.

The bigger the characterizable structure is, the more complex is the second-order theory.
That there is no largest characterizable structure can be seen as follows: If A is second-order
characterizable, then so is the reduct of A to the empty vocabulary, that is, the cardinality
|A| of A is characterizable. Such cardinal numbers were studied by Garland,(1974). For
example, if κ is characterizable, then so are κ+ and 2κ.

If ϕ is a second-order sentence, we define

Mod(ϕ) = {M : M |= ϕ}

If ϕ characterizes a model A, then Mod(ϕ) is just the class of models isomorphic to A.

7 Second Order Arithmetic

The second-order theory of natural numbers, known as second-order arithmetic and denoted
by Z2, is an important foundational theory. It is stronger than (first order) Peano arithmetic
but weaker than set theory. It has variables for individuals thought of as natural numbers
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as well as variables for sets of natural numbers thought of as real numbers. In addition
there are + and × for arithmetic operations on the individuals. As axioms Z2 has some
rather obvious axioms about + and ×, the Induction Axiom (1), and the axioms of second-
order logic (this little scope of discussion is not enough to explore them), including the
Comprehension Principle -

∃R∀x1.....xn(ϕ(x1, , ....., xn)←→ R(x1, ....., xn))

where ϕ(x1, ....., xn) is a second-order formula with x1, ....., xn among its free individual
variables and the second-order variable R is not free in ϕ.

A surprising amount of mathematics can be derived in Z2. In a sense, Z2 is a great
success story for second-order logic.

Reverse mathematics uses Z2 to isolate the exact axioms on which well-known theorems
from mathematics rely. In a textbook such theorems are proved perhaps in an informal set
theory, but how much set theory is actually needed in each case? For example, we may
ask what is the weakest set of axioms from which the Bolzano-Weierstrass Theorem can be
proved? How much set theory, comprehension, choice, induction, etc is needed? Since Z2 is
a natural and sufficient environment for many mathematical theorems, it is an appropriate
framework for answering questions raised by the reverse mathematics program. The main
(but not the only) distinctions that are made in reverse mathematics concern the amount
of the Comprehension Principle that is needed in proving this or that mathematical result.

8 Second Order Set Theory

We have up to now treated set theory (ZFC) as a first order theory. However, when
Zermelo,(1930) introduced the axioms which constitute the modern ZFC axiom system, he
formulated the axioms in second-order logic. In particular, his Separation Axiom is

∀x∀X∃y∀z(z ∈ Y ←→ (z ∈ x ∧X(z)))

and the Replacement Axiom is

∀x∀F∃y∀z(z ∈ y ←→ ∃u(u ∈ x ∧ z = F (u)))

Second-order ZFC, ZFC2, is simply the received first order ZFC with the Separation
Schema replaced by the above single Separation Axiom, and the Replacement Schema
replaced by the above single Replacement Axiom. Accordingly, ZFC2 is a finite axiom
system. Zermelo proved that the models of ZFC2 are, up to isomorphism, of the form
(Vκ,∈), where κ is (strongly) inaccessible (> ω).

Second-order set theory in a sense decides the C.H., i.e., decides whether it is true or
not, even if we do not know which way the decision goes. More exactly ZFC2 |= C.H. or
ZFC2 |= ¬ C.H., because C.H. is true if and only if Vκ |= C.H. for inaccessible κ, i.e., if
and only if ZFC2 |= C.H.. Of course we can express C.H. in first order set theory, too, so
the situation is not really different from first order set theory. Many set theorists think that
the concept of set is definitive enough to decide eventually also C.H. even if ZFC does not
decide it. Likewise, we may argue that the concept of second-order semantics is definitive
enough to decide C.H. even if the current axioms of second-order logic cannot do it.
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One may ask, why do we not use second-order set theory ZFC2 as the metatheory of
second-order logic?. In fact we could use it. However, the question might rise, what is the
semantics of our metatheory? In principle such questions can lead to an infinite regress.
By using first order set theory as the metatheory, the question about the semantics of the
metatheory would simply be the question about the semantics of first order logic. Note that
semantics of first order logic is absolute relative to ZFC. This gives some assurance that we
need not continue asking, what the metatheory is.

9 Miscellaneous

This little scope of discussion hardly gives us enough flavour of the mathematical monstros-
ity that the second order logic is. But still, it gives us a nice overview of what it is, how
things are corresponding to this language, and why it is important.
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