Logic for Computer Science

January 24 2024

Lecture 5: On Consequence and Satisfiability

Lecture: Sujata Ghosh

Scribe: Sruti Goswami

1 Models and Theories:

Definitions:

- 1. Semantic consequence: For a formula ϕ and for a set of formulas Γ , we say that ϕ is a semantic consequence of Γ if for all models μ with $\mu \models \gamma$ for all $\gamma \in \Gamma$ imply $\mu \models \phi$. This is denoted by $\Gamma \models \phi$.
- 2. Satisfiabile: A formula ϕ is said to be satisfiable if there is a model μ such that $\mu \models \phi$. For a set of formulas Γ , Γ is satisfiable if there is a model of Γ .

Now for a given set of formulas Γ , $\Gamma \not\models \phi$ iff there is a model μ such that $\mu \models \Gamma$ and $\mu \not\models \phi$ iff there is a model μ such that $\mu \models \Gamma$ and $\mu \models \neg \phi$ iff there is a model μ such that $\mu \models \Gamma \cup \{\neg\phi\}$ iff $\Gamma \cup \{\neg\phi\}$ is satisfiable.

3. In a first-order language given any formula ϕ , the set of all models satisfying ϕ is given by $Mod(\phi)$.

$$Mod(\phi) = \{\mu : \mu \models \phi\}.$$

For a set of formulas Γ , the set of all models satisfying Γ is given by $Mod(\Gamma)$.

$$Mod(\Gamma) = \{\mu : \mu \models \Gamma\}.$$

Let Γ_1 , Γ_2 be two sets of formulas such that $\Gamma_1 \subseteq \Gamma_2$, then, $Mod(\Gamma_2) \subseteq Mod(\Gamma_1)$.

4. **Theory:** Let κ be a class of models. Then the theory of κ , denoted by $Th(\kappa)$ and is defined by

 $Th(\kappa) = \{\phi : \mu \models \phi \text{ for all models } \mu \text{ in } \kappa\}.$

Let κ_1 , κ_2 be two classes of models such that $\kappa_1 \subseteq \kappa_2$, then, $Th(\kappa_2) \subseteq Th(\kappa_1)$.

- 5. Consequence of a set of formulas: Let Γ be a set of formulas. Then consequence of Γ , denoted by $Con(\Gamma)$ is defined by $Con(\Gamma) = Th(Mod(\Gamma))$.
- 6. **Definability**; A class of first order structure K is said to be first order definable if there is a set of sentences Γ such that $Mod(\Gamma) = K$.

Proposition 1.1 Let Γ be a set of formulas and ϕ be a formula. Then $\phi \in Con(\Gamma)$ iff $\Gamma \models \phi$.

Proof. Suppose $\Gamma \models \phi$ to show $\phi \in Con(\Gamma)$. All models in $Mod(\Gamma)$ satisfy ϕ . $\phi \in Th(Mod(\Gamma))$. So, $\phi \in Con(\Gamma)$ Conversely, let, $\phi \in Con(\Gamma)$. To show, $\Gamma \models \phi$. $\phi \in Th(Mod(\Gamma))$ implies $\mu \models \phi$ for all $\mu \in Mod(\Gamma)$. Thus $\Gamma \models \phi$.

Properties of $Con(\Gamma)$:

- 1. $\Gamma \subseteq Con(\Gamma)$
- 2. If $\Gamma_1 \subseteq \Gamma_2$ then $Con(\Gamma_1) \subseteq Con(\Gamma_2)$.
- 3. $Con(Con(\Gamma)) = Con(\Gamma).$

Consider a first-order language L with countably many predicate symbols p_1^1, p_2^1, \cdots all having arity 1. Then to make Γ , given set of formulas satisfiable we need to define a model satisfying it. This is not unique. For example If $\Gamma = \{p_1^1x\}$

- Choose $D = \{a, b\}, I(p_1^1) = \{a\}$ and define $G: V \to D$ such that G(y) = a for all y.
- Again Choose $D = \{a, b\}, I(p_1^1) = \{a\}$ and define $G: V \to D$ such that G(y) = a if y = x and G(y) = b if $y \neq x$.
- Choose $D = \mathbb{N}$, $I(p_1^1) = \{n \in \mathbb{N} : n \text{ is even}\}$ define $G: V \to D$ such that G(y) = 2 if y = x and G(y) = 0 if $y \neq x$.

In all cases $G(x) \in I(p_1^1)$ and $(D, I, G) \models p_1^1 x$. For any number $k \ge 2$ we can find an unsatisfiable formula of size k. For example

- $\Gamma = \{p_1^1 x, \neg p_1^1 x\}$ is an unsatisfiable set of size 2.
- $\Gamma = \{p_1^1 x, p_2^1 x \neg (p_1^1 x \land p_2^1 x)\}$ is an unsatisfiable set of size 3.
- $\Gamma = \{p_1^1 x, p_2^1 x \neg (p_1^1 x \land p_2^1 x)\}$ is an unsatisfiable set of size 4 and so on.

If Γ be an infinite set of formulas such that all finite subsets of Γ is satisfiable then Γ is also satisfiable.

Theorem 1.2 (Compactness Theorem for First Order Languages) Let Γ be an infinite set of formulas. Then Γ is satisfiable iff every finite subset of Γ is satisfiable.

Theorem 1.3 The following are equivalent

1. If Gamma is finitely satisfiable then Gamma is satisfiable.

2. If $\Gamma \models \phi$ then there is a finite subset of $Gamma_0$ of Gamma such that $Gamma_0 \models \phi$. *Proof.* $(2 \Rightarrow 1)$ Let Γ be fin-sat. To show that Γ is sat. Suppose not then $\Gamma \models \phi$ for all formulas ϕ . There is a formula ψ such that $\Gamma \models \psi$ and $\Gamma \models \neg \psi$. So we have

> $\Gamma_1 \subseteq_{fin} \Gamma \text{ such that } \Gamma_1 \models \psi$ $\Gamma_2 \subseteq_{fin} \Gamma \text{ such that } \Gamma_2 \models \neg \psi$ So $\Gamma_1 \cup \Gamma_2 \models \psi \land \neg \psi \text{ or } \Gamma_1 \cup \Gamma_2 \subseteq_{fin} \Gamma$

 $\Gamma_1 \cup \Gamma_2$ is not satisfiable, a contradiction.

 $(1 \Rightarrow 2)$ Let $\Gamma \models \phi$. To show that there exists a set of formulas Γ_0 such that $\Gamma_0 \subseteq_{fin} \Gamma$ and $\Gamma_0 \models \phi$. Suppose not. So for all $\Gamma_0 \subseteq_{fin} \Gamma$, $\Gamma_0 \models \neg \phi$. Or, for all $\Gamma_0 \subseteq_{fin} \Gamma$, $\Gamma_0 \cup \{\neg \phi\}$ is satisfiable. Then by (1), $\Gamma \cup \{\neg \phi\}$ is satisfiable. Then $\Gamma \not\models \phi$ i.e. a contradiction arises. Hence the result.

Theorem 1.4 Let Γ be a set of sentences having arbitrarily large set of finite models. Then Γ has an infinite model.

Proof. Let $D = \{d_1, d_2, d_3, ...\}$ be a countable collection of new constant symbols not occurring in Γ . Consider $\Delta = \Gamma \cup \{\neg (d_i = d_j) : i, j \in \mathbb{N}, i \neq j\}$. Now Γ is satisfiable and hence finitely satisfiable. Take any finite subset of $\{\neg (d_i = d_j) : i, j \in \mathbb{N}, i \neq j\}$. Such a finite set will be satisfiable in a model of Γ having that many distinct elements. So Δ is fin-sat. Hence by compactness theorem, Δ is sat. $\Gamma \subseteq \Delta$. So a model of Δ is also a model of Γ . i.e Γ also has an infinite model.

Exercise : Let FIN be the class of finite structures. Then show that FIN is not first-order definable.

Reference :

1. A Course on Mathematical Logic by Sashi Mohan Srivastava