
Logic for Computer Science LECTURE DATE : 5/2/2024

Lecture 7: Proof of Compactness Theorem (Continued) - Models

Lecture: Sujata Ghosh Scribe: Kuntal Das, N. Vamsi Krishna

1 Recapitulation

We are attempting to prove the compactness theorem (to be precise, the backwards impli-
cation); ie, we assume Γ, an infinite set of formulas to be finitely satisfiable and we aim to
prove that Γ is satisfiable.

The steps taken so far are -

• STEP 1 :
We propose the following claims :

– Claim 1: Every finitely satisfiable set of formulas can be extended to a finitely satisfiable
and complete set of formulas.

– Claim 2 : Every finitely satisfiable and complete set of formulas is a model set.

– Claim 3 : Every model set is satisfiable

• STEP 2:
Assuming the claims to be true, the sketch of our proof will go along the lines as
following:

Γ
extend−−−−→ ∆ 99K Model Set.

where Γ is a finitely satisfiable set of formulas and ∆ is a finitely satisfiable and
complete set of formulas.

• STEP 3: Since Γ ⊆ ∆ and ∆ has a model, then Γ also has a model, hence is
satisfiable.

• STEP 4: We proceed to prove claim 1 and claim 2.

• STEP 5: We start proving claim 3 via method of induction.
We take a model set ∆. To show that ∆ is satisfiable, ie, to find a model M∆ such
thatM∆ |= ∆, we need to getM∆ = (D∆, I∆,G∆) such thatM∆ |= ϕ ⇐⇒ ϕ ⊂ ∆.
Assume we somehow get hold ofM∆ |= ϕ.
To showM∆ |= ϕ ⇐⇒ ϕ ⊂ ∆, we use induction on the size of ϕ.

– Base Case: In base case, the formula ϕ can be of the following form (basically.
the atomic formula case).

i ϕ : t1 = t2

ii pni t1t2....tn

7-1

– Induction Hypothesis: Suppose the result holds for all formulas of size ≤ m.

– Induction Step: Consider ϕ such that size of ϕ is m+ 1.
Then ϕ is one of the following forms -

∗ (a) ϕ : ¬ψ
∗ (b) ϕ : ψ ∨ χ or ψ ∧ χ or ψ −→ χ or ψ ←→ χ

∗ (c) ϕ : ∀ x ψ or ∃ x ψ

• STEP 6: We assumed the base cases to be true and then proved (a) and (b) of the
inductive step.

• STEP 7: Now we need to prove the base cases and (c) of the inductive step.

2 Model

Let us now move on to the base cases. We first try to defineM∆.

Define D∆ := {t : t is a term}

Define I∆ as follows -

1. I∆(c) = c for all constants c.

2. I∆(fni) : Dn
∆ −→ D∆ given as follows - I∆(fni)(t1, t2,, tn) = fint1t2.....tn

3. I∆(pni) ⊆ Dn
∆ given as follows - (t1, t2,, tn) ∈ I∆(pni) iff pni t1t2.....tn ∈ ∆

Define G∆ : G∆(x) = x for all variables x.

Thus,M∆ = (D∆, I∆,G∆)

Now, remember(by a claim proved in Lecture 2) that this G∆ can be uniquely extended
to a map G′∆ : T −→ D∆

Exercise 1 Show that G′∆(t) = t for all terms t.

Solution • G′∆(xi) = xi (since G′∆ is extension of G∆, hence both should agree on
variables).

• G′∆(c) = I∆(c) = c for all constants c.

• G′∆(f
n
i t1t2.....tn) = I∆(fni)(G′∆(t1),G′∆(t2),,G′∆(tn))

Then, inductively, G′∆(|textfni t1, t2,, tn) = fni t1, t2,, tn
(if ti is a variable or constant, we know the value G′∆(ti) = ti; if not, then it is again of the
form fjmti1 , ti2 ,, tij ; and continue recursively)
Thus,G′∆(t) = t for all terms t ∈ T .

Remark 1 Since the extension G′∆ is unique, we do not distinguish between G∆ and G′∆,
rather we mention G′∆ too as G∆.

7-2

2.1 Base Cases

Recall that we had 2 situations in the base case -

i ϕ : t1 ≡ t2

ii ϕ : fni t1t2.....tn

Let us prove (ii) first-
Proof.
Proof of base case (ii):
M∆(t) |= ϕ
iff M∆(t) |= pni t1t2.....tn
iff (G∆(t1),G∆(t2),,G∆(tn)) ∈ I∆(pni)
iff (t1, t− 2,, tn) ∈ I∆(pni)
iff pni t1t2.....tn ∈ ∆
iff ϕ ∈ ∆

This completes the proof for this case.

Now, for the proof of (i)-
Proof of base case (i):
We want to prove the following -M∆ |= t1 ≡ t2 iff t1 ≡ t2 ∈ ∆
While trying to prove this, we see that we face an issue, which is explained below -
M∆ |= t1 ≡ t2
iff G∆(t1) ≡ G∆(t2)
iff t1 = t2 ——-(*)
iff t1 ≡ t2 2

The proof, on the surface, seems to be clean: except for the fact that we need to be very
cautious about the (*) marked line.
t1 = t2 should be valid in true essence, not just by expression. An example would help
understand this in a much easier way.

Example 1 In the language of arithmetic, 3 = 3, but we want the expressions 2 + 1 or
1 + 2 also t bear the same interpretation, and hence, denote the same term. We want both
of these expressions to have the same meaning.

To account for this problem, we go back to the definition of our domain and re-define
it in suitable way.

2.2 Model : Re-defined

We had the definition of the domain as -
D∆ = {t : t is a term}
Define a relation ∼ on T as follows: t1 ∼ t2 iff t1 ≡ t2

Claim ∼, as defined above, is an equivalence relation.

7-3

Proof.

1. ∼ is reflexive:
We have to show that, for any term t; t ≡ t ∈ ∆
Suppose it is not true. Then there is a term t such that t ≡ t ∈ ∆ ̸∈ ∆. Note that
t ≡ t is a formula. Since ∆ is complete, and t ≡ t ̸∈ ∆, then, ¬(t ≡ t) ∈ ∆.
So, {¬(t ≡ t)} is satisfiable - which is a contradiction.
Thus, t ≡ t ∈ ∆ for all terms t ∈ ∆. Hence, ∼ is reflexive.

2. ∼ is symmetric:
Suppose t1 ≡ t2 ∈ ∆ for some t1, t2 ∈ T ; ie, t1 ∼ t2.
We have to show that t1 ∼ t2.
Suppose it is not true. Then t1 ≡ t2 ̸∈ ∆. ∆ being complete, it must be the case that
¬(t1 ≡ t2) ∈ ∆. Then, {t1 ≡ t2,¬(t1 ≡ t2} is satisfiable - which is a contradiction.
Hence, ∼ is symmetric.

3. ∼is transitive:
Suppose t1 ∼ t2 and t2 ∼ t3 for some t1, t2, t3 ∈ T ; ie, t1 ≡ t2 ∈ ∆ and t2 ≡ t3 ∈ ∆.
We have to show that t1 ≡ t3 ∈ ∆, ir, t1 ≡ t3 ∈ ∆.
Suppose it is not true. Then ¬(t1 ≡ t3) ∈ ∆. Therefore, {(t1 ≡ t2), (t2 ≡ t3),¬(t1 ≡
t3) ⊆ ∆} is satisfiable - which is a contradiction.
Then, t1 ≡ t3 ∈ ∆, ie, t1 ∼ t3.
Hence, ∼ is transitive.

This completes the proof that ∼ is an equivalence relation. 2

This equivalence relation gives rise to a collection of equivalence classes over D∆ = T .
Define D′

∆ = {[t] : t is a term}, where [t] is the equivalence class of t under the equivalence
relation ∼, as defined above.

7-4

Logic for Computer Science LECTURE DATE : 7/2/2024

Lecture 8: Proof of Compactness Theorem(Continued)- Substitutions

Lecture: Sujata Ghosh Scribe: Kuntal Das, N. Vamsi Krishna

1 Model : Re-defined (Continued)

We defined D′
∆ = {[t] : t is a term}.

Now, we wish to define I ′∆ and G′∆.
Define

• I ′∆(c) := [c]

• I ′∆(f
n
i) : (D′

∆)
n −→ D′

∆ defined as -
I ′∆(f

n
i)([t1], [t2],, [tn]) = [fint1t2.....tn]

• I ′∆(pni) ⊆ (D′
∆)

n defined as - ([t1], [t2],, [tn]) ∈ I ′∆(pni) iff pni t1t2.....tn ∈ ∆

Next, we need to ensure well defined-ness of the above definitions.

1. I ′
∆(c) := c is well defined:

Let c1, c2 be two constants such that c1 ∼ c2. Then [c1] = [c2]
Hence, I ′∆(c1) = [c1] = [c2] = I ′∆(c2)
Hence I ′∆(c) is well defined.

2. I ′
∆(fni) is well defined:

Let t1, t2,, tn and t′1, t
′
2,, t

′
n be terms such that

t1 ≡ t′1, t2 ≡ t′2,, tn ≡ t′n
ie, t1 ≡ t′1, t2 ≡ t′2,, tn ≡ t′n ∈ ∆
We want to show that fni t1t2.....tn ≡ fni t′1t′2.....t′n ∈ ∆
We use the following lemma-

Lemma 1 Let ϕ be a formula and ∆ be a set of formulas, which is finitely satisfiable and
complete. Then |= ϕ implies ϕ ∈ ∆

Proof. Suppose |= ϕ but ϕ ̸∈ ∆
Then ¬ϕ ∈ ∆. Thus, {¬ϕ} is satisfiable - a contradiction.
Hence, ϕ ∈ ∆ 2

Claim |= ((t1 ≡ t′1) ∧ (t2 ≡ t′2) ∧ ∧ (tn ≡ t′n)) −→ (fni t1t2.....tn ≡ fni t′1t′2.....t′n)

Proof. We want to show that fni t1t2.....tn ≡ fni t′1t′2.....t′n
ie, we want to show that I ′∆(f ′n)(t1, t2,, tn) = I∆(fni)(t′1, t′2,, t′n)
ie, want to show fni (t1, t2,, tn) ≡ fni (t′1, t′2,, t′n)
But the above is anyway true, since
[t1] = [t′1] ∧ [t2] = [t′2] ∧ ∧ [tn] = [t′n]

8-1

implies I ′∆(fni)([t1], [t2],, [tn]) = I ′∆(fni)([t′1], [t′2],, [t′n])
implies [fni (t1, t2,, tn] = [fni (t

′
1, t

′
2,, t

′
n)]

implies fni (t1, t2,, tn) ≡ fni (t′1, t′2,, t′n)
Thus, the validity is proved. 2

Now, as t1 ≡ t′1, t2 ≡ t′2,, tn = t′n∆, we have fni t1t2.....tn ≡ fni t′1t′2.....t′n ∈ ∆
This completes the proof of well defined-ness of I ′∆(fni)

3. I ′
∆(pn

i) is well defined.
Let t1, t2,, tn and t′1, t

′
2,, t

′
n be terms such that t1 ∼ t′1, t2 ∼ t′2,, tn ∼ t′n. We

want to show that if (t1, t2,, tn) ∈ I ′∆(pni) then (t′1, t
′
2,, t

′
n) ∈ I ′∆(pni) too and

vice versa.
But this is obvious from the definition of I ′∆(pni), since [t1] = [t′1], [t2] = [t′2],, [tn] =
[t′n].

Now, let us define G′∆ as follows: G′∆(x) = [x], for all variables x
So, we have our model: M′

∆ = (D′
∆, I ′∆,G′∆)

As earlier, we can show that G′∆(t) = [t] for all terms t ∈ T (The proof is an exact imitation
of solution of the exercise in the scribe of lecture 7).

Let us go back to the result we have to prove:

Claim For all formulas ϕ,M′
∆ |= ϕ iff ϕ ∈ ∆.

Proof. We again use induction on the size of the formula.

• Base case:

1. ϕ is of the form t1 ≡ t2:

M′
∆ |= ϕ iff M′

∆ |= t1 ≡ t2 iff G′∆(t1) = G′∆(t2) iff [t1] = [t2]
iff t1 ∼ t2 iff t1 ≡ t2 ∈ ∆ iff ϕ ∈ ∆

2. ϕ is of the form pni t1t2.....tn:

M′
∆ |= ϕ iff M′

∆ |= pni t1t2.....tn iff (G′∆(t1),G′∆(t2),,G′∆(tn)) ∈ I∆(pni)
iff ([t1], [t2],, [tn]) ∈ I ′∆(pni) iff pni t1t2.....tn ∈ ∆ iff ϕ ∈ ∆

• So we are done with the base cases. Now, by our previous argument, we are also done
for the formulas which are of the form ¬ψ,ψ ∨ χ, ψ ∧ χ, ψ −→ χ, ψ ←→ χ.

Thus, if we consider only the atomic formulas (base cases) and their Boolean combinations
(mentioned in the previous line), then we have the Compactness Theorem for the logical
language consisting of the formulas ϕ, ψ of the following type:
ϕ, ψ : t1 ≡ t2 or pni t1t2.....tn or ¬ϕ or ϕ ∨ ψ or ϕ ∧ ψ or ϕ −→ ψ or ϕ←→ ψ

We call this language the zeroth order language

8-2

2

Note that the proof is incomplete, since we are yet to prove the claim for formulas with
quantifiers. We will now see that some new concept is needed for the quantifier case.

1.1 The quantifier case

Let us now consider the quantified formulas ∀xψ and ∃xψ. We want to show that -
M′

∆ |= ∀xψ iff ∀xψ ∈ ∆ and M′
∆ |= ∃xψ iff ∃xψ ∈ ∆

Now,M′
∆ |= ∀xψ iff for all d ∈ D′

∆,M′
∆[x−→d |= ψ ——-(*)

(Remember that here, D′
∆ = {[t] : t is a term}

To make sense of the notations in (*) marked statement, we have to talk about terms
replacing variables in formulas. We introduce the concept of substitutions.

2 Substitutions

In this section, we will discuss an important operation of first-order logic: the substitution
of a term for a variable. This operation will replace any occurrence of a variable in a for-
mula by the given term. For instance, we will be able to substitute the term f(m,x) for
the variable y in the formula P (y) ∧Q(r, y) to obtain P (f(m,x)) ∧Q(r, f(m,x)).
However, the substitution operation is surprisingly complex, as we need to deal with vari-
ables that are bound by quantifiers. The aim of this section is to give a rigorous presentation
of variables and binding that allows us to safely carry out substitutions.

2.1 The Difficulty of Names and Variables

Let us first discuss two questions that arise in FOL:

1. Are the formulas ∀x.P (x) and ∀y.P (y) expressing the same?

2. What is the scope of variables?

• Formula Equality and Renaming:
The first question can be answered by reading the formula without explicitly naming
variables: “P holds for all objects”.
Clearly, this sentence corresponds to both formulas ∀x.P (x) and ∀y.P (y), and we
should consider both formulas to be the same, already syntactically!
This gives us a first rule that we will have to adhere to for FOL:
Two formulas are considered to be the same, if we can bijectively rename
the variables of one formula to obtain the other.
For instance, consider the formulas ϕ = ∀x.∀y.Q(x, y) and ψ = ∀w.∀z.Q(w, z). Then,
a bijective renaming would be to rename x to w and y to z, which allows us to
transform ϕ into ψ. However, renaming x to r and y to r is not bijective. Thus, we
do not consider the formula ∀r.∀r.Q(r, r) to be same as ϕ. Note, that in the latter
formula, the r refers to the inner-most quantifier and the outer quantifier has no effect!

8-3

• Scoping:
The second question concerns the scope of variables. This requires us to determine
which objects a variable refers to. For instance, the variable x in the subformula
P (x)of∀x.P (x) refers to what the quantifier ranges over. We say that x is in the
scope of ∀x in this formula. However, the variable y in ∀x.Q(x, y) is in the scope of
no quantifier and is thus a global reference. If we were now naively substituting x for
y in this formula, then we would obtain ∀x.Q(x, x). Here, the scope of the second
argument of Q, and with it the meaning of the formula, has suddenly changed. This
leads to a second rule:
Substituting a term in a formula should not change the scoping of variables.

2.2 De Bruijn Trees

There are several ways to deal with variables, binding and substitution. An intuitively
understandable way is to represent terms and formulas as de Bruijn trees. The idea is
that bound variables are represented by a number that points to the quantifier that binds
this variables. All free variables keep their name. Figure 1 shows the (de Bruijn-) tree
representation of the formula ∀x.∀y.Q(x, f(y, z)), where the left figure shows the actual
tree and the right figure indicates to which quantifier the numerical name refers. We see
that the bound variables are numbered starting from the inner-most quantifier. Also note
that the variable z is free and thus keeps its name in the tree representation.
Since the nesting depth of quantifiers is important, we also note that tree representations are
not closed under subtrees!. For instance, the tree in fig. 2a is not a valid tree representation
because (1) is a dangling reference. Instead, if we want to remove the outer quantifier, we
need to pick a name that we replace (1) with, say x, and then obtain the tree representation
in fig. 2b.
In what follows, we will not work explicitly with tree representations, but will use another
approach. However, the tree representation shows how wecan solve the initial problems:

1. The formulas ∀x.P (x) and ∀y.P (y) have the same tree representation, see fig. 3.

2. Substitutions can be carried out without changing the binding of variables, see fig. 4.

8-4

Note that the bound variable x is represented by (0) and thus there is no danger of
substituting the unbound variable x for the unbound variable y. Hence, the problem
of accidentally binding a variable does not exist for the tree representation.

2.3 Axiomatising Terms and Substitutions

The tree representations of formulas that we saw in section 1 solves our problems but it
is difficult to work with. In fact, these trees are good way of implementing FOL on a
computer, but not for humans to work with. In this section, we try to introduce a bunch of
axioms that formulas and substitution have to fulfil. These axioms are fulfilled if we were
to represent terms by de Bruijn trees, but for now, we will leave unspecified how formulas
are implemented.
Definition 1: A substitution is a map σ : Var −→ Term. Given t ∈ Term and x ∈ Var, we

8-5

write σ[x := t] for the updated substitution defined by

σ[x := t](y) =

{
t, if x = y

σ(y), otherwise
(1)

Similarly, we write [x := t] for the substitution given by

[x := t](y) =

{
t, if x = y

y, otherwise
(2)

Given a term t, we write t[σ] for the application of the substitution σ to t, defined by
iteration on terms as follows.
x[σ] = σ(x)
c[σ] = c
f(t1, t2,, tn)[σ] = f(t1[σ],, tn[σ])
The notation σ[x := t] to update a substitution σ should be read like an assignment in an
imperative programming language: the term that σ assigned to x will be overwritten by
t. Similarly, the notation [x := t] starts with a storage in which all variables y have the
default value y, except for x which gets t assigned as initial value. It should also be noted
that there is a substitution η : Var −→ Term ; that assigns to each variable y the term y,
that is, we have η(y) = y. The notation [x := t] is then a shorthand for η[x := t].
The following example illustrates these notations.

Example 1 Let g(x, y) be a term with two free variables x and y, and one binary function
symbol g. Moreover, let σ = [x := y][y := x].

1. The substitution σ exchanges the two variables: g(x, y)[σ] = g(x[σ], y[σ]) = g(y, x)

2. Let now τ = σ[y := f(x)]. In τ , the assignment of x to y is overwritten with the
assignment of f(x) to y. We thus have the following g(x, y)[τ] = g(x[τ], y[τ]) =
g(y, f(x))

3. It is sometimes convenient to exploit the notation and leave out square brackets. For
example, instead of g(x, y)[[y := f(x)]] we could write g(x, y)[y := f(x)] and obtain
g(x, y)[y := f(x)] = g(x, f(x))

Next, we need to be able to apply substitutions to formulas. To circumvent the difficulties
described in section 1, we assume that there is a set of terms on which we can carry
out substitutions. This set of terms can in principle be defined by appealing to the tree
representation. However, this is tedious and instead we just assume that formulas and the
application of substitutions fulfil certain axioms.

Assumption Given a formula ϕ, a variable x and a substitution σ, we say that x is fresh
for σ in ϕ, if we have for all y ∈ fv(ϕ)−{x} that x ̸∈ fv(σ(y)). We assume that there is an
operation ϕ[σ] that applies a substitution σ to an FOL formula ϕ. Further, we assume for
all ⋄ ∈ ∀,∃ and △ ∈ {∧,∨,−→} that the equality on formulas fulfils the following six axioms.
ϕ△ψ = ϕ′△ψ′ iff ϕ = ϕ′ and ψ = ψ′ (EC)

8-6

⋄x.ϕ = ⋄y.ψ iff y ̸∈ fv(ϕ) and ψ = ϕ[x := y] (EQ)
τ [σ] = τ , where τ is an atomic formula (SB)
P (t1,, tn)[σ] = P (t1[σ],, tn[σ]) (SP)
(ϕ△ψ)[σ] = ϕ[σ]△ψ[σ] (SC)
(⋄x.ϕ)[σ] = ⋄x.ϕ[σ[x := x]] if x is fresh for σ in ϕ (SQ)

Let us explain the intuition behind these axioms. First of all, there are two groups of ax-
ioms: those that define the equality on formulas (starting with E) and those that define the
action of substitution on formulas (starting with S). The axiom (EQ) allows us to bijectively
rename bound variables without illegally binding other variables. For instance, we have
∀x.Q(x, y) = ∀z.Q(z, y), because z ̸∈ fv(Q(x, y)).
However, we have
∀x.Q(x, y) ̸∈ ∀y.Q(y, y) because y ∈ fv(Q(x, y)).
The axiom (EC) allows us to carry out this renaming also in complex formulas that involve
other connectives than quantifiers. Implicitly, we also use equality on terms and atoms, in
the sense that
P (t1,, tn) = P ′(t′1,, t

′
n) iff P = P ′ and tk = t′k for all 1 ≤ k ≤ n

and that equality is an equivalence relation (reflexive, symmetric and transitive).
The second group of axioms describes how substitution can be computed iteratively. Ax-
ioms (SB), (SP) and (SC) are doing what we would expect: no action on the atom τ ,
reduce subsitution on predicates to substitution in terms, and distribute substitution over
propositional connectives. Complications arise only in the axiom (SQ), which has to make
sure that the use of a bound variable is not changed and that variables are not accidentally
bound. On the one hand, that the use of a bound variable is not changed is achieved by
updating the substitution σ to σ[x := x]. For instance, if σ(x) = g(y), then naively carrying
out this substitution on ∀x.P (x) would lead to ∀x.P (g(y)), which is certainly not what we
want! Instead, we have by (SQ) and (SP)
(∀x.P (x))[σ] = ∀x.P (x)[σ[x := x]] = ∀x.P (x).
Accidental binding is preventing, on the other hand, by the precondition that x must be
fresh for σ in ϕ. This condition ensures that none of the terms we want to substitute for
the free variables in ϕ contains the variable x, which would become then bound by the
quantifier. These rules and their interaction are best illustrated through some examples.

Example 2 In the following, we use the substitution σ given by σ = [y := x][z := m].

1. Let ϕ = ∀z.Q(z, y). First, we note that fv(Q(z, y)) \ z = y and fv(σ(y)) = x. Thus,
z ̸∈ fv(σ(y)) and z is fresh. This gives us
ϕ[σ] = ∀z.Q(z, y)[σ[z := z]] (SQ)
= ∀z.Q(z[∀[z := z]], y[σ[z := z]]) (SP)
= ∀z.Q(z, x)
Note that σ[z := z] = [y := x] and the substitution of m for z in σ was “forgotten”
when we applied the substitution under the quantifier. This is intuitively expected, as
the bound variable z in ϕ is a local reference, while the z in σ refers to a global variable
z that has the same name but is distinct from the local variable.

2. Let ψ = ∀x.Q(x, y). First, we note that fv(Q(x, y)) \ {x} = {y} and fv(σ(y)) = {x}.
Thus, x ∈ fv(σ(y)) and x is not fresh. However, we have z ̸∈ fv(Q(x, y)) and

8-7

Q(x, y)[x := z] = Q(z, y). This allows us to rename the bound variable x in ψ to z
and then carry out the substitution as above:
ψ[σ] = (∀z.Q(z, y))[σ] (EQ)
= ∀z.Q(z, x) by the previous part of the example.
Note that we cannot safely rename z back to x, as we would otherwise illegally bind
x.

From now on, we will not make explicit use of the axioms provided in assumption (Then
what will we do? This is explained in the next subsection - substitutability). Instead,
we will rename bound variables whenever necessary before carrying out substitutions. For
instance, we would just write (∀x.Q(x, y))[y := x] = ∀z.Q(z, x) without explicitly referring
to the axioms. However, we know that in cause of doubt, we can always go back to the
axioms and formally carry out the renaming and substitution.

8-8

Let’s summarize the above discussion into important points which will be the take-away
from this section.

Substitutions:

• in terms: Let t and t′ be 2 terms and x be a variable. We write t[t′/x] for [t′] replacing
x in the term t.

– x[t′] = t′

– y[t′] = y, y ̸= x

– c[t′/x] = c

– fni t1t1.....tn[t
′/n] = fni t1[t

′/x]t2[t
′/x].....tn[t

′
n/x]

• in formulas: Let ϕ be a formula, t be a term and x be a variable. Then, we write
ϕ[t/x] for x replaced by t in ϕ.

– (t1 ≡ t2)[t/x] = (t1[t/x] ≡ t2[t/x])
– pni t1t2.....n[t/x] = pni t1[t/x]t2[t/x].....tn[t/x]

– ¬ϕ[t/x] = ¬(ϕ[t/x])
– (ψ ∨ χ)[t/x] = ψ[t/x] ∨ χ[t/x]
– (ψ ∧ χ)[t/x] = ψ[t/x] ∧ χ[t/x]
– (ψ −→ χ)[t/x] = ψ[t/x] −→ χ[t/x]

– (ψ ←→ χ)[t/x] = ψ[t/x]←→ χ[t/x]

–

{
∀xψ[t/x] = ∀xψ
∀yψ[t/x] = ∀y(ψ[t/x]), y ̸= x

–

{
∃xψ[t/x] = ∃xψ
∃yψ[t/x] = ∃y(ψ[t/x]), y ̸= x

And the basic examples we should keep in mind, are here -

Examples:

• (x ≡ y)[y/x] = y ≡ y

• (x ≡ y)[x/y] = x ≡ x

• ∀x(x ≡ y)[y/x] = (x ≡ y)

• ∀x(x ≡ y)[x/y] = (x ≡ x)

8-9

Now, let’s talk about satisfiability of such substituted formulas, an explicit formulation of
our axiomatic assumptions as to which term is substitutable for which term in various cases
(since, working with axioms is not a practical thing).
Let M be a model and consider a substituted formula ϕ[t/x]. What would be a natural
way to think aboutM |= ϕ[t/x], whereM = (D, I,G) ?
A natural guess would be : M |= ϕ[t/x] iffM[x−→G(t)] |= ϕ
Question: Would this always hold?
Answer: NO!!!
Let’s see this with an example -
ϕ : ∃y(¬(y = x)) —satisfiable
ϕ[y/x] : ∃y(¬(y = y)) —unsatisfiable
This brings up the question of substitutability, ie, which term is substitutable by which
term in various scenario.

2.4 Substitutability

We want to have the term t said to be substitutable for a variable x in a formula ϕ. In this
case, the definition of substitutability depends on ϕ.
A term t is said to be substitutable for a variable x in a formula ϕ if -

• Case 1 ϕ is ¬ψ: t is always substitutable for x in ψ

• Case 2 ϕ is of the form ¬ψ: t is substitutable for x in ψ

• Case 3 ϕ is of the form ψ ∨ χ: t is substitutable for x in ψ and t is substitutable for
x in χ

• Case 4 ϕ is of the form ψ ←− χ: t is substitutable for x in ψ and t is substitutable
for x in χ

• Case 5 ϕ is of the form ψ ←→ χ: t is substitutable for x in ψ and t is substitutable
for x in χ

• Case 6 ϕ is of the form ∀yψ or ∃yψ:

1. x does not occur as a free variable in ψ
OR

2. y should not appear in the term t and t is substitutable for x in ψ

We end this lecture with one proposition, which is very basic and intuitive and captures
the spirit of substitution.

Proposition 2 Let ϕ be a formula, x be a variable, t be a term andM be a model. Then,
M |= ϕ[t/x] iffM[x−→G(t)] |= ϕ, provided t is substitutable for x in ϕ.

We continue our discussion on substitutability in the next lecture.

8-10

