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Abstract. In the line of some earlier work done on belief dynamics, we
propose an abstract model of belief propagation on a graph based on
the methodology of the revision theory of truth. A set of postulates is
proposed, a dynamic language is developed for portraying the behavior
of this model, and its expressiveness is discussed. We compare the pro-
posal of this model with some of the existing frameworks for modelling
communication situations.
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1 Introduction

Self-reference is a tricky and complicated issue in logic. Ordinary propositional
logic formulas can be expressed by trees, whereas there we have to resort to cyclic
graphs (cf. [1]). In both cases, truth propagates backwards along the edges of
finite trees or graphs. While this flow of truth stops in case of finite trees, giving
a resultant truth value, it goes into a loop in case of cyclic graphs. Consider the
liar statement “this sentence is false”. Graphically, it can be represented as

• −dd

Gaifman’s pointer semantics [2,3] and the revision theory of truth developed
by Herzberger, Gupta and Belnap [4,5] provide semantics for sets of sentences
with self-reference by looking at stable patterns among their truth values. Under
these semantics, the value of the liar sentence never becomes stable as it oscillates
between 1 and 0. On the other hand, for the nested liars sentences,

“The next sentence is false. The previous sentence is false.”

which can be represented by the graph
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there are two assignments, 1,0 and 0,1, that generate stable patterns under sub-
sequent revisions of truth values. The main features of theories are the backward
propagation of truth values along the edges (which correspond to the “revisions”),
and the recognition of stable patterns.



In [6], the authors provide a formal model of real life communication sit-
uations using graphs where both forward and backward propagation of values
are considered, which represents belief flow of a reasoning agent. This reasoning
agent, also called the observer, wants to decide whether to believe or disbelieve
certain facts, based on her and other agents’ opinion about events/facts as well
as agents. The observer’s initial beliefs about the agents and facts are revised
through an iteration function against the merging of rest of the information. A
belief semantics via stability is defined, keeping the spirit of revision semantics
mentioned earlier. [6] also provides a concrete model for such communication
situations based on an infinite set of belief-values (a closed interval of real num-
bers). This gives rise to difficulties when segregating those values in terms of
their interpretation and then studying their inter-dependence.

In order to overcome such difficulties and facilitate our formal modelling, we
consider a finite set of belief-values here. Such finite sets play a significant role
in better understanding of the underlying subtleties of the mutually conflicting
opinions of the agents involved. We propose a set of postulates that a concrete
model of the situations should satisfy.

To provide a sound formal foundation to our proposed model, we introduce
a logical language to describe the revision process carried out. Instead of de-
scribing the outcome of the whole process (the general tradition of the logical
approaches), we focus on the small-step dynamics of such situations, resembling
the connectionist viewpoint. One of the main drawbacks of these approaches is
the difficulty to provide an explanation of the underlying reasoning mechanism,
viz. a logical description of the process, though attempts have been made to
overcome it ([7,8,9,10]).

The main significance of this work lies in the fact that, though our model
follow the connectionist framework, we have been able to provide a logical frame-
work also so as to give a strong formal foundation to the proposed model. The
search for an iteration function (the revision function which form an integral part
of the model) that conforms to our intuitions is largely an empirical question.
Still, our postulates impose basic restrictions on what this function should sat-
isfy. They describe the way the observer’s beliefs at a given stage will influence
her beliefs after one step in the merging process.

The paper is organized as follows. In § 2, we recall the formal definition of
the Assertion Network Semantics from [6] and propose several postulates stat-
ing properties the iteration function should satisfy. Then, we provide a concrete
definition of such functions, and compare them with the postulates. We support
our work with the aid of a software tool called Assertion Network Toolkit, which
has been introduced in [6]. A dynamic logic of belief flow through this communi-
cation networks is proposed in § 3. Finally, § 4 focusses on comparison with some
related works, with § 5 providing pointers towards future work.

2 Belief networks: a concrete model

In real life communication situations, we deal not only with sources of infor-
mation with opinions about the facts/events, but also with opinions about each
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other. We can get information about the weather from a radio broadcasting, a
webpage or a friend, and it is not strange to hear our friend saying “you should
not trust in those guys from the radio”. Putting all this information together is
not an easy task, but as highlighted in [6], the revision theoretic framework of
Herzberger, Gupta, and Belnap [5,4] suggests a methodology that can be well
applied in dealing with these rather complicated situations.

These situations can be represented by directed labelled graphs (DLG) with
vertices representing facts and agents and edges representing agents’ opinions.
An edge labelled with “+” (“−”) from a vertex n1 to a vertex n2 indicates that
the agent represented by n1 has positive (negative) opinion about the agent/fact
represented by n2. Although, in order to keep the model as simple as possible,
we assign nodes to represent both agents and facts, we do differentiate them:
agents are represented only with non-terminal nodes and facts with terminal
ones. Agents with no opinions do not appear in the model.

An external observer reasons about the communication situations repre-
sented by the DLG. While the agents’ opinions are represented by edges in
the graph, the observer’s beliefs are represented in the following way. Vertices
are given values from a non-empty finite set Λ to indicate the states of belief
of the observer regarding those agents and facts. As mentioned before, this is a
departure from the models in [6], where the value set is a continuous interval,
not the discrete set assumed here. We will see how this approach eventually aids
in the understanding of the situation in a much more illuminating way and also
provides a better insight into the language and logic of these networks.

Thinking of vertices of the graph as agents and facts rather than just sen-
tences, leads from an analysis of truth as done in [4,5] to an analysis of a belief
network. Consider the following example, given in [6].

Suppose the observer is sitting in an office without windows. Next to her
is her colleague (C), inside the same office. The observer is simultaneously
talking on the phone to her friend (F), who is sitting in a street café.

F: “Everything your colleague says is false; the sun is shining!”
C: “Everything your friend says is false; it is raining!”

The information the observer has gathered can be described by the following
graph where S is interpreted as “the sun is shining” and, while edges F

+−→ S

and C
−−→ S represent the opinions the friend and the colleague have about S,

edges F
−−→ C and C

−−→ F represent the opinions they have about each other.

F
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Although there are two consistent truth value assignments, one of them is
intuitively preferred, as the observer’s friend has first hand experience of the
weather in the street café. Based on this preference, the observer’s beliefs flow
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through the graph: the contextually based stronger belief in F leads her to believe
in S, but at the same time to disbelieve in C, since it is in conflict with F. Her
disbelief in C in turn makes her belief in S stronger, which influences her belief in
F once again. Both forward and backward propagation of beliefs are encountered.

This example shows both backward and forward propagation of beliefs. If a
trusted source has some positive opinion about a certain proposition ϕ, the belief
of the observer over ϕ will influence her belief on the trusted source, as well as
the belief on the trusted source would have some effect over the observer’s belief
in ϕ. In the following, we try to base all these ideas on a more concrete level.

2.1 Assertion network semantics

An Assertion Network Model M is a tuple M = (G, Ψ), where

– G = (V, E , `) is a directed labelled graph, with V the set of vertices, E ⊆ V×V
the set of edges and ` : E → {+,−} the labelling function.

– Ψ : ΛV → ΛV is the iteration function, with Λ the set of values.

Vertices represent agents and facts; edges represent agents’ opinions.
The observer’s beliefs are represented in a different way. We assume a function

H : V → Λ, called an hypothesis, assigning to every vertex of G a value in Λ.
The value H(v) is interpreted as the state of belief the observer has about v.

The iteration function Ψ comes into play to combine forward and backward
propagation, defining a revision sequence of the observer’s beliefs. Given an
initial hypothesis H, we define the sequence of functions 〈Hi ; i ∈ ω〉 as

H0 := H, Hi+1 := Ψ(Hi)

Inspired by the stability concept of revision theory, we can now define a
partial stability semantics for our labelled graph. Let H be an initial hypothesis,
v be a vertex in V and λ be a value in Λ. We say that λ is the stable value
of v starting from H if there is n ∈ ω such that Hi(v) = λ for all i ≥ n. The
assertion network semantics AH is defined in this way:

AH(v) :=
{
λ if λ is the stable value of v starting from H
undefined if 〈Hi(v) ; i ∈ ω〉 oscillates.

Following Theorem 1 and Theorem 2 in the section 2 of [6], it is pretty
straightforward that,

Theorem 1. The stable truth predicate of revision semantics is a special case
of assertion network semantics, i.e., for every set of clauses Σ there is a labelled
graph G and there are evaluation functions such that AH coincides with the
(partial) stable truth predicate on Σ.1

1 Here, we refer to a propositional language with clauses as described in [11], with the
partial stable truth predicate defined in the proof of Theorem 2 in [6].
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2.2 Postulates for the iteration function

As mentioned in the introduction, we will consider a finite set of belief-values for
building up the Assertion Network model. We define the set as Λ := {−1, 0, 1},
where ‘−1’ stands for disbelief, ‘0’ for no opinion and ‘1’ for belief.

The iteration function is the key of this model; it defines how the beliefs of
the observer will be in the next stage, given her beliefs in the current one. Let us
first make a brief analysis of what should be taken into account when deciding
the next state of beliefs.

The case of facts is the simple one. To get her beliefs about some fact (repre-
sented by v ∈ V) at stage k+1 (Hk+1(v)), the observer should take into account
her current beliefs about the fact (Hk(v)) and her current beliefs about agents
having an opinion (positive or negative) about the fact (Hk(u) for every u ∈ V
s.t. 〈u, v〉 ∈ E). This is nothing but forward propagation of beliefs.

The case of an agent i (represented by v ∈ V) is a more involved one. Besides
her current beliefs about the agent (Hk(v)) and her current beliefs about agents
having an opinion about i (Hk(u) for every u ∈ V s.t. 〈u, v〉 ∈ E ; again, forward
propagation), the observer should take into account the beliefs she has regarding
agents and facts about which i has an opinion (Hk(u) for every u ∈ V such that
〈v, u〉 ∈ E : backward propagation). All these will influence her next state of belief
regarding the agent under consideration.

In the following, we propose some postulates for rational iteration functions.
They reflect intuitive restrictions on how the belief state of the observer about
some agent/fact should be modified during her introspection process.

Let v ∈ V be a terminal node (a fact) of the Assertion Network.

1. If (a) Hk(u) = 1 for every u ∈ V s.t. 〈u, v〉 ∈ E with `〈u, v〉 = “+′′, and
(b) Hk(u) = −1 for every u ∈ V s.t. 〈u, v〉 ∈ E with `〈u, v〉 = “−′′, then
Ψ(Hk(v)) = Hk+1(v) = 1 (the positive enforcement of facts postulate).

2. If (a) Hk(u) = 1 for every u ∈ V s.t. 〈u, v〉 ∈ E with `〈u, v〉 = “−′′, and
(b) Hk(u) = −1 for every u ∈ V s.t. 〈u, v〉 ∈ E with `〈u, v〉 = “+′′, then
Ψ(Hk(v)) = Hk+1(v) = −1 (the negative enforcement of facts postulate).

3. If (a)Hk(u) = 0 for every u ∈ V s.t. 〈u, v〉 ∈ E), then Ψ(Hk(v)) = Hk+1(v) =
Hk(v) (the persistence of facts postulate).

Now let v ∈ V be a non-terminal node (an agent).

1. If we have (a) and (b) from 1 of the terminal node case, plus (c) Hk(u) = 1
for every u ∈ V s.t. 〈v, u〉 ∈ E with `〈u, v〉 = “+′′, and (d) Hk(u) = −1 for
every u ∈ V s.t. 〈v, u〉 ∈ E with `〈u, v〉 = “−′′, then Ψ(Hk(v)) = Hk+1(v) = 1
(the positive enforcement of agents postulate).

2. If we have (a) and (b) from 2 of the terminal node case, plus (c) Hk(u) = 1
for every u ∈ V s.t. 〈v, u〉 ∈ E with `〈u, v〉 = “−′′, and (d) Hk(u) = −1 for
every u ∈ V s.t. 〈v, u〉 ∈ E with `〈u, v〉 = “+′′), then Ψ(Hk(v)) = Hk+1(v) =
−1 (the negative enforcement of agents postulate).

3. If we have (a) from 3 of the terminal node case, plus (b) Hk(u) = 0 for every
u ∈ V s.t. 〈v, u〉 ∈ E , then Ψ(Hk(v)) = Hk+1(v) = Hk(v) (the persistence of
agents postulate).

5



2.3 Concrete model

We provide a concrete definition of the iteration function, describing the change
in observer’s beliefs about an agent/fact depending on those of related ones.

Let M = (G, Ψ) be an Assertion Network Model with G = (V, E , `). For a
vertex v ∈ V, define

In+(v) := {w ∈ V ; `〈w, v〉 = “+”}, In−(v) := {w ∈ V ; `〈w, v〉 = “−”},
Out+(v) := {w ∈ V ; `〈v, w〉 = “+”}, Out−(v) := {w ∈ V ; `〈v, w〉 = “−”}

The set In(v) := In+(v)∪In−(v) consists of the vertices that can reach v. The set
Out(v) := Out+(v)∪Out−(v) consists of the vertices that can be reached from v.
The set of terminal vertices of G can be defined as TG := {v ∈ V ; Out(v) = ∅}.

Let H be an hypothesis. For every w ∈ In(v), define svw as the H-value of
w with sign according to the label of the edge that links it with v; for every
w ∈ Out(v), define tvw as the H-value of w with sign according to the label of
the edge that links v to it. Formally,

svw :=
{
H(w) if w ∈ In+(v)
−H(w) if w ∈ In−(v)

tvw :=
{
H(w) if w ∈ Out+(v)
−H(w) if w ∈ Out−(v)

For each value λ ∈ Λ, define Svλ as the set of vertices w ∈ In(v) such that
svw = λ; similarly, define T vλ as the set of vertices in w ∈ Out(v) such that tvw = λ.

Svλ := {w ∈ In(v) ; svw = λ} T vλ := {w ∈ Out(v) ; tvw = λ}

For a terminal vertex v ∈ TG , its Ψ(H)-value depends on the H-values of v
itself and on those of the vertices in In(v). Here is our particular definition.

Ψ(H)(v) :=

1 if |Sv1 | > |Sv−1|
−1 if |Sv1 | < |Sv−1|
H(v) otherwise.

For a non-terminal vertex v ∈ V\TG , the definition is a bit more complicated.
Unlike the terminal ones, in addition to the current value of v we now have to take
into account the influences of both the incoming edges as well as the outgoing
ones, since we want to represent both forward and backward propagation of
beliefs. The value suggested by the incoming edges (IE v) and the one suggested
by the outgoing ones (OE v) are considered separately.

IE v :=

1 if |Sv1 | > |Sv−1|
−1 if |Sv1 | < |Sv−1|
H(v) otherwise.

OE v :=

1 if |T v1 | > |T v−1|
−1 if |T v1 | < |T v−1|
H(v) otherwise.

Their combination gives the Ψ(H)-value of v defined by the following table:

IEv\OEv -1 0 1
-1 -1 -1 0
0 -1 0 1
1 0 1 1

With this definition of Ψ , the next theorem can be easily proved.

Theorem 2. Ψ satisfies the three fact postulates and the three agent postulates.
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Fig. 1. Initial opinions

Fig. 2. Final opinions

2.4 Assertion network toolkit

As mentioned in the introduction, looking for the adequate iteration function Ψ
is largely an empirical task. We can claim that the definition given just now is a
plausible one since it satisfies all the postulates, but still more complicated exam-
ples are to be checked to validate the claim that this particular definition reflects
our intuitive interpretation. The Assertion Network Toolkit (ANT), presented
in [6], allows us to play around with the functions and values.

As an example of its use, consider the communication situation described
at the beginning of this section. The iteration function Ψ defined in the earlier
subsection is the one currently implemented in the ANT. Figure 1 shows two
screenshots with difference in the values of the initial hypothesis. Figure 2 shows
the corresponding final values after the iteration process.

In the first case (the left hand side of Figure 1), the observer believes in her
friend because of the friend’s first hand experience of what is happening outside
the office; besides that, she does not have any initial opinion about her colleague
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or the discussed fact. In this setting, the initial hypothesis H0 assigns a value
of 1 to the vertex representing the friend (H0(F) = 1) and a value of 0 to the
others (H0(C) = H0(S) = 0). In the second case (the right hand side of Figure
1), the observer has an equally high initial opinion about her friend as well as
her colleague. The initial hypothesis H0 assigns a value of 1 to both her friend
and colleague (H0(C) = H0(F) = 1), but 0 to the mentioned fact (H0(S) = 0).
We let the program iterate the function several times, getting the screenshoots
of Figure 2 and the sequence of values of the tables below.

H0 H1 H2 H3 · · ·
F 1 1 1 1 · · ·
C 0 -1 -1 -1 · · ·
S 0 1 1 1 · · ·

H0 H1 H2 H3 · · ·
F 1 -1 1 -1 · · ·
C 1 -1 1 -1 · · ·
S 0 0 0 0 · · ·

In the first case, all the vertices reach stable values (in just two steps); in the
second case, only the vertex representing S gets a stable value: that of “no opin-
ion” of the observer (the values of F and C oscillate). The readers will definitely
consent to the fact that in both these cases, the final belief values completely
agree with our intuitions.

3 Expressing belief networks

This section provides a logical language to express the behavior of the Assertion
Network Model. The network focuses on the observer’s point of view, so we define
a language that takes her perspective. The atomic propositions are expressions
indicating the state of belief the observer has about agents or facts portrayed in
the network, and then we build more complex formulas using the standard logical
connectives. This language does not describe the graph (we cannot express things
like “agent i has a positive opinion about p”), but it describes the observer’s
beliefs about the represented situation; this will serve our purpose here. For
readers interested in a more expressive language, we refer to [12].

In the language we provide a way to talk about the most important part of the
model: the update of beliefs carried out by the iteration function. We introduce
the syntactic operator # to represent the iteration function: it allows us to talk
about what happens with the observer’s beliefs after one step of revision and
merging of beliefs. Formulas of the form #ϕ are read as “after one iteration of
the function, ϕ is the case”. This operator describes the way the beliefs of the
reasoning agent propagate through the network after a single iteration step.

Finally, we are also interested in the outcome of the whole process. Such a
process reaches an end whenever the beliefs of the observer become stable, that
is, whenever they reach a stage from which further iterations of the function
will not change them anymore (which is not always the case). We introduce
the syntactic operator �; it represents the stable stage reached by the network
(whenever it exists) and allows us to talk about what happens with the observer’s
belief at the end of the process (if it ever ends). Formulas of the form �ϕ are
read as “after the whole process, ϕ is the case”.
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3.1 A language expressing the observer’s beliefs

Given a set of agents A and a set of propositions P, the Language of Beliefs LB
is given by:

ϕ := Bγ | Nγ | Dγ | ¬ϕ | ϕ ∨ ψ

with γ ∈ A∪P. Formulas of the form Bγ indicates “the observer believes in γ”,
while Nγ indicates “the observer does not have any opinion about γ” and Dγ
indicates “the observer disbelieves in γ”.

To avoid any confusion that may arise due to the use of the traditional
intensional operators in an extensional language, we make the following remarks.

– Formulas in LB express exclusively the observer’s beliefs.
– The language LB is not a modal language. Its atomic propositions Bγ, Nγ

and Dγ have special meanings, but they are still atomic propositions.
– Usually, the truth values of atomic propositions are not related in any way.

Here, the semantics will be defined in a way that the truth values of some
of them are related: formulas like Bγ ∧ Dγ, for example, will never be true.

Formulas of LB are interpreted in Assertion Network Models by assuming
a map that uniquely identify each vertex of the model with an agent or a fact
in A ∪P. The map should satisfy our requirement: facts have to be mapped to
terminal vertices.

Let M = (G, Ψ) be an Assertion Network Model, with G = (V, E , `). An
interpretation I is a partial injective function I : A∪P→ V such that, for each
p ∈ P, we have I(p) ∈ TG , when it is defined. Given I and an initial hypothesis
H, the truth definition of formulas of LB in M is given by

M, I,H |= Bγ iff H(I(γ)) = 1
M, I,H |= Nγ iff H(I(γ)) = 0
M, I,H |= Dγ iff H(I(γ)) = −1
M, I,H |= ¬ϕ iff M, I,H 6|= ϕ
M, I,H |= ϕ ∨ ψ iff M, I,H |= ϕ or M, I,H |= ψ

Thus, the formula Bγ (resp. Nγ, Dγ) is true in the model M under the
interpretation I if and only if the H-value of the graph component to which γ
is mapped is equal to 1 (resp. 0, -1).

3.2 A language expressing belief flow

The language LB is static, in the sense that it does not express how beliefs
change as a result of the belief propagation. Here, we extend the language with
two dynamic operators that allows us to talk about the model after one iteration
step (#) and also after it reaches a stable situation (�). The full language of the
Logic of Belief Flow LBF , is given by:

ϕ := Bγ | Nγ | Dγ | ¬ϕ | ϕ ∨ ψ | # ϕ | � ϕ
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with γ ∈ A ∪ P. Formulas of the form #ϕ express “after the observer once
considers the information she has, ϕ is the case”; formulas of the form �ϕ
express “after the observer considers all the information she has, ϕ is the case”.

While the operator # represents one step in the iteration process, the oper-
ator � represents stable positions. The first one gets truth value by using the
iteration function Ψ ; the second one looks for iterations that do not change values
from some moment on.

M, I,H |= #ϕ iff M, I, Ψ(H) |= ϕ
M, I,H |= �ϕ iff ∃n ∈ ω such that M, I, Ψ i(H) |= ϕ for all i ≥ n.

To close this section, we give examples of formulas that hold in the Assertion
Network Model corresponding to the example described in § 2 and whose iterated
values are shown in tables of page 8. Formally, we have

– V := {F, C, S}; E := {〈F, C〉, 〈C, F〉, 〈F, S〉, 〈C, S〉},
– `〈F, S〉 = “+”; `〈F, C〉 = `〈C, F〉 = `〈C, S〉 = “−”.

and Ψ as defined before. The initial hypothesis H is given by

H(F) = 1 H(C) = 0 H(S) = 0

From the values shown in the corresponding table, we have that the following
formulas hold in M, I,H:

• BF ∧ NC ∧ NS • # # (BF ∧ DC ∧ BS)
• #(BF ∧ DC ∧ BS) • �(BF ∧ DC ∧ BS)

Considering some variations of the initial hypothesis, ANT shows us that the
following formulas also hold.

• (BF ∧ BS)→ �(BF ∧ DC ∧ BS)
If the observer initially believes in F and S, then her initial belief about C
is irrelevant.

• (BF ∧ BC ∧ NS)→ ((#kBF→ #k+1DF) ∧ (#kDF→ #k+1BF)) (k ≥ 0)
If she initially believes in F and C without having an opinion about S,
then her beliefs about F will oscillate (#0ϕ := ϕ and #k+1ϕ := # #k ϕ).

• (BF ∧ BC ∧ NS)→ ¬� (BF ∨ NF ∨ DF)
Therefore, there is no stable value for F.

• (BF ∧ BC ∧ NS)→ �NS
But there is a stable value (viz. 0) for S.

Evidently, the last three formulas express the observer’s opinions in the sec-
ond example we dealt with in Section 2.4. Finally, we also have some validities
which provide some insights towards the complete axiomatization of the pro-
posed logic, which we leave for future work:

• Bγ → (¬Nγ ∧ ¬Dγ) • #(ϕ ∧ ψ)↔ (#ϕ ∧#ψ)
• Dγ → (¬Nγ ∧ ¬Bγ) • �(ϕ ∧ ψ)↔ (�ϕ ∧�ψ)
• Nγ → (¬Bγ ∧ ¬Dγ) • �ϕ→ � # ϕ
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4 Other models and logics: a comparison

An extensive amount of work has been done in formalizing and modelling the
revising/merging of belief/information. Here, we provide a discussion to compare
our approach with a few of the existing ones.

4.1 Different approaches for revising/merging

The classical work on belief revision, the AGM approach ([13]), introduces postu-
lates that an operator performing revision should satisfy in order to be considered
rational. Several other frameworks have been proposed; particularly related with
our proposal are those focused on iterated revision, like [14] and [15]. The field
has extended to incorporate the more general branch of belief merging, focussed
on situations where both the current and the incoming information have the
same priority and the same structure ([16,17,18]).

Our approach lies on the revision side, with the agents’ opinions and the
observer’s beliefs being represented in a different way. Nevertheless, we do not
consider simple revision, but revision by merging, since the observer revises her
beliefs against the merged opinions of all the agents involved, very much in the
spirit of [19]. Also, the main novelty of our work is that it considers agents that
have opinions not only about the discussed facts, but also about themselves.

The dynamic logic framework provides a natural way to express changes in
information. Various logics have been proposed, like dynamic epistemic logic
(DEL; [20,21]) and dynamic doxastic logic (DDL; [22]). In [23] the author looks
into DEL and AGM belief revision, providing a joint perspective. While DDL
captures the AGM postulates for belief revision in a logical language, DEL talks
about concrete information update procedures that change models/situations.

In contrast, LBF focusses on introspection of a reasoning agent regarding
the transition of her belief states in a communication situation. Belief states are
expressed in a propositional language, and their transition is captured by the
dynamic modal operators # and �. Note how DDL expresses agents’ beliefs after
a certain revision process that occur in her doxastic state, while DEL provides
a framework for dealing with hard information (changing the knowledge state)
as well as soft information (affecting beliefs). LBF is proposed to capture the
process of continuing change in the opinions/beliefs that goes on in the observer’s
mind in the described situations.

On the other side of the spectrum, and closer to the Assertion Network
semantics, there are approaches based on interconnected networks, where the
results of the process may sometime corroborate with the stability concepts,
and in some other cases, have quite different approaches, e.g. the probabilis-
tic one. To mention a few, in [24,25], a Neural-Logic Belief Network (NLBN, a
neuro-symbolic network) is defined which can be used to model common sense
reasoning, providing a way for representing changes in the agent’s belief atti-
tudes. In [26], the authors propose a distributed approach to belief revision,
where numerical values as probability measures have been incorporated in the
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models to represent degrees of uncertainty, and computations are performed
using Dempster rule and Bayesian conditioning.

We should also mention Bayesian Belief Nets (BBN ; [27]) in this regard.
They are directed acyclic graphs, with nodes representing variables and the
edges representing their causal relationship. The value of a variable is given by
a conditional probability table, based on the causal relationship calculated with
Bayes’ rule. Based on these tables, BBN can be used in decision making, where
both inductive as well as deductive reasoning can be performed.

Let us compare those approaches with the model of § 2. The novelty lies
in the semantics derived from stability as used in the revision theory of truth
[5,4]. In NLBN, only forward propagation is considered and the representation
is restricted to propositions, while our model considers backward propagation
and represents agents as well. Similar is the case of BBN, though in some sense
their probabilistic approach can be used in a greater variety of domains. The
work of [26] is closer to ours, though with subtle but important differences, the
most notable among them being our very centralized approach.

Different from connectionist approaches, logical ones have the advantage of
providing a better understanding of the underlying process. On the other hand,
networks and the stability concept are natural representations of the intercon-
nected information and the discussion process that leads to agreements. In [19],
the authors propose a combination: conciliation via iterated belief merging. Be-
liefs of several agents are merged, and then each one of them revises her own
beliefs with respect to the result of the merging. The process is repeated until a
fixed point is reached; the conciliation operator is defined with respect to it.

As in our work, they look for stable situations, where further interaction
between the diverse components will not modify the current status. Somewhat
similar to our approach, they use a two-stage iterative process: merging and then
revising. But, once again, in this work as well as in similar such, the basic focus
lies on different agents’ belief sets with no mention of belief/trust over other
agents, where the novelty of our work lies.

4.2 Small steps

The idea of focusing on the small steps of a process is not new. It has been a
proposed solution for the so called logical omniscience problem, about unrealistic
assumptions on the agents’ reasoning power.

In [28,29], Duc proposes a dynamic epistemic logic to reason about agents
that are neither logically omniscient nor logically ignorant. The main idea is to
represent the knowledge of an agent as a set of formulas, and to allow her to
improve her information set as time goes by. Instead of representing agents that
know everything from the very beginning, this approach focusses on the step-
by-step process that leads to that outcome. Our work shares this concept: we
focus on the small steps in belief revision/merging process. In some cases, the
small steps will lead to stable values, indicating that the (possibly inconsistent)
initial information and the observer’s initial beliefs can be merged. In others,
the values will oscillate, indicating that they cannot find a way to live together.
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4.3 Trust

One of the main features of the Assertion Networks is that it allows us to repre-
sent not only opinions about facts, but also opinions about agents. This can be
interpreted as the observer’s trust, allowing us to represent asymmetries in the
way the agents’ opinions will influence the observer’s beliefs. Several works have
analyzed the notion of trust in multi-agent systems.

In [30], Liau proposes a modal logic with three operators: Bi (“i believes
ϕ”), Iij (“j informs i about ϕ”) and Tij (“i trust j about ϕ”). Beliefs and
information are normal modal operators, so an agent’s beliefs are closed under
logical consequence, and once she acquires some information from another agent,
she also acquires all its logical consequences. Trust, on the other hand, is given
by an operator with neighborhoods semantics, so trusting another agent about
ϕ does not make an agent to trust her about the logical consequences of ϕ.

In [31], the authors extend Liau’s work by introducing topics and questions.
As they observe, Liau’s work explains the consequence of trust, but does not
explain where trust comes from. The notion of topic allows to create trust of
agent i on agent j about fact ψ whenever i trusts j about a fact ϕ that shares
the same topic with ψ (topic-based trust transfer). The notion of question allows
to create trust or distrust from the answer of some question (question-based trust
derivation and question-based distrust derivation).

In our proposal, the notion of belief in an agent, different from the notion of
trust of the described works, is not relative to a particular statement (as formulas
of the form Tijϕ express), but relative to the agent itself. Also, since facts are
represented independently from each other, beliefs of the observer are not closed
under any inference relation. Moreover, the observer’s initial beliefs about the
facts and the agents are not necessarily related: the agent can initially believe
in p without believing in agents having a positive opinion about p.

The described approaches work on a static level, without considering dynam-
ics of the system. Even exchanges of information and questions are semantically
represented as properties of the model, and not as actions that modifies it. The
main focus of our approach is the dynamic process through which all the involved
participants interact, updating the model and influencing themselves while try-
ing to reach an agreement.

5 Conclusion and intentions

In this work, we propose a model of belief propagation based on the methodology
of the revision theory of truth. A dynamic language is developed for expressing
the belief flow in the model in terms of an external observer’s introspection
process. We have compared the model and the language with some of the existing
frameworks for modelling communication situations.

In our framework, the next-stage belief value of a node is given in terms of the
current beliefs about the incoming and outgoing nodes (forward and backward
propagation). Our postulates state the behaviour of the iteration function in
completely biased cases. Some further avenues of investigation are as follows.
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Different iteration functions. In more general situations, there is no unique
way to define the iteration function. A majority-based one may represent an
observer that follows the majority, a confident one can represent an agent that
gives more weight to her current beliefs and a credulous one can represent ob-
servers that give more precedence to others’ opinions. It will be interesting to
formalize these different policies.

Opinionated edges. We can consider beliefs not only about facts and agents,
but also about the opinions. We can think of situations where an agent is an
expert in some subject but not in some other. Thus in some cases it is more
natural to have different degrees of beliefs in the agent’s different opinions.

Extending value set. We have considered a three-valued belief-degree set Λ
here, but it can be easily extended to any finite valued one, so as to express more
possible epistemic states of the observer. The model will get closer to the actual
real life situations.

Comparing expressivity. In the presented language, formulas of the form �ϕ
express stable values, related with fixed points in some sense. It would be inter-
esting to make a study about the expressiveness of the language compared with
fixpoint logics, like the modal µ-calculus.
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