
Logic for Computer Science 23rd January, 2024

Lecture 3: Relevance Lemma

Lecture: Sujata Ghosh Scribe: Ritam M Mitra

1 Free and Bound Variables

The introduction of variables and quantifiers allows us to express the notions of all . . . and
some . . . [2]Intuitively, to verify that ∀xQ(x) is true amounts to replacing x by any of its
possible values and checking that Q holds for each one of them. There are two important
and different senses in which such formulas can be ‘true.’ First, if we give concrete meanings
to all predicate and function symbols involved we have a model [1] and can check whether
a formula is true for this particular model. For example, if a formula encodes a required
behaviour of a hardware circuit, then we would want to know whether it is true for the
model of the circuit. To begin with, we need to understand that variables occur in different
ways.

1.1 Parse Tree

Consider the formula.
∀x((P (x)→ Q(x)) ∧ S(x, y)).

We draw its parse tree with two sorts of nodes :

• The quantifiers ∀x and ∃y form nodes and have, like negation, just one subtree.

• Predicate expressions, which are generally of the form P (t1, t2, . . . , tn), have the sym-
bol P as a node, but now P has n many subtrees, namely the parse trees of the terms
t1, t2, . . . , tn.

You can see that variables occur at two different sorts of places. First, they appear next
to quantifiers ∀ and ∃ in nodes like ∀x and ∃z; such nodes always have one subtree, sub-
suming their scope to which the respective quantifier applies. The other sort of occurrence
of variables is leaf nodes containing variables. If variables are leaf nodes, then they stand
for values that still have to be made concrete.

There are two principal such occurrences:

• In this example, we have three leaf nodes x. If we walk up the tree beginning at any
one of these x leaves, we run into the quantifier ∀x. This means that those occurrences
of x are actually bound to ∀x so they represent, or stand for, any possible value of x.

• In walking upwards, the only quantifier that the leaf node y runs into is ∀x but that
x has nothing to do with y; x and y are different place holders. So y is free in this
formula. This means that its value has to be specified by some additional information,
for example, the contents of a location in memory.

3-1

Figure 1: A parse tree of a predicate logic formula.

Definition 1.1 Let φ be a formula in predicate logic. An occurrence of x in φ is free in φ
if it is a leaf node in the parse tree of φ such that there is no path upwards from that node
x to a node ∀x or ∃x. Otherwise, that occurrence of x is called bound. For ∀xφ, or ∃xφ,
we say that φ– minus any of φ′s subformulas ∃xψ, or ∀xψ– is the scope of ∀x, respectively
∃x.

Thus, if x occurs in φ, then it is bound if, and only if, it is in the scope of some ∃x or
some ∀x; otherwise it is free. In terms of parse trees, the scope of a quantifier is just its
subtree, minus any subtrees which re-introduce a quantifier for x; e.g. the scope of ∀x in
∀x(P (x)→ ∃xQ(x)) is P (x).

1.2 Reasoning by Induction on Terms and Formulas(Relevance Lemma

When comparing different variable assignments and their effect on a given formula φ, those
variables that do not occur in the formula or are not free variables in the formula should not
affect the fact that a given structure A logically implies the formula or not. This intuitive
result is formalized as the Relevance Lemma, and can be stated as:

Lemma 1.2 Let A be a structure, φ a formula, and α1, α2 be variable assignments such
that:

α1∣FV (φ) = α2∣FV (φ).
Then,

A,α1 ⊧ φ ⇐⇒ A,α2 ⊧ φ.

Often proofs about first-order logic involve induction on the structure of terms and
formulas. We prove this lemma by way of example.
Proof. We first prove the following claim.

Claim 1.3 Let t ∈ Term, and let A be a structure and α1 and α2 be variable assignments.
Then, if α1∣FV (t) = α2∣FV (t). then α1(t) = α2(t).

3-2

Proof. We give a proof by structural induction.

• Base case: If t is a variable x then α1(x) = α2(x). Notice also that by definition of
α in this case α1(t) = α1(t) and the same is true for α2(t). Thus,

α1(t) = α1(t) = α2(t) = α2(t).

and therefore α1(t) = α2(t). Here the first and the third equalities follow from the
definition of α, and the second equality comes from the assumption of the lemma.

• Inductive case: The other option for t is to be a function fk(t1, . . . , tk), where
t1, . . . , tk are terms. By definition of V ars(set of variables), V ars(f (k)(t1, ..., tk) =
∪ki=1V ars(ti) and so V ars(ti) ⊂ V ars(t). Then by inductive hypothesis we have that
α1(ti) = α2(ti) for all i, and thus

α1(fk(t1, . . . , tk)) = (by definition)

fA(α1(t1), . . . , α1(tk)) = (by I.H.)

fA(α2(t1), . . . , α2(tk)) = (by definition)

α2(fk(t1, . . . , tk)).

◻
We prove the lemma using this claim.

Again we use induction.

• Base case: Suppose that φ is a k-ary predicate (relation) P (k)(t1, . . . , tk). By defi-
nition FV ars(φ) = ∪ki=1FV ars(ti). We now have the following proof sequence:

A,α1 ⊧ φ

iff ⟨α1(t1), . . . , α1(tk)⟩ ∈ PA (by definition)

iff ⟨α1(t1), . . . , α1(tk)⟩ ∈ PA (by claim)

iff A,α2 ⊧ φ (by definition)

• Inductive case :

1. φ = ¬ψ. By definition A, α1 ⊧ ¬ψ iff A, α1 ⊭ ψ. Also by definition FV ars(φ) =
FV ars(ψ). Thus, by inductive hypothesis we have A,α2 ⊭ ψ which leads to
A,α2 ⊧ φ.

2. φ = ψ ∧ θ. By definition A,α1 ⊧ φ iff A,α1 ⊧ (ψ ∧ θ) iff A,α1 ⊧ ψandA,α1 ⊧ θ.
Clearly FV ars(ψ) ⊂ FV ars(φ) and FV ars(θ) ⊂ FV ars(φ), so by inductive
hypothesis A,α2 ⊧ ψ and A,α2 ⊧ θ. This is another way of saying A,α2 ⊧ φ.

3-3

3. φ = (∃x)ψ. A,α1 ⊧ (∃x)ψ by definition means that there is some d ∈D such that
A,α1[x→ d] ⊧ ψ. To use the inductive hypothesis we need agreement on the free
variables. Observe that FV ars(φ) = FV ars(ψ)−{x} and therefore FV ars(ψ) ⊂
FV ars(ψ)⋃x. Since α1∣FV ars(α) = α2∣FV ars(α) it must also be true thatα1[x →
d]∣FV ars(ψ) = α2[x→ d]∣FV ars(ψ) which is the agreement on free variables that we
need. We quote once again the inductive hypothesis and conclude that A,α2[x→
d] ⊧ φ which is equivalent to A,α2 ⊧ (∃x)φ

The proof for the remaining connectives and one quantifier can be derived from those
above stated by using DeMorgan’s laws.

◻

References

[1] Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001.

[2] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning
about systems. Cambridge university press, 2004.

3-4

Logic for Computer Science January 19 2024

Lecture 4: Consequence Relation

Lecture: Sujata Ghosh Scribe: Basudeb Roy, Ritam Manna Mitra

Topics for this lecture

In this lecture, we shall talk about the following

1. Proof of corollary

2. Truth in a structure

3. Expressivity

4. (Semantic)Consequence relation

5. validity and Satisfiability

Let us begin this lecture with the proof of the following corollary.

Corollary 0.1 Let ϕ be a sentence and (D, I) be a structure. Then, either for all assign-
ment functions G, (D, I,G) |= ϕ or (D, I,G) ̸|= ϕ.

Proof. Let’s assume, (D, I,G) |= ϕ, that means we are done. Now if it is the case that,
(D, I,G) ̸|= ϕ that means, it is the case that (D, I,G) |= ¬ϕ. 2

1 Truth in a structure

1. When ϕ is a sentence, we say ϕ is true in a structure (D, I), which is expressed in
first-order language by [(D, I) |= ϕ].

2. When ϕ is a sentence, we say ϕ is false in a structure (D, I), which is expressed in
first-order language by [(D, I) ̸|= ϕ].

Next natural question comes what can we express using the first-order language? To
answer this question, let us first consider a first-order language such that CL = FL = PL =
Φ. With these assumptions we can talk only about sets.

2 On Expressivity:-

For this discussion, let us assume that D can be empty or non-empty. Let us try to talk
about the sets with such language.

1. Empty Set:- ∀x¬(x = x).

2. All sets whose cardinality is ≤ 1:- ∀x∀y(x = y).

4-1

3. SingletonSets : − = ∃x∀y(x = y)

= ∃x(x = x) ∧ ∀x∀y(x = y)

4. Set containing exactly 2 elements:- ∃x∃y(¬(x = y) ∧ ∀z(z = x ∨ z = y))

5. Set containing exactly 3 elements:- ∃x∃y∃z(¬(x = y)∧¬(y = z)∧¬(z = x)∧∀w(w =
x ∨ w = y ∨ w = z))

Similarly, we can express sets having exactly k elements, for any finite k.

3 (Semantic)Consequence relation:-

Let Γ be a set of formulas and ϕ be a formula. We say that ϕ is a semantic consequence of
Γ, if for all models M, M |= v for all v ∈ Γ imply M |= ϕ. It is denoted by Γ |= ϕ.

Example:- Γ = {P 1x→ Q1x,Q1 → R1x} and ϕ = {P 1 → R1x}.

Example:-

1. Γ={P 1x→ Q1x,Q1 → R1x} and ϕ = {P 1 → R1x}
Proof. To show Γ |= ϕ, we need to show for all models M if M |= Γ then
M |= ϕ. Now take any model M : −(D, I,G). Suppose, M |= Γ, that is
suppose M |= P 1x→ Q1x and M |= Q1x→ R1x.

To show M |= P 1x → R1x. LEt us assume that M |= P 1x. To show
M |= R1x. Since, M |= P 1x → Q1x we have M |= Q1x. Now, since M |=
Q1x→ R1x, then we have M |= R1x. This completes the proof. 2

2. Suppose that Γ |= Φ, then when we have Γ |= ϕ, we basically have Φ |= ϕ. It is
denoted by |= ϕ and we say ’ϕ is satisfied by all models’.

4 validity and Satisfiability:-

1. A formula ϕ is said to be valid if for every model M,M |= ϕ.

2. A formula ϕ is said to be satisfiable if there is a model M, such that M |= ϕ.

4-2

Example of valid and satisfiable formulas:-

Consider a first-order language L with C = Φ, F = Φ and P = P 2. Also consider a
structure (D, I) where D being a non-empty. Let us define three interpretations of
P 2

1. I1(P 2) = D ×D ⇐⇒ ϕ1 : ∀x∀yP 2xy.

2. I2(P 2) = Φ ⇐⇒ ϕ2 : ∀x∀y¬P 2xy.

3. I3(P 2) = a serial relation ⇐⇒ ϕ3 : ∀x∀y¬P 2xy.

Examples of valid and satisfiable formulas in L

1. ∀x ∀y (P 2 xy ∨¬P 2 xy) : Valid.

2. ∀x ∀y (P 2 xy ∧¬P 2 xy): which is true in empty model.

3. ∃x ∃y (P 2 xy ∨¬P 2 xy): which is unsatisfiable.

Note: A serial relation for each d ∈ D there is d’ ∈ D such that (d,d’) ∈ I3(P 2) = R say.

Exercise

1. Let Γ = {ϕ, ̸ ϕ}. Then show that Γ |= ψ for all formulas ψ.

2. Show that if ϕ ∈ Γ, then Γ |= ϕ.

3. Let ϕ be a formula, then prove or disprove that ϕ is valid iff ̸ ϕ is not
satisfiable.

4. If Γ1 ⊆ Γ2 and Γ1 |= ϕ, then show that Γ2 |= ϕ.

4-3

	Truth in a structure
	On Expressivity:-
	(Semantic)Consequence relation:-
	validity and Satisfiability:-

