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Compactness Theorem
𝜞 is satisfiable if and only if all 𝜞fin are satisfiable

*Some Landmark equivalent results:
● Weak Axiom of Choice
● Boolean Prime Ideal Theorem
● Banach -Alaoglu
● Ultrafilter lemma   



Godel’s 
Completeness 

Theorem
If T is any FOL-theory, and φ is any valid 
sentence in T, then T can be proven from 

the axioms
“Anything true in all models is provable”

● The Generalised completeness 
theorem (𝜞⊨φ iff 𝜞⊢φ)

● Corollary: Compactness 
theorem

● *Compactness and 
Completeness are equivalent

𝜞⊢φ if 𝜞⊨φ 



Thm: If 𝜞 is finitely satisfiable then 𝜞 is satisfiable
Contrapositive: If 𝜞 is not satisfiable then 𝜞 is not finitely satisfiable (there exists a finite 
subset of 𝜞 such that it is not satisfiable ) 

Assume that 𝜞 is not satisfiable

𝜞⊨¬φ⋀φ (Vacuously)

From Godel’s Completeness Theorem, we can infer that ¬φ⋀φ can be deduced from finite 
elements from 𝜞. Call this subset of 𝜞, 𝜴.

From Soundness Theorem, we have 𝜴⊨¬φ⋀φ

𝜴 is not satisfiable!

       ▄



Contrast

● Henkin’s construction bypassed the concept of deductive consequences.

● Henkin’s construction yielded a stronger result:

 Compactness + Upward Lowenheim Skolem+Downward Lowenheim Skolem 
Theorems



Applications of Compactness 
Theorem



Thm: Any infinite graph is four colourable

Some prerequisites:

● K-colourability on a finite graph is a firstorderisable property.
● Four Colour Theorem: Any finite planar graph is four colourable

  Proof: Consider any infinite planar graph G=(V,E). Let T be an FOL theory(set of 
FOL formulas) defined to be the set of formulas characterising the four 
colourability of every finite subgraph of G.

T is finitely satisfiable. (Four colour Theorem).



Thm: Any infinite graph is four colourable

Hence T is satisfiable, i.e., there exists a model (a choice of assignment of colours 
to each vertex) such that the graph G is four colourable. ▄

Note: This is the De Bruijn Erdos Theorem. Mycielski(1961) showed the 
equivalence between  De Bruijn Erdos Theorem and Boolean Prime Ideal Theorem 
(which implies that De Bruijn Erdos Theorem and Compactness Theorem are 
equivalent)

 



Konig’s Lemma(1927)

Let G be a connected, locally finite and infinite graph. Then Konig’s lemma asserts 
that G has a ray (a simple path that starts from one vertex and continues 
infinitely).

Seems obvious, right?

Consider the following non-example: 

Here the vertex w emits infinite simple paths of lengths n∈ℕ. 

It can be seen that there are no rays in this graph. 

w

∞



Konig’s Lemma(1927)

The subtlety lies in distinguishing between “there exist paths of all arbitrary lengths” and 
“there exists an interminable path”. 

Proof: Instead of proving the theorem for any arbitrary graph, we can prove it for trees 
WLOG. Fix the root of the tree.

Given a tree T, define the predicate Px to be “vertex x is chosen”. 

We now build our 𝜞:

At least one vertex is chosen at each level

Fn: ⋁ ki=1Pn_i  where n_i, i∈[k]  is the set of vertices at level n.



Konig’s Lemma(1927)

At most one vertex is chosen

Gn: ⋀k
i=1⋀

k
j=i+1(Pn_i⋀¬Pn_j)

A vertex is picked only if its ancestor has been picked

Hxy: Py→Px where x is the ancestor y.

𝜞 defined as {Fn| n∈ℕ}∪{Gn| n∈ℕ}∪{Hxy| x,y∈T and x is the ancestor of y}

If 𝜞 is satisfiable, then there is a ray in T.



Now consider an arbitrary 𝜞fin⊆𝜞. Since it contains finite occurrences of Px , it 
contains finite occurrences of vertices of T. 

Let v be the vertex of highest level (k) amongst them. Define 

𝜞k = {Fn| n∈[k]} ∪ {Gn| n∈[k]}

∪{Hxy| x,y∈T, x is the ancestor of y and Lev(x), Lev(y)≤k}

Observe:  

1. 𝜞k is finite. 
2.  𝜞fin⊆𝜞k
3. 𝜞k is satisfiable implies 𝜞fin is satisfiable.



Claim: 𝜞k is satisfiable.

𝜞k = {Fn| n∈[k]} ∪ {Gn| n∈[k]}

∪{Hxy| x,y∈T, x is the ancestor of y and Lev(x), Lev(y)≤k} satisfiable

Iff there exists a path of length k starting from the root node.

Since T is an infinite tree and w has finite degree, we can always find such a path. 
Hence 𝜞k is satisfiable.

Hence by our observation(3.), any arbitrary finite subset of 𝜞 is satisfiable.

By Compactness theorem, 𝜞 is satisfiable!           ▄



Every Field has an algebraic closure
Let F be a field. Consider Pf(x) : f(x) splits (f(x) is non constant).  We have shown that Field 
Axioms are firstorderisable in Assignment 1. 

Define 𝜞 ={field axioms}  (1)

              ∪ {Pf(x)|f(x) is a non constant polynomial in F}  (2)

              ∪ {∃x(x=k)| k∈F} (3)

Consider  𝜞fin⊆𝜞. 𝜞fin contains finite elements of the second kind. Hence, a model 
satisfying 𝜞fin would be 𝓜=(D,I,G), D=F(α1,α2,α3,...,αn) 

 where αi are the roots of the polynomials occurring in sentences of type (2) in 𝜞fin .



Every Field has an algebraic closure

Hence every finite subset of 𝜞 is satisfiable. By compactness, 𝜞 is satisfiable.

Hence there exists a model on the domain L(where L has been endowed field 
structure) such that 𝓜Lsatisfies 𝜞.

Consider all the elements of L that are algebraic over F. Call this set F*. 

By borrowing a direct result from commutative algebra, we see that F* is a field 
too.

Hence F* is an algebraic closure of F

 ▄
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