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Theorem 1. Let Γ be an infinite set of formulas. Them Γ is satisfiable if it is finitely

satisfiable.

It can be immediately concluded from the definition of satisfiability if Γ is satisfi-

able then it should also be finitely satisfiable. i.e, if ∃ a model M ∋ M ⊨ Γ, then M ⊨ ϕ

where ϕ is any finite subset of Γ.

Establishing the converse of the theorem, is however, not very straightforward. We

will preempt a rather lengthy proof in steps, by proving some lemmas and introducing

new definitions.

Definition 1. Consider M to be a non-empty model. Define ∆M to be the set of all

formulas that the model M satisfies, i.e.,

∆M := {ϕ : M ⊨ ϕ}

We are very naturally prompted to ask what properties does ∆M have given a model

M. Using the theory from the previous lectures, the following key points can be in-

ferred

1. Given any formula ϕ,

(a)∆M contains either ϕ or ¬ϕ

(b)∆M cannot contain both

2.For any formulas ϕ and ψ we have the following consequences:

(a) ϕ ∈ Γ or ψ ∈ Γ iff ϕ ∨ ψ ∈ Γ
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(b) ϕ ∈ Γ and ψ ∈ Γ iff ϕ ∧ ψ ∈ Γ

(c) ϕ→ ψ ∈ Γ iff ψ ∈ Γ whenever ϕ ∈ Γ

(d)ϕ←→ ψ ∈ Γ iff ϕ ∈ Γ⇔ ψ ∈ Γ

Definition 2. Consider a Γ to be any set of formulas. If Γ satisfies properties 1.(a),(b)

and 2.(a)-(d) then Γ is called a model set

Definition 3. A set of formulas Γ is said to be complete if for any formula ϕ either

ϕ ∈ Γ or ¬ϕ ∈ Γ .

Lemma 1. The set of all formulas in first order language is countable.

Proof. In first order logic, formulas are expressions that result from a finitely many

applications of the following rules;

1.Given any terms t1 and t2, t1 = t2 is a formula

2.Given any n-ary predicate symbol P, P(t1, t2, . . . tn) is a formula

3.If ϕ is a formula then ¬ϕ is a formula

4.If ϕ and ψ are formulas then ϕ → ψ is a formula. Similar rules apply to other binary

logical connectives

5.If ϕ is a formula and x is a variable then ∀xϕ is a formula. Similar rules apply for

other quantifiers. In Lecture 2, we have stipulated that in first order order language the

set of primitive predicates is a countable set. Given n ∈ N, the formulas of size n is at

least N × N × · · · (n times) × N Hence the set of formulas of size n is a countable set.

Hence the set of all formulas is countable (since countable union of countable sets is

countable).

We can now begin delineating the three main ideas that subsume the proof of the

converse.

Claim 1. Every finitely satisfiable set of formulas can be extended to a finitely satisfi-

able and a complete set of formulas

Claim 2. Every finitely satisfiable and a complete set of formulas is a model set

Claim 3. Every model set is satisfiable

Claims 1 and 2 show that every finitely satisfiable set of formula Γ can be seen as a

subset of larger finitely satisfiable and complete set of formulas, say Γ′, which will be
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a model set

Claim 3 further asserts that this Γ′ will be a satisfiable set of formulas. Hence there

exists a model M that satisfies Γ′ and by extension any of its subsets. In particular Γ is

satisfiable, which completes the proof.

Proof. (Claim 1)

As the set of all formulas in any first order language in countable (Lemma1), we can

enumerate them. Consider one such choice of enumeration:

ϕ0, ϕ1, ϕ2, . . .

Let Γ be a finitely satisfiable set of forumulas. Consider the following construction of

a sequence of formulas derived from Γ; starting with Γ0 = Γ, and

Γk+1 =


Γk ∪ {ϕk} if Γ ∪ {ϕk} is finitely satisfiable

Γk otherwise

Hence, Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .. Define ∆ B
⋃

k∈N Γk. We will now show that ∆ is a

complete and finitely satisfiable set.

Claim(a): ∆ is complete

It is enough to show that for any finitely satisfiable set of formulas Γ′ either Γ′ ∪ {ϕ} is

finitely satisfiable or Γ′ ∪ {¬ϕ} is finitely satisfiable given any formula ϕ

We can begin by assuming Γ′ is finitely satisfiable. Assume that Γ′∪{ϕk} and Γ′∪{¬ϕ}

are not finitely satisfiable for some formula ϕk.

Hence there exist non-empty(Lec4, HW3), satisfiable subsets Γ′1,Γ
′
2 ⊆ f in Γ

′ such that

Γ1 = Γ
′
1 ∪ {ϕ}

Γ2 = Γ
′
1 ∪ {¬ϕ}

are not satisfiable Hence Γ′1 ⊨ ¬ϕ and Γ′2 ⊨ ϕ. Therefore, Γ′1 ∪ Γ
′
2 ⊨ ϕ ∧ ¬ϕ . This

implies that Γ′1 ∪ Γ
′
2 is not satisfiable but this leads to a contradiction as Γ′1 ∪ Γ

′
2 is a

finite subset of Γ′.

Hence, claim proved.

Claim(b): ∆ is finitely satisfiable

Suppose ∆ is not finitely satisfiable. Then there is ∆′ ⊆ f in ∆ such that ∆′ is not sat-
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isfiable. But ∆′ ⊆ Γk for some k ∈ N which contradicts the very construction of Γk

sequence. Hence, claim proved.

This concludes the proof of Claim 1 □

We now proceed to prove Claim 2. We will show that any finitely satisfiable and

complete set of formulas satisfies the properties 1. and 2.

Proof. Consider a finitely satisfiable and complete set of formulas ∆. 1.(a) follows

immediately from the definition of completeness. ∆ cannot contain ϕ and ¬ϕ because

finite satisfiability would necessitate {ϕ∪¬ϕ} to be satisfiable. Hence 1.(b) holds. Now

we will show the validity of properties 2.(a)-(d).

Consider any two formulas ϕ and ψ

ϕ ∈ Γ or ψ ∈ Γ iff ϕ ∨ ψ ∈ Γ

Consider ϕ ∨ ψ ∈ ∆. If neither ϕ nor ψ are in ∆, then by completeness, ¬ϕ ∈ ∆ and

¬ψ ∈ ∆, which implies {ϕ ∨ ψ, ϕ,¬ϕ} is satisfiable by finite satisfiability of ∆ But the

aforementioned set of formulas is unsatisfiable. Hence, either ϕ or ψ is in ∆.

Now for the converse, assume WLOG ϕ ∈ ∆. If ϕ ∨ ψ < Γ, then by the completeness

of ∆ we have ¬(ϕ ∨ ψ) ∈ Γ But {¬(ϕ ∨ ψ), ϕ} is not satisfiable, contradicts the finite

satisfiability of ∆. Hence ϕ ∨ ψ ∈ ∆.

ϕ ∈ Γ and ψ ∈ Γ iff ϕ ∧ ψ ∈ Γ

Consider ϕ ∧ ψ ∈ ∆. WLOG assume ϕ is not in ∆. Then by completeness, ¬ϕ ∈ ∆,

which implies ∃M such that {ϕ∧ψ,¬ϕ} is satisfiable by finite satisfiability of ∆ But the

aforementioned set of formulas is unsatisfiable. Hence, ϕ is in ∆.

Now for the converse, assume ϕ ∈ ∆ and ψ ∈ ∆. If ϕ∧ψ < Γ, then by the completeness

of ∆ we have ¬(ϕ ∧ ψ) ∈ Γ But {¬(ϕ ∧ ψ), ϕ, ψ} is not satisfiable, contradicts the finite

satisfiability of ∆ Hence ϕ ∧ ψ ∈ ∆.

ϕ→ ψ ∈ Γ iff ψ ∈ Γ whenever ϕ ∈ Γ

Assume ϕ → ψ ∈ Γ holds. If ϕ ∈ Γ and ψ < Γ, then {ϕ → ψ, ϕ,¬ψ} is satisfiable. This

is a contradiction.

Now to show the converse, assume ψ ∈ Γ whenever ϕ ∈ Γ.

Case 1: ϕ ∈ Γ

We have ψ ∈ Γ. If ϕ → ψ < Γ Then {¬(ϕ → ψ), ϕ, ψ} is satisfiable which can happen

iff(Lecture-3) {ϕ ∧ ¬ψ, ϕ, ψ} is satisfiable, which leads to contradiction.

Case 2: ϕ < Γ

If ϕ → ψ < Γ Then {¬(ϕ → ψ),¬ϕ} is satisfiable which can happen iff(Lecture-3)
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{ϕ ∧ ¬ψ,¬ϕ} is satisfiable, which leads to contradiction.

ϕ↔ ψ ∈ Γ iff (ψ ∈ Γ iff ϕ ∈ Γ)

Assume that ϕ ↔ ψ ∈ Γ holds. This happens iff ϕ ← ψ ∈ Γ and ϕ → ψ ∈ Γ. This

happens iff ψ ∈ Γ whenever ϕ ∈ Γ and ϕ ∈ Γ whenever ψ ∈ Γ iff (ψ ∈ Γ iff ϕ ∈ Γ).

With this we have concluded showing all the cases of property 2. and proving Claim 2.

□

We now proceed to entertain the proof of Claim 3.

Proof. Proof of Claim 3:

Let ∆ be a model set.This claim asserts that every model set is satisfiable. I.e., we need

to show that there exists a model M∆ such that M∆ ⊨ ∆. Since ∆ is a complete set,

this is the same as proving M∆ ⊨ ϕ iff ϕ ∈ ∆. We will navigate to the claim through

induction on the size of the formula.

Base Case(elaborated in Lec7): As has been mentioned in Lemma 1, all formulas in

FOL are inductively defined by finitely applying quantifiers and connectives on t1 ≡ t2

and Pn
i t1t2 . . . tn where all the Pi’s come from a countable collection. We will treat

primitive formulas as our base case and induct on the combinations of quantifiers and

connectives.

We will prove the hypothesis for our base case in Lecture 7

Inductive Hypothesis: Assume the hypothesis holds for all formulas of size ≤ m where

m ∈ N. We would like to show that the hypothesis is fulfilled for all formulas of size

m + 1, say ϕ

1.ϕ B ¬ψ

2.ϕ B χ ∨ ψ

3.ϕ B χ ∧ ψ

4.ϕ B χ→ ψ

5.ϕ B χ↔ ψ

6.ϕ B ∀xψ

7.ϕ B ∃xψ

Inductive Step: 1.M∆ ⊨ ϕ iff M∆ ⊨ ¬ψ iff M∆ ⊭ ψ iff(inductive hypothesis) ψ < ∆

iff(from the definition of a model set) ¬ψ ∈ ∆ iff ϕ ∈ ∆

2.M∆ ⊨ ϕ iff M∆ ⊨ χ ∨ ψ iff M∆ ⊨ χ or M∆ ⊨ ψ iff(inductive hypothesis) ϕ ∈ ∆ or χ ∈ ∆

iff(from the definition of model set) ϕ ∨ χ ∈ ∆

5



3.M∆ ⊨ ϕ iff M∆ ⊨ χ ∧ ψ iff M∆ ⊨ χ and M∆ ⊨ ψ iff(inductive hypothesis) ϕ ∈ ∆ and

χ ∈ ∆ iff ϕ ∧ χ ∈ ∆

4.M∆ ⊨ ϕ iff M∆ ⊨ ψ→ χ iff M∆ ⊨ χ whenever M∆ ⊨ ψ iff(inductive hypothesis) χ ∈ ∆

whenever ψ ∈ ∆ iff ϕ→ χ ∈ ∆

5.M∆ ⊨ ϕ iff M∆ ⊨ ψ ↔ χ iff (M∆ ⊨ χ iff M∆ ⊨ ψ) iff(inductive hypothesis) (χ ∈ ∆ iff

ψ ∈ ∆) iff ϕ↔ χ ∈ ∆

We will show the remaining cases in Lecture 7.
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