
Graphs and Monadic Second Order Logic

Ritam M Mitra

April 2024

1 Introduction

1.1 Graphs

A graph G is a pair (V (G), E(G)), where V (G) is a finite set whose elements

are called vertices and E(G) ⊆
(
V (G)

2

)
is a set of unordered pairs of vertices,

which are called edges. Hence graphs in this paper are always finite, undirected,
and simple, where simple means that there are no loops or parallel edges. If
e = {u, v} is an edge, we say that the vertices u and v are adjacent, and that
both u and v are incident with e. A graph H is a subgraph of a graph G (we

write H ⊆ G) if V (H) ⊆ V (G) and E(H) ⊆ E(G). If E(H) = E(G) ∩
(
V (G)

2

)
,

then H is an induced subgraph of G.
Occasionally, we consider (vertex) labelled graphs. A labelled graph is a

tuple G = (V (G), E(G), P1(G), ..., Pl(G)), where Pi(G) ⊆ V (G) for all i ∈ [l].
The symbols Pi are called labels, and if v ∈ Pi(G) we say that v is labelled by
Pi. Subgraphs, union, and intersection extend to labelled graphs in a straight-
forward manner. The underlying graph of a labelled graph G is (V (G), E(G)).

G denotes the class of all graphs. For every class C of graphs, we let Clb

be the class of all labelled graphs whose underlying graph is in C. A graph
invariant is a mapping defined on the class G of all graphs invariant under
isomorphisms. All graph invariants considered in this paper are integer valued.
For a graph invariant f : G → Z and a class C of graphs, we say that C has
bounded f if there is a k ∈ Z such that f(G) ≤ k for all G ∈ C.

1.2 Logic

Let us briefly review the syntax and semantics of first-order logic FO and
monadic second-order logic MSO. We assume that we have an infinite sup-
ply of individual variables, usually denoted by the lowercase letters x, y, z, and
an infinite supply of set variables, usually denoted by uppercase letters X,Y, Z.
First-order formulas in the language of graphs are built up from atomic for-
mulas E(x, y) and x = y by using the usual Boolean connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (bi-implication) and
existential quantification ∃x and universal quantification ∀x over individual vari-
ables. Individual variables range over vertices of a graph. The atomic formula

1

E(x, y) expresses adjacency, and the formula x = y expresses equality. From
this, the semantics of first-order logic is defined in the obvious way.

First order formulas over labelled graphs may contain additional atomic
formulas Pi(x), meaning that x is labelled by Pi. If a label Pi does not appear
in a labelled graph G, then we always interpret Pi(G) as the empty set. In
monadic second-order formulas, we have additional atomic formulas X(x) for
set variablesX and individual variables x, and we admit existential and universal
quantification over set variables. Set variables are interpreted by sets of vertices,
and the atomic formula X(x) means that the vertex x is contained in the set
X.

The free individual and set variables of a formula are defined in the usual way.
A sentence is a formula without free variables. We write φ(x1, ..., xk, X1, ..., Xl)
to indicate that φ is a formula with free variables among x1, ..., xk, X1, ..., Xl.
We use this notation to conveniently denote substitutions and assignments to
the variables. If G = (V,E) is a graph, v1, ..., vk ∈ V , and W1, ...,Wl ⊆ V ,
then we write G |= φ(v1, ..., vk,W1, ...,Wl) to denote that φ(x1, ..., xk, X1, ..., Xl)
holds in G if the variables xi are interpreted by the vertices vi and the variables
Xi are interpreted by the vertex sets Wi.

To maintain some of the expressiveness of second order logic, while retaining
the ease of decidability of first order logic, we introduce monadic second order
logic. In monadic second order logic, we allow for quantification over variables
and sets of variables. Monadic here refers to the ability to quantify over pred-
icates of a single variable (monadic predicates), which is exactly equivalent to
quantifying over sets. This added expressiveness allows us to express properties
we couldn’t in first order logic. For instance, k-colorability can be stated in
monadic second order logic (here we show 2-colorability):

∃X∀x∀y[adj(x, y) ⇒ (x ∈ X ∧ y /∈ X) ∨ (x /∈ X ∧ y ∈ X)]

adj can be expressed in terms of edg:

adjG(x, y) ⇐⇒ ∃e[edgG(e, x, y)]

Another predicate Cardp,n, given by

Cardp,n(X) ⇐⇒ |X| ≡ p(mod n)

1.2.1 Dominating Set of G

A dominating set in a graph G = (V,E) is a set S ⊆ V such that for every
v ∈ V , either v is in S or v is adjacent to a vertex in S. The following first-
order sentence domk says that a graph has a dominating set of size k:

domk = ∃x1...∃xk(
∧

1≤i≤j≤k

xi ̸= xj ∧ ∀y
k∨

i=1

(y = xi ∨ E(y, xi)))

The following formula dom(X) says that X is a dominating set:

2

dom(X) = ∀y(X(y) ∨ ∃z(X(z) ∧ E(z, y)))

1.2.2 Vertex Cover of Size K

∃x1, ..., xK∀e[
k∨

i=1

inc(e, xi)]

We define inc(e, x) := ∃y[edg(e, y, xi)], expressing that an edge e is incident
to some vertex x. Notice that the length of the expression depends on K, we
will see this with graph properties which are parameterized by some positive
integer.

1.2.3 Domatic Number K

∃X1, ..., XK [partition(X1, ..., XK) ∨
K∨
i=1

“Xi is a dominating set”]

The formula partition(X1, ..., XK) states that the vertex sets X1, ..., XK

form a partition of the vertices, and is defined as

partition(X1, ..., XK) := ∀x[
K∨
i=1

x ∈ Xi] ∨ ¬∃x[
K∨
i ̸=j

(x ∈ Xi ∧ x ∈ Xj)]

The sentence “Xi is a dominating set” can be easily constructed by modifying
the formula for dominating set shown above. Its also worth noting that this is
the first formula where we’ve used set quantifications (the previous formulas
were all first order formulas). Here it is necessary, since we don’t know the size
of the dominating sets that form the partition of the graph.

1.2.4 K−colorability

∃X1, ..., XK [partition(X1, ..., XK) ∧ ∀x, y[adj(x, y) →
K∧
i=1

¬(x ∈ Xi ∧ y ∈ Xi)]]

2 Advanced Techniques

2.1 Reflexive, Transitive Closure

An important fact about monadic second order logic is that if we can express
some binary relation of variables in monadic second order logic, then we can
also express the reflexive, transitive closure of that relation. We will see that
this is made possible by the ability to quantify over sets, and thus cannot be
expressed in first order logic.

Theorem : Let R be a binary relation on a set D. Then if R is expressible
in monadic second order logic then so is the transitive, reflexive closure of R.

3

Let R+ denote the transitive reflexive closure of R. We say a set X ⊆ D is
R-closed if for any x, y ∈ D such that x ∈ X and xRy, we have y ∈ X.

Let ϕ(., .) be a monadic second order logic formula which defines R. First,
we write a formula which expresses that that a set X is R-closed.

ψ(X) := ∀x[x ∈ X → ∀y[ϕ(x, y) → y ∈ X]]

Using the above claim, we write a formula defining the transitive, reflexive
closure of R:

ϕ+(x, y) := ∀X[(ψ(X) ∧ x ∈ X ∧ ∀Y [a ∈ Y ∧ ψ(Y) → ”X ⊆ Y ”]) → y ∈ X]

As far as we are concerned, the main application of this theorem is to describe
connectivity in graphs. Two vertices are connected if there is some chain of
vertices between the two which are all adjacent. And any vertex is trivially
connected to itself. In other words, connectedness is the transitive, reflexive
closure of the adjacency relation.

Corollary : The following properties are expressible in monadic second
order logic:
1. Two vertices x and y are connected by a path.
2. A graph is connected.
3. An edge set U forms a path between vertices x and y.
4. An edge set C forms a cycle.

2.2 Transductions

One of the most powerful tools in writing logical formulas is that of transduc-
tions. Broadly, transductions allow you to describe a graph within (N disjoint
copies of) a different graph. Transductions can be used to describe properties
of subgraphs, supergraphs, and various graph transformations.

Definition (Transduction Definition Scheme). Let N > 0 and W be a set
of variables. A transduction definition scheme is a triple ,

∆ = ⟨ϕ, (ψi)
3
i=1, (edgi,j,k)

3
i,j,k=1⟩,

where

• An monadic second order formula ϕ with free variables in W.

• monadic second order formulas ψi with free variables in W ∪ {x}.

• monadic second order formulas edgi,j,k with free variables inW∪{x1, x2, x3}

4

3 Advanced Properties

3.1 Subgraph with property P

Suppose that P is some property which can be expressed in monadic second
order logic. We can describe arbitrary subgraphs with the following transduction
definition scheme:

• W := {V,E}

• ϕ := ∀e[e ∈ E → ∃x, y[x, y ∈ V ∧ edg(e, x, y)]]

• ψ1(x) := x ∈ V ∨ x ∈ E

• edg1,1,1(e, x, y) := edg(e, x, y)

With this, we can quantify over all subgraphs of a graph and determine
whether any have property P .

Examples of properties which can be described in monadic second order logic
and whose corresponding subgraph problem is NP-complete include:

• Bipartite

• Maximum degree less than d

• Planar: Planar graphs can be characterized by forbidden minors according
to Kuratowski’s theorem, and graph minors can be expressed in monadic
second order logic

• Edge graph (edge graphs can be characterized by forbidden subgraphs)

• Transative: ∀x, y, z[adj(x, y) ∧ adj(y, z) → adj(x, z)]

3.2 Partition into K subgraphs with property P

Suppose that P is some monadic second order expressible property. We can
describe an induced subgraph with the following transduction definition scheme:

• W := {V }

• ϕ := true

• ψi(x) := x ∈ V ∨ ∃y, z[y, z ∈ V ∧ edg(x, y, z)]

• edg1,1,1(e, x, y) := edg(e, x, y)

With this, we can quantify over all partitions of a graph into K subgraphs
and determine whether any are such that each of the partitions have property
P .

5

∃X1, ..., XK [partition(X1, ...XK) ∧
K∧
i=1

”Xiinduces a graph with property P]”

Examples of P which are expressible in monadic second order logic, and
whose corresponding partition problem is NP-complete, include :

• Hamiltonicity

• Complete: ∀x, y[adj(x, y)]

3.3 Perfect Graph

A graph G is perfect if, for any set X ⊆ V (G), the chromatic number and max
clique size of the induced subgraph G[X] are equal. This characterization will
not help us in writing a formula, since monadic second order logic is unable to
do arithmetic (specifically equality of size of sets). There is another characteri-
zation of perfect graphs, however, which will prove useful to us. We recall that
the complement of a graph G is the graph whose edge set consists of edges not
in G.

Theorem(Strong Perfect Graph Theorem). Let G be a graph. Then G is
perfect if and only if G contains neither C2k+1 nor C2k+1 as an induced subgraph
for k ≥ 2.

We first write a formula which describes graphs which are odd cycles of
length at least 5 :

“connected” ∧ “2-regular” ∧ ∀X[(∀x[x ∈ X]) → Card1,2(X) ∧ ”|X| ≥ 5”]

We’ve previously established that all the expressions written in quotes above
can be expressed in monadic second order logic. Then using the transduction
in section 3.2, we can write the formula

∀X[“X does not induce C2k+1 for k ≥ 2”]

It remains to show that we can express that a graph does not contain C2k+1

as an induced subgraph. If we can define a transduction definition scheme
for the complement of a graph, then we are done. We have to be careful when
defining this transduction. How many copies are necessary to describe the edges
we are adding? Consider a totally disconnected graph with n vertices − the

complement would have n2−n
2 edges. In the worse case scenario, we would need

n copies of the graph to perform the transduction. In other words, the size of
the formula would depend on the size of the graph, rendering moot any potential
complexity results.

Since the complement of the graph has the same number of vertices as the
original graph, we only require one copy of the graph to perform the transduc-
tion. We define the following transduction scheme to describe the complement
of a graph :

6

• W := ∅

• ϕ := true

• ψ1(x) := true

• adj1,1(x, y) := ¬∃e[edg(e, x, y)]

Lastly, we need to confirm that we can apply this transduction to the above
formula; that the above formula does not require quantification over edges or
edge sets. Connectedness is the transitive closure of the adj operator, so itMS1
expressible. That a graph is 2-regular can be written without edge quantifica-
tions thusly :

”d(x) ≤ 2” := ∀y1, y2, y3[
3∧

i=1

adj(x, yi) →
3∨

i ̸=j

yi = yj]

”d(x) ≥ 2” := ∃y1, y2[adj(x, y1) ∧ adj(x, y2) ∧ y1 ̸= y2]

”2-regular” := ∀x[”d(x) ≤ 2” ∧ ”d(x) ≥ 2”]

The rest of the formula trivially does not require edge quantification. There-
fore, that a graph induces C2k+1 for k ≥ 2 can be described in monadic second
order logic. Then with the strong perfect graph theorem we can write a formula
which describes that a graph is perfect:

∀X[“X does not induce C2k+1, k ≥ 2” ∧ \X does not induce C2k+1, k ≥ 2”.

7

4 References

[1] Logic and Automata, History and Perspective. Edited by Jorg Flum Erich
Gradel Thomas Wilke.

[2] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J.
van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 193–242. Elsevier Science Publishers,
Amsterdam, 1990.

[3] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets
of finite graphs. Inf. Comput., 85(1):12–75, 1990.

[4] B. Courcelle. The monadic second-order logic of graphs vii: Graphs as rela-
tional structures. Theor. Comput. Sci., 101(1):3–33, 1992.

[5] B. Courcelle. The expression of graph properties and graph transformations
in monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph
Grammars, pages 313–400. World Scientific, 1997.

8

