
Playing extensive form games in parallel

Sujata Ghosh1 ⋆, R. Ramanujam2 and Sunil Simon3 ⋆⋆

1 Department of Artificial Intelligence
University of Groningen.

sujata@ai.rug.nl
2 The Institute of Mathematical Sciences
C.I.T. Campus, Chennai 600 113, India.

jam@imsc.res.in
3 Institute for Logic, Language and Computation

University of Amsterdam.
s.e.simon@uva.nl

Abstract. Consider a player playing against different opponents in two
extensive form games simultaneously. Can she then have a strategy in
one game using information from the other? The famous example of
playing chess against two grandmasters simultaneously illustrates such
reasoning. We consider a simple dynamic logic of extensive form games
with sequential and parallel composition in which such situations can
be expressed. We present a complete axiomatization and show that the
satisfiability problem for the logic is decidable.

1 Motivation

How can any one of us 4 expect to win a game of chess against a Grandmaster
(GM)? The strategy is simple: play simultaneously against two Grandmasters! If
we play black against GM 1 playing white, and in the parallel game play white
against GM 2 playing black, we can do this simply. Watch what GM 1 plays,
play that move in the second game, get GM 2’s response, play that same move
as our response in game 1, and repeat this process. If one of the two GMs wins,
we are assured of a win in the other game. In the worst case, both games will
end in a draw.

Note that the strategy construction in this example critically depends on
several features:

– Both games need to be played in lock-step synchrony; if they are slightly out
of step with each other, or are sequentialized in some way, the strategy is
not applicable. So concurrency is critically exploited.

⋆ Supported by the Netherlands Organisation of Scientific Research grant
600.065.120.08N201

⋆⋆ Supported by the European Commission grant EMECW15
4 By “us” we mean poor mortals who know how to play the game but lack expertise.

– The strategy cannot be constructed a priori, as we do not know what moves
would be played by either of the GMs. Such reasoning is intrinsically differ-
ent from the discussion of the existence of winning strategies in determined
games. In particular, strategic reasoning as in normal form games is not
applicable.

– The common player in the two games acts as a conduit for transfer of infor-
mation from one game to the other; thus game composition is essential for
such reasoning. The example illustrates that playing several instances of the
same game may mean something very different from repeated games.

– The common player can be a resource bounded agent who cannot analyse the
entire game structure and compute the winning strategy (even if it exists).
The player thus mimics the moves of an “expert” in order to win one of the
constituent games.

In general, when extensive form games are played in parallel, with one player
participating in several games simultaneously, such an information transfer from
one game to the other is possible. In general, since strategies are structured in
extensive form games, they can make use of such information in a non-trivial
manner.

In the context of agent-based systems, agents are supposed to play several
interactive roles at the same time. Hence when interaction is modelled by games
(as in the case of negotiations, auctions, social dilemma games, market games,
etc.) such parallel games can assume a great deal of importance. Indeed, a promi-
nent feature of an agent in such a system is the ability to learn and transferring
strategic moves from one game to the other can be of importance as one form
of learning.

Indeed, sequential composition of games can already lead to interesting situ-
ations. Consider player A playing a game against B, and after the game is over,
playing another instance of the same game against player C. Now each of the
leaf nodes of the first game carries important historical information about play
in the game, and A can strategize differently from each of these nodes in the
second game, thus reflecting learning again. Negotiation games carry many such
instances of history-based strategizing.

What is needed is an algebra of game composition in which the addition of
a parallel operator can be studied in terms of how it interacts with the other
operators like choice and sequential composition. This is reminiscent of process

calculi, where equivalence of terms in such algebras is studied in depth.
In this paper, we follow the seminal work of Parikh ([12]) on propositional

game logic. We use dynamic logic for game expressions but extended with
parallel composition; since we wish to take into account game structure, we
work with extensive form games embedded in Kripke structures rather than with
effectivity functions. In this framework, we present a complete axiomatization
of the logic and show that the satisfiability problem for the logic is decidable.

The interleaving operator has been looked at in the context of program anal-
ysis in terms of dynamic logic [1]. The main technical difficulty addressed in the
paper is that parallel composition is not that of sequences (as typically done in

process calculi) but that of trees. The main modality of the logic is an assertion
of the form 〈g, i〉α which asserts, at a state s, that a tree t in the “tree language”
associated with g is enabled at s, and that player i has a strategy (subtree) in
it to ensure α. Parallel composition is not compositional in the standard logical
sense: the semantics of g1||g2 is not given in terms of the semantics of g1 and
g2 considered as wholes, but by going into their structure. Therefore, defining
the enabled-ness of a strategy as above is complicated. Note that the branching
structure we consider is quite different from the intersection operator in dynamic
logic [8, 6, 11] and is closer to the paradigm of concurrent dynamic logic [14].

For ease of presentation, we first present the logic with only sequential and
parallel composition and discuss technicalities before considering iteration, which
adds a great deal of complication. Note that the dual operator, which is impor-
tant in Parikh’s game logic is not relevant here, since we wish to consider games
between several players played in parallel.

Related work

Games have been extensively studied in temporal and dynamic logics. For con-
current games, this effort was pioneered by work on Alternating time temporal
logic (ATL) [3], which considers selective quantification over paths. Various ex-
tension of ATL was subsequently proposed, these include ones in which strate-
gies can be named and explicitly referred to in the formulas of the logic [18, 2,
19]. Parikh’s work on propositional game logics [12] initiated the study of game
structures in terms of algebraic properties. Pauly [13] has built on this to reason
about abilities of coalitions of players. Goranko draws parallels between Pauly’s
coalition logic and ATL [7]. Van Benthem uses dynamic logic to describe games
and strategies [16]. Strategic reasoning in terms of a detailed notion of agency
has been studied in the stit framework [10, 4, 5].

Somewhat closer in spirit is the work of [17] where van Benthem and co-
authors develop a logic to reason about simultaneous games in terms of a parallel
operator. The reasoning is based on powers of players in terms of the outcome
states that can be ensured. Our point of departure is in considering extensive
form game trees explicitly and looking at interleavings of moves of players in the
tree structure.

2 Preliminaries

2.1 Extensive form games

Let N = {1, . . . , n} denote the set of players, we use i to range over this set. For
i ∈ N , we often use the notation ı to denote the set N \{i}. Let Σ be a finite set
of action symbols representing moves of players, we let a, b range over Σ. For a
set X and a finite sequence ρ = x1x2 . . . xm ∈ X∗, let last(ρ) = xm denote the
last element in this sequence.

Game trees: Let T = (S,⇒, s0) be a tree rooted at s0 on the set of vertices
S and ⇒ : (S × Σ) → S is a partial function specifying the edges of the tree.

The tree T is said to be finite if S is a finite set. For a node s ∈ S, let
→
s=

{s′ ∈ S | s
a
⇒s′ for some a ∈ Σ}, moves(s) = {a ∈ Σ | ∃s′ ∈ S with s

a
⇒s′} and

ET (s) = {(s, a, s′) | s
a
⇒s′}. By ET (s) × x we denote the set {((s, x), a, (s′, x)) |

(s, a, s′) ∈ ET (s)}. The set x × ET (s) is defined similarly. A node s is called a

leaf node (or terminal node) if
→
s = ∅. The depth of a tree is the length of the

longest path in the tree.

An extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) is a
tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function ⇒ specifies the moves enabled at a game position
and the turn function λ̂ : S → N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for
the sake of uniform presentation, we do not distinguish between leaf nodes and
non-leaf nodes as far as player labelling is concerned. An extensive form game
tree T = (T, λ̂) is said to be finite if T is finite. For i ∈ N , let Si = {s | λ̂(s) = i}
and let frontier(T) denote the set of all leaf nodes of T . Let SL

T
= frontier (T)

and SNL
T

= S \ SL
T

. For a tree T = (S,⇒, s0, λ̂) we use head(T) denote the
depth one tree generated by taking all the outgoing edges of s0.

A play in the game T starts by placing a token on s0 and proceeds as follows:
at any stage if the token is at a position s and λ̂(s) = i then player i picks an

action which is enabled for her at s, and the token is moved to s′ where s
a
⇒s′.

Formally a play in T is simply a path ρ : s0a1s1 · · · in T such that for all j > 0,

sj−1
aj

⇒sj . Let Plays(T) denote the set of all plays in the game tree T .

2.2 Strategies

A strategy for player i ∈ N is a function µi which specifies a move at every game
position of the player, i.e. µi : Si → Σ. A strategy µi can also be viewed as a
subtree of T where for each player i node, there is a unique outgoing edge and
for nodes belonging to players in ı, every enabled move is included. Formally we
define the strategy tree as follows: For i ∈ N and a player i strategy µi : Si → Σ
the strategy tree Tµi = (Sµi ,⇒µi , s0, λ̂µi) associated with µ is the least subtree
of T satisfying the following property: s0 ∈ Sµi ,

– For any node s ∈ Sµi ,

• if λ̂(s) = i then there exists a unique s′ ∈ Sµi and action a such that

s
a
⇒µis′.

• if λ̂(s) 6= i then for all s′ such that s
a
⇒s′, we have s

a
⇒µis′.

Let Ωi(T) denote the set of all strategies for player i in the extensive form
game tree T . A play ρ : s0a0s1 · · · is said to be consistent with µi if for all j ≥ 0
we have sj ∈ Si implies µi(sj) = aj .

2.3 Composing game trees

We consider sequential and parallel composition of game trees. In the case of
sequences, composing them amounts to concatenation and interleaving. Con-
catenating trees is less straightforward, since each leaf node of the first is now a
root of the second tree. Interleaving trees is not the same as a tree obtained by
interleaving paths from the two trees, since we wish to preserve choices made by
players.

Sequential composition: Suppose we are given two finite extensive form game
trees T1 = (S1,⇒1, s

0
1, λ̂1) and T2 = (S2,⇒2, s

0
2, λ̂2). The sequential composi-

tion of T1 and T2 (denoted T1;T2) gives rise to a game tree T = (S,⇒, s0, λ̂),
defined as follows: S = SNL

1 ∪ S2, s0 = s0
1,

– λ̂(s) = λ̂1(s) if s ∈ SNL
1 and λ̂(s) = λ̂2(s) if s ∈ S2.

– s
a
⇒s′ iff:
• s, s′ ∈ SNL

1 and s
a
⇒1s

′, or

• s, s′ ∈ S2 and s
a
⇒2s

′, or
• s ∈ SNL

1 , s′ = s0
2 and there exists s′′ ∈ SL

1 such that s
a
⇒1s

′′.

In other words, the game tree T1;T2 is generated by pasting the tree T2 at all
the leaf nodes of T1. The definition of sequential composition can be extended
to a set of trees T2 (denoted T1; T2) with the interpretation that at each leaf
node of T1, a tree T2 ∈ T2 is attached.

Parallel composition: The parallel composition of T1 and T2 (denoted T1||T2)

yields a set of trees. A tree t = (S,⇒, s0, λ̂) in the set of trees T1||T2 provided:
S ⊆ S1 × S2, s0 = (s0

1, s
0
2),

– For all (s, s′) ∈ S:

• ET ((s, s′)) = Et1(s) × s′ and λ̂(s, s′) = λ̂1(s), or

• ET ((s, s′)) = s × Et2(s
′) and λ̂(s, s′) = λ̂2(s

′).

– For every edge s1
a
⇒1s

′
1 in t1, there exists s2 ∈ S2 such that (s1, s2)

a
⇒(s′1, s2)

in t.
– For every edge s2

a
⇒2s

′
2 in t2, there exists s1 ∈ S1 such that (s1, s2)

a
⇒(s1, s

′
2)

in t.

3 Examples

Consider the trees T1 and T2 given in Figure 1. The sequential composition of
T1 and T2 (denoted T1;T2) is shown in Figure 2. This is obtained by pasting
the tree T2 at all the leaf nodes of T1.

Now consider two finite extensive form game trees T4 and T5 given in figure
3. Each game is played between two players, player 2 is common in both games.

p1,1

a

����
��

� b

��
<<

<<
<

p2 p3

q1,2

c

����
��

� d

��
;;

;;
;

q2 q3

T1 T2

Fig. 1. atomic games

p1,1

a

xxqqqqqqq b

&&MMMMMMM

q1,2

c

����
��

� d

��
;;

;;
; q1,2

c

����
��

� d

��
;;

;;
;

q2 q3 q2 q3

Fig. 2. T1;T2

Note that we are talking about different instances of the same game (as
evident from the similar game trees) played between different pairs of players
with a player in common. Consider the interleaving of T4 and T5 where player
1 moves first in T4, followed by 2 and 3 in T5, and then again coming back to
the game T4, with the player 2-moves. This game constitutes a valid tree in the
set of trees defined by T4||T5 and is shown in Figure 4.

Due to space constraints, we have not provided the names for each of the
states in the parallel game tree, but they are quite clear from the context. The
game starts with player 1 moving from p1 in T4 to p2 or p3. Then the play moves
to the game T5, where player 2 moves to q2 or q3, followed by the moves of player
3. After that, the play comes back to T4, where player 2 moves once again.

These games clearly represent toy versions of “playing against two Grand-
masters simultaneously”. Players 1 and 3 can be considered as the Grandmasters,
and 2 as the poor mortal. Let us now describe the copycat strategy that can be
used by player 2, when the two games are played in parallel. The simultaneous
game (figure 4), starts with player 1 making the first move a, say in the game
tree T4 (from (p1, q1)) to move to (p2, q1). Player 2 then copies this move in
game T5, to move to (p2, q2). The game continues in T5, with player 3 moving
to (p2, q4), say. Player 2 then copies this move in T4 (playing action c) to move
to (p4, q4). This constitutes a play of the game, where player 2 copies the moves
of players 1 and 3, respectively.

Evidently, if player 1 has a strategy in T4 to achieve a certain objective,
whatever be the moves of player 2, following the same strategy, player 2 can
attain the same objective in T5.

Parallel composition can also be performed with respect to games structures
which are not the same. Consider the game trees T6 and T7 given in Figure 5.

An interleaved game where each game is played alternatively starting from
the game T6 can be represented by the game tree in Figure 6.

p1,1
a

vvmmmmmmm b

((QQQQQQQ

p2,2
c

}}{{
{ d

!!
CC

C p3,2
c

}}{{
{ d

!!
CC

C

p4,1 p5,1 p6,1 p7,1

q1,2
a

vvmmmmmmm b

((QQQQQQQ

q2,3
c

}}{{{
{ d

!!
CCC

C q3,3
c

}}{{{
{ d

!!
CCC

C

q4,2 q5,2 q6,2 q7,2

(a) T4 (b) T5

Fig. 3. Atomic games

(p1,q1)

a

uujjjjjjjjjjjj
b

))TTTTTTTTTTTT
1

2
a

{{ww
ww

ww b

##
GG

GG
GG

(p2,q1)
2

a

{{ww
ww

ww
b ##

GG
GG

GG(p3,q1)

3
c

~~}}
}}

} d

��
44

44
(p2,q2)

3

c

��

 d

��
99

99
3

c

����
�� d

��
44

44
3

c

��

d
AA

AA
A(p3,q3)

2

c
��

d

��
66

66
6(p2,q4) 2

c

��
�� d

��
))

))
2

c

��
�� d

��
))

))
2

c

����
��

�
d
��

2

c
��

d

��
88

88
8 2

c

��
�� d

��
))

))
2

c

��
�� d

��
))

))
2

c

����
��
�

d
��

(p4,q4) (p5,q7) (p6,q4) (p7,q7)

Fig. 4. Game tree T

4 The logic

For a finite set of action symbols Σ, let T (Σ) be a countable set of finite extensive
form game trees over the action set Σ which is closed under subtree inclusion.
That is, if T ∈ T (Σ) and T ′ is a subtree of T then T ′ ∈ T (Σ). We also assume
that for each a ∈ Σ, the tree consisting of the single edge labelled with a is in
T (Σ). Let H be a countable set and h, h′ range over this set. Elements of H are
referred to in the formulas of the logic and the idea is to use them as names
for extensive form game trees in T (Σ). Formally we have a map ν : H → T (Σ)
which given any name h ∈ H associates a tree ν(h) ∈ T (Σ). We often abuse
notation and use h to also denote ν(h) where the meaning is clear from the
context.

4.1 Syntax

Let P be a countable set of propositions, the syntax of the logic is given by:

Γ := h | g1; g2 | g1 ∪ g2 | g1||g2

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, i〉α

where h ∈ H and g ∈ Γ .
In Γ , the atomic construct h specifies a finite extensive form game tree. Com-

posite games are then constructed using the standard dynamic logic operators

p1,1

a

~~}}
}} b

AA

AA

p2,2

c
��

p3,2

d
��

p4,1 p5,1

q1,3

x
��

q2,4
y

~~}}
}} z

AA

AA

q3,3 q4,3

(a) T6 (b) T7

Fig. 5. Atomic games

(p1,q1),1

a

sshhhhhhhhhhhhh
b

++VVVVVVVVVVVVV

(p2,q1),3

x
��

(p3,q1),3

x
��

(p2,q2),2

c
��

(p3,q2),2

d
��

(p4,q2),4
y

yysss
sss z

%%KK
KKK

K (p5,q2),4
y

yysss
sss z

%%KK
KKK

K

(p4,q3),1 (p4,q4),1 (p5,q3),1 (p5,q4),1

Fig. 6. A game tree in T6||T7

along with the parallel operator. g1 ∪ g2 denotes playing g1 or g2. Sequential
composition is denoted by g1; g2 and g1||g2 denotes the parallel composition of
games.

The main connective 〈g, i〉α asserts at state s that a tree in g is enabled at
s and that player i has a strategy subtree in it at whose leaves α holds.

4.2 Semantics

A model M = (W,→, λ̂, V) where W is the set of states (or game positions),
→ ⊆ W × Σ × W is the move relation, V : W → 2P is a valuation function
and λ̂ : W → N is a player labelling function. These can be thought of as
standard Kripke structures whose states correspond to game positions along
with an additional player labelling function. An extensive form game tree can
be thought of as enabled at a certain state, say s of a Kripke structure, if we can
embed the tree structure in the tree unfolding of the Kripke structure rooted at
s. We make this notion more precise below.

Enabling of trees: For a game position u ∈ W , let Tu denote the tree unfolding
of M rooted at u. We say the game h is enabled at a state u if the structure ν(h)
can be embedded in Tu with respect to the enabled actions and player labelling.
Formally this can be defined as follows:

Given a state u and h ∈ H, let Tu = (Ss
M ,⇒M , λ̂M , s) and ν(h) = Th =

(Sh,⇒h, λ̂h, sh,0). The restriction of Tu with respect to the game tree h (denoted
Tu |\ h) is the subtree of Ts which is generated by the structure specified by Th.

The restriction is defined inductively as follows: Tu |\ h = (S,⇒, λ̂, s0, f) where

f : S → Sh. Initially S = {s}, λ̂(s) = λ̂M (s), s0 = s and f(s0) = sh,0.
For any s ∈ S, let f(s) = t ∈ Sh. Let {a1, . . . , ak} be the outgoing edges of

t, i.e. for all j : 1 ≤ j ≤ k, t
aj

⇒htj . For each aj , let {s1
j , . . . , s

m
j } be the nodes in

Ss
M such that s

aj

⇒Msl
j for all l : 1 ≤ l ≤ m. Add nodes s1

j , . . . , s
m
j to S and the

edges s
aj

⇒sl
j for all l : 1 ≤ l ≤ m. Also set λ̂(sl

j) = λ̂M (sl
j) and f(sl

j) = tj .
We say that a game h is enabled at u (denoted enabled(h, u)) if the tree

Tu |\ h = (S,⇒, λ̂, s0, f) satisfies the following properties: for all s ∈ S,

– moves(s) = moves(f(s)),

– if moves(s) 6= ∅ then λ̂(s) = λ̂h(f(s)).

Interpretation of atomic games: To formally define the semantics of the
logic, we need to first fix the interpretation of the compositional games con-
structs. In the dynamic logic approach, for each game construct g and player
i we would associate a relation Ri

g ⊆ (W × 2W) which specifies the outcome
of a winning strategy for player i. However due to the ability of being able to
interleave game positions, in this setting we need to keep track of the actual tree
structure rather just the “input-output” relations, which is closer in spirit to
what is done in process logics [9] . Thus for a game g and player i we define the
relation Ri

g ⊆ 2(W×W)∗ . For a pair x = (u, w) ∈ W × W and a set of sequences

Y ∈ 2(W×W)∗ we define (u, w) · Y = {(u, w) · ρ | ρ ∈ Y }. For j ∈ {1, 2} we use
x[j] to denote the j-th component of x.

For each atomic game h and each state u ∈ W , we define Ri
h(u) in a bottom-

up manner in such a way that whenever h is enabled at u, Ri
h(u) encodes the

set of all available strategies (cf. Section 2.2) for player i in the game h enabled
at u. The collection of all such strategies that a player i can have, whenever the
game h is enabled at some state u ∈ W is given by Ri

h.

Let h = (S,⇒, s0, λ̂) be a depth 1 tree with moves(s0) = {a1, . . . , ak} and
for all s 6= s0, moves(s) = ∅. For i ∈ N and a state u ∈ W , we define Ri

h(u) ⊆
2(W×W)∗ as follows:

– If λ̂(s0) = i then Ri
h(u) = {Xj | enabled(h, u) and Xj = {(u, wj)} where

u
aj

→wj}.

– if λ̂(s0) ∈ ı then Ri
h(u) = {{(u, wj) | enabled(h, u) and ∃aj ∈ moves(s0)

with u
aj

→wj}}.

For g ∈ Γ , let Ri
g =

⋃
u∈W Ri

g(u).

For a tree h = (S,⇒, s0, λ̂) such that depth(h) > 1, we define Ri
h(u) as,

– if λ̂(s0) = i then Ri
h(u) = {{(u, w) · Y } | ∃X ∈ Ri

head(h) with (u, w) ∈

X, u
aj

→w and Y ∈ Ri
haj

}

– if λ̂(s0) ∈ ı then Ri
h(u) = {{(u, w) ·Y | ∃X ∈ Ri

head(h) with (u, w) ∈ X, u
aj

→w

and Y ∈ Ri
haj

}}.

Remark: Note that a set X ∈ Ri
h can contain sequences such as (u, w)(v, x)

where w 6= v. Thus in general sequence of pairs of states in X need not represent
a subtree of Tu for some u ∈ W . We however need to include such sequences
since if h is interleaved with another game tree h′, a move enabled in h′ could
make the transition from w to v. A sequence ̺ ∈ X is said to be legal if whenever
(u, w)(v, x) is a subsequence of ̺ then w = v. A set X ⊆ 2(W×W)∗ is a valid

tree if for all sequence ̺ ∈ X , ̺ is legal and X is prefix closed. For X which is
a valid tree we have the property that for all ̺, ̺′ ∈ X , first(̺)[1] = first(̺′)[1].
We denote this state by root(X). We also use frontier (X) to denote the frontier
nodes, i.e. frontier (X) = {last(̺)[2] | ̺ ∈ X}.

For a game tree h, although every set X ∈ Ri
h need not be a valid tree, we can

associate a tree structure with X (denoted T(X)) where the edges are labelled
with pairs of the form (u, w) which appears in X . Conversely given W ×W edge
labelled finite game tree T, we can construct a set X ⊆ 2(W×W)∗ by simply
enumerating the paths and extracting the labels of each edge in the path. We
denote this translation by f(T). We use these two translations in what follows:

Interpretation of composite games: For g ∈ Γ and i ∈ N , we define Ri
g ⊆

2(W×W)∗ as follows:

– Ri
g1∪g2

= Ri
g1

∪ Ri
g2

.

– Ri
g1;g2

= {f(T(X); T) | X ∈ Ri
g1

and T = {T(X1), . . . , T(Xk)} where

{X1, . . . , Xk} ⊆ Ri
g2
}.

– Ri
g1||g2

= {f(T(X1)||T(X2)) | X1 ∈ Ri
g1

and X2 ∈ Ri
g2
}.

The truth of a formula α ∈ Φ in a model M and a position u (denoted
M, u |= α) is defined as follows:

– M, u |= p iff p ∈ V (u).
– M, u |= ¬α iff M, u 6|= α.
– M, u |= α1 ∨ α2 iff M, u |= α1 or M, u |= α2.
– M, u |= 〈g, i〉α iff ∃X ∈ Ri

g such that X constitutes a valid tree, root(X) = u
and for all w ∈ frontier (X), M, w |= α.

A formula α is satisfiable if there exists a model M and a state u such that
M, u |= α.

Let h1 and h2 be the game trees T4 and T5 given in Figure 3. The tree
in which the moves of players are interleaved in lock-step synchrony is one of
the trees in the semantics of h1||h2. This essentially means that at every other
stage if a depth one tree is enabled then after that the same tree structure is
enabled again, except for the player labelling. Given the (finite) atomic trees,
we can write a formula αLS which specifies this condition. If the tree h is a

minimal one, i.e. of depth one given by (S,⇒, s0, λ̂), αLSh
can be defined as,∧

aj∈moves(s0)
(〈aj〉⊤ ∧ [aj](∧aj∈moves(s0)〈aj〉⊤).

If player 1 has a strategy (playing a, say) to achieve certain objective φ
in the game h1, player 2 can play (copy) the same strategy in h2 to ensure φ.
This phenomenon can be adequately captured in the interleaved game structure,
where player 2 has a strategy (viz. playing a) to end in those states of the game
h1||h2, where player 1 can end in h1. So we have that, whenever h1 and h1||h2 are
enabled and players can move in lock-step synchrony with respect to the game
h1 (or, h2), 〈h1, 1〉φ → 〈h1||h2, 2〉φ holds.

5 Axiom system

The main technical contribution of this paper is a sound and complete axiom
system. Firstly, note that the logic extends standard PDL. For a ∈ Σ and i ∈ N ,
let T i

a be the tree defined as: T i
a = (S,⇒, s0, λ̂) where S = {s0, s1}, s0

a
⇒s1,

λ̂(s0) = i and λ̂(s1) ∈ N . Let tia be the name denoting this tree, i.e. ν(tia) = T i
a.

For each a ∈ Σ we define,

– 〈a〉α =
∧

i∈N (turni ⊃ 〈tia, i〉α).

From the semantics it is easy to see that we get the standard interpretation
for 〈a〉α, i.e. 〈a〉α holds at a state u iff there is a state w such that u

a
→w and α

holds at w.
Enabling of trees: The crucial observation is that the property of whether a
game is enabled can be described by a formula of the logic. Formally, for h ∈ H

such that ν(h) = (S,⇒, s0, λ̂) and moves(s0) 6= ∅ and an action a ∈ moves(s0),

let ha be the subtree of T rooted at a node s′ with s0
a
⇒s′. The formula h

√

(defined below) is used to express the fact that the tree structure ν(h) is enabled
and head

√

h to express that head(ν(h)) is enabled. This is defined as,

– If ν(h) is atomic then h
√

= ⊤ and head
√

h = ⊤.

– If ν(h) is not atomic and λ̂(s0) = i then
• h

√
= turni ∧ (

∧
aj∈moves(s0)(〈aj〉⊤ ∧ [aj]h

√

aj
)).

• head
√

h = turni ∧ (
∧

aj∈moves(s0) 〈aj〉⊤).

Due to the ability to interleave choices of players, we also need to define for
a composite game expression g, the initial (atomic) game of g and the game
expression generated after playing the initial atomic game (or in other words
the residue). We make this notion precise below:

Definition of init

– init(h) = {h} for h ∈ G
– init(g1; g2) = init(g1) if g1 6= ǫ else init(g2).
– init(g1 ∪ g2) = init(g1) ∪ init(g2).
– init(g1||g2) = init(g1) ∪ init(g2).

Definition of residue

– h\h = ǫ and ǫ\h = ǫ.

– (g1; g2)\h =

{
(g1\h); g2 if g1 6= ǫ.
(g2\h) otherwise.

– (g1 ∪ g2)\h =

(g1\h) ∪ (g2\h) if h ∈ init(g1) and h ∈ init(g2).
g1\h if h ∈ init(g1) and h /∈ init(g2).
g2\h if h ∈ init(g2) and h /∈ init(g1).

– (g1||g2)\h =

(g1\h||g2) ∪ (g1||g2\h) if h ∈ init(g1) and h ∈ init(g2).
(g1\h||g2) if h ∈ init(g1) and h /∈ init(g2).
(g1||g2\h) if h ∈ init(g2) and h /∈ init(g1).

The translation used to express the property of enabling of trees in terms of
standard PDL formulas also suggest that the techniques developed for proving
completeness of PDL can be applied in the current setting. We base our axiom-
atization of the logic on the “reduction axioms” methodology of dynamic logic.
The most interesting reduction axiom in our setting would naturally involve the
parallel composition operator. Intuitively, for game expressions g1, g2, a formula
α and a player i ∈ N the reduction axiom for 〈g1||g2, i〉α need to express the
following properties:

– There exists an atomic tree h ∈ init(g1||g2) such that head(ν(h)) is enabled.
– Player i has a strategy in head(ν(h)) which when composed with a strategy

in the residue ensures α. We use compi(h, g1, g2, α) to denote this property
and formally define it inductively as follows:

Suppose h = (S,⇒, s0, λ̂) where A = moves(s0) = {a1, . . . , ak}.

– If h ∈ init(g1), h ∈ init(g2) and

• λ̂(s0) = i then compi(h, g1, g2, α) =
∨

aj∈A(〈aj〉〈(haj
; (g1\h))||g2〉α ∨

〈aj〉〈g1||(haj
; (g2\h))〉α).

• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

aj∈A([aj]〈(haj
; (g1\h))||g2〉α ∨

[aj]〈g1||(haj
; (g2\h))〉α).

– If h ∈ init(g1), h 6∈ init(g2) and

• λ̂(s0) = i then compi(h, g1, g2, α) =
∨

aj∈A(〈aj〉〈(haj
; (g1\h))||g2〉α).

• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

aj∈A([aj]〈(haj
; (g1\h))||g2〉α).

– if h ∈ init(g2), h 6∈ init(g1) and

• λ̂(s0) = i then compi(h, g1, g2, α) =
∨

aj∈A(〈aj〉〈g1||(haj
; (g2\h))〉α).

• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

aj∈A([aj]〈g1||(haj
; (g2\h))〉α).

Note that the semantics for parallel composition allows us to interleave sub-
trees of g2 within g1 (and vice versa). Therefore in the definition of compi at each
stage after an action aj , it is important to perform the sequential composition
of the subtree haj

with the residue of the game expression.

The axiom schemes

(A1) Propositional axioms:

(a) All the substitutional instances of tautologies of PC.

(b) turni ≡
∧

j∈ı ¬turnj .

(A2) Axiom for single edge games:

(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.

(b) 〈a〉turni ⊃ [a]turni.

(A3) Dynamic logic axioms:

(a) 〈g1 ∪ g2, i〉α ≡ 〈g1, i〉α ∨ 〈g2, i〉α.

(b) 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α.

(c) 〈g1||g2, i〉α ≡
∨

h∈init(g1||g2)

head
√

h ∧ compi(h, g1, g2, α).

(A4) 〈h, i〉α ≡ h
√
∧ ↓(h,i,α).

For h ∈ H with ν(h) = T = (S,⇒, s0, λ̂) we define ↓(h,i,α) as follow:

– ↓(h,i,α)=

α if moves(s0) = ∅.∨
a∈Σ 〈a〉〈ha, i〉α if moves(s0) 6= ∅ and λ̂(s0) = i.∧
a∈Σ [a]〈ha, i〉α if moves(s0) 6= ∅ and λ̂(s0) ∈ ı.

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

Axioms (A1) and (A2) are self explanatory. Axiom (A3) constitutes the re-
duction axioms for the compositional operators. Note that unlike in PDL se-
quential composition in our setting corresponds to composition over trees. The
following proposition shows that the usual reduction axiom for sequential com-
position remains valid.

Proposition 5.1. The formula 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α is valid.

Proof. Suppose 〈g1; g2, i〉α ⊃ 〈g1, i〉〈g2, i〉α is not valid. This means there exists
a model M and a state u such that M, u |= 〈g1; g2, i〉α and M, u 6|= 〈g1, i〉〈g2, i〉α.
From semantics we get ∃X ∈ Ri

g1;g2
such that X is a valid tree, root(X) = u

and for all w ∈ frontier (X) we have M, u |= α. By definition, X is of the form
f(T(Y); T) where Y ∈ Ri

g1
and T = {T(X1), . . . , T(Xk)} with {X1, . . . , Xk} ⊆

Ri
g2
}. Since X is a valid tree we have Y, X1, . . . , Xk are valid trees. Thus we get

that for all j : 1 ≤ j ≤ k, M, root(Xj) |= 〈ξ2, i〉α and from semantics we have
M, u |= 〈g1, i〉〈g2, i〉α which gives the required contradiction.

A similar argument which makes use of the definition of Ri
g and the semantics

shows that 〈g1, i〉〈g2, i〉α ⊃ 〈g1; g2, i〉α is valid.

5.1 Completeness

To show completeness, we prove that every consistent formula is satisfiable.
Let α0 be a consistent formula, and CL(α0) denote the subformula closure of
α0. In addition to the usual subformula closure we also require the following:
if 〈h, i〉α ∈ CL(α0) then g

√
, ↓(h,i,α)∈ CL(α0) and if 〈g1||g2, i〉α ∈ CL(α0) then∧

h∈init(g1||g2)
head

√

h , compi(h, g1, g2, α) ∈ CL(α0).

Let AT (α0) be the set of all maximal consistent subsets of CL(α0), referred
to as atoms. We use u, w to range over the set of atoms. Each u ∈ AT (α0) is
a finite set of formulas, we denote the conjunction of all formulas in u by û.
For a nonempty subset X ⊆ AT (α0), we denote by X̃ the disjunction of all

û, u ∈ X . Define a transition relation on AT (α0) as follows: u
a

−→ w iff û∧ 〈a〉ŵ
is consistent. Let the model M = (W,−→, V) where W = AT(α0) and the
valuation function V is defined as V (w) = {p ∈ P | p ∈ w}. Once the model is
defined, the semantics (given earlier) specifies relation Ri

g. The following lemma

asserts the consistency condition on elements of Ri
g.

Lemma 5.1. For all i ∈ N , for all h ∈ H, for all X ⊆ (W × W)∗ with X =
frontier (X), for all u ∈ W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û ∧ 〈h, i〉X̃ is

consistent.

2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X ′ which is a valid tree with

frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri
h.

Proof. A detailed proof is given in the appendix. It essentially involves showing
that the game h is enabled at the state u and that there is a strategy for player i
in Tu |

\h represented by the tree X whose frontier nodes are X . The strategy tree
X is constructed in stages starting at u. For any path of the partially constructed
strategy tree if the paths ends in a position of player i then the path is extended
by guessing a unique outgoing edge. If the position belongs to a player in ı then
all edges are taken into account.

Lemma 5.2. For all i ∈ N , for all g ∈ Γ , for all X ⊆ (W × W)∗ with X =

frontier (X) and u ∈ W , if û∧〈h, i〉X̃ is consistent then there exists X ′ which is

a valid tree with frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri
h.

Proof is given in the appendix.

Lemma 5.3. For all 〈g, i〉α ∈ CL(α0), for all u ∈ W , û ∧ 〈g, i〉α is consistent

iff there exists X ∈ Ri
g which is a valid tree with root(X) = u such that ∀w ∈

frontier (X), α ∈ w.

Proof. (⇒) Follows from lemma 5.2.
(⇐) Suppose there exists X ∈ Ri

g which is a valid tree with root(X) = u such
that ∀w ∈ frontier(X), α ∈ w. We need to show that û ∧ 〈g, i〉α is consistent,
this is done by induction on the structure of g.

– The case when g = h follows from lemma 5.1. For g = g1 ∪ g2 the result
follows from axiom (A3a).

– g = g1; g2: Since X ∈ Ri
g1;g2

, ∃Y with root(Y) = u and frontier(Y) =
{v2, . . . , vk}, there exist sets X1, . . . , Xk where for all j : 1 ≤ j ≤ k,
root(Xj) = vj ,

⋃
j=1,...,k frontier (Xj) = frontier(X), Xj ∈ Ri

g2
and Y ∈ Ri

g1
.

By induction hypothesis, for all j, v̂j∧〈g2〉α is consistent. Since vj is an atom
and 〈g2, i〉α ∈ CL(α0), we get 〈g2, i〉α ∈ vj . Again by induction hypothesis we
have û∧〈g1, i〉〈g2, i〉α is consistent. Hence from (A3b) we have û∧〈g1; g2, i〉α
is consistent.

– g = g1||g2: Let h ∈ init(g1||g2), and h = (S,⇒, s0, λ̂). We have three cases
depending on whether h is the initial constituent game in g1 and g2. We
look at the case when h ∈ init(g1) and h 6∈ init(g2), the arguments for
the remaining cases are similar. Let A = moves(s0) = {a1, . . . , ak}. By
semantics, since enabled(h, u) holds we have moves(u) = A. We also get
there exists Yj ∈ Ri

taj
;(g1\h)||g2

where
⋃

j=1,...,k frontier(Yj) = frontier (X).

Suppose λ̂(s0) = ı, by performing a second induction on the depth of X we
can argue that û ∧ (

∧
aj∈A([aj]〈(taj

; (g1\h))||g2〉α) is consistent. Therefore

from axiom (A3c) we have û ∧ 〈g1||g2〉α is consistent.

This leads us to the following theorem from which we can deduce the com-
pleteness of the axiom system.

Theorem 5.1. For all formulas α0, if α0 is consistent then α0 is satisfiable.

Dedidability: Given a formula α0, let H(α0) be the set of all atomic game terms
appearing in α0. Let T(α0) = {ν(h) | h ∈ H(α0)} and m = maxT∈T(α0) |T |.
For any finite tree T , we define |T | to be the number of vertices and edges
in T . It can be verified that |CL(α0)| is linear in |α0| and therefore we have
|AT (α0)| = O(2|α0|). The states of the model M constitutes atoms of α0 and
therefore we get that if α0 is satisfiable then there is a model whose size is at
most exponential in |α0|. The relation Ri

g can be explicitly constructed in time

O(2|M|m). Thus we get the following corollary.

Corollary 5.1. The satisfiability problem for the logic is decidable.

6 Discussion

Iteration

An obvious extension of the logic is to add an operator for (unbounded) iteration
of sequential composition. The semantics is slightly more complicated since we
are dealing with trees. One needs to define it in terms of a least fixed point
operator (as seen in [12]). Under this interpretation, the standard dynamic logic
axiom for iteration remains valid: 〈g∗, i〉α ≡ α ∨ 〈g, i〉〈g∗, i〉α.

We also have the familiar induction rule for dynamic logic which asserts that
when α is invariant under g so it is with the iteration of g.

(IND) 〈g, i〉α ⊃ α

〈g∗, i〉α ⊃ α

Note that the completeness proof (in the presence of interleaving) gets con-
siderably more complicated now. Firstly, the complexity of g\h is no longer less
than that of g so we cannot apply induction directly for parallel composition. In
general when we consider g∗1 ||g

∗
2 , the interleaving critically depends on how many

iterations are chosen in each of the components. The technique is to consider
a graph for every g as follows: add an edge labelled h from g to g\h. This is a
finite graph, and we can show that the enabling of g at a state s corresponds to
the existence of an embedding of this graph at s. In effect, the unfolding of the
parallel composition axiom asserts the existence of this subgraph, and the rest
of the proof uses the induction rule as in the completeness proof for dynamic
logic. We omit the detailed proof here since it is technical and lengthy.

Strategy specifications

Throughout the paper we have been talking of existence of strategies in com-
positional games. It would be more interesting to specify strategies explicitly in
terms of their properties as done in [15]. In the presence of parallel composition,
this adds more value to the analysis since apart from specifying structural condi-
tions which ensures the ability for players to copy moves, we can also specify the
exact sequence of moves which are copied across games. The basic techniques
used here can be extended to deal with strategy specification. However, it would
be more interesting to come up with compositional operators for strategy spec-
ifications which can naturally exploit the interleaving semantics.

Acknowledgements. We thank the anonymous referees for their valuable com-
ments and suggestions. The second author thanks the Netherlands Institute for
Advanced Study in the Humanities and Social Sciences for its support.

7 Appendix

Lemma 5.1. For all i ∈ N , for all h ∈ H, for all X ⊆ (W × W)∗ with X =
frontier (X), for all u ∈ W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û ∧ 〈h, i〉X̃ is

consistent.
2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X ′ which is a valid tree with

frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri
h.

Proof. Let h = (S,⇒, s0, λ̂). If moves(s0) = ∅ then from axiom (A4) we get

〈h, i〉α ≡ β∧α and the lemma holds. Let moves(s0) = {a1, . . . , ak} and λ̂(s0) = i.
Suppose X ∈ Ri

h, since X is a valid tree and enabled(head(h), u) holds, there

exist sets Y1, . . . , Yk such that for all j : 1 ≤ j ≤ k, wj = root(Yj) and u
aj

−→ wj .

Since u is an i node we have that the strategy should choose a wj such that

u
aj

−→ wj and X ′ ∈ Ri
haj

where X = (u, wj) · X ′. By induction hypothesis we

have ŵj ∧〈haj
, i〉X̃ is consistent. Hence from axiom (A4) we conclude û∧〈h, i〉X̃

is consistent.
Suppose û ∧ 〈h, i〉X̃ is consistent. From axiom (A4) it follows that there

exists w1, . . . , wk such that for all j : 1 ≤ j ≤ k, we have u
aj

−→ wj and
hence enabled(h, u) holds. Let X = {v1, . . . , vm}, from axiom (A4) we have

û∧ (
∨

a∈Σ 〈a〉〈ha, i〉X̃) is consistent. Hence we get that there exists wj such that

u
aj

−→ wj and ŵj ∧ 〈ha, i〉X̃ is consistent. By induction hypothesis there exists
X ′ which is a valid tree with frontier(X ′) ⊆ X , root(X ′) = wj and X ′ ∈ Ri

ha
.

By definition of Ri we get (u, wj) · X
′ ∈ Ri

h.

Let λ̂(s0) = ı and suppose X ∈ Ri
h. Since enabled(head(h), u) holds and

X is a valid tree, there exist sets Y1, . . . , Yk such that for all j : 1 ≤ j ≤ k,

wj = root(Yj) and u
aj

−→ wj . Since u is an ı node, any strategy of i need to
have all the branches at u (by definition of strategy). Thus we get: for all wj

with u
aj

−→ wj , there exists Xj with root(Xj) = wj such that Xj ∈ Ri
h and

X =
⋃

j=1,...,k(u, wj) · Xj . By induction hypothesis and the fact that Xj =

frontier (Xj) ⊆ X , we have ŵj ∧〈h, i〉X̃ is consistent. Hence from axiom (A4) we

get û ∧ 〈h, i〉X̃ is consistent.

Likewise, using axiom (A4) we can show that if û∧〈h, i〉X̃ is consistent then
there exists a X ′ which is a valid tree with frontier(X ′) ⊆ X and root(X ′) = u
such that X ′ ∈ Ri

h.

Lemma 5.2. For all i ∈ N , for all g ∈ Γ , for all X ⊆ (W × W)∗ with X =

frontier (X) and u ∈ W , if û∧ 〈h, i〉X̃ is consistent then there exists X ′ which is
a valid tree with frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri

h.

Proof. By induction on the structure of g.

– g = h: The claim follows from Lemma 5.1 item 2.
– g = g1 ∪ g2: By axiom (A3a) we get û ∧ 〈g1, i〉X̃ is consistent or û ∧ 〈g2, i〉X̃

is consistent. By induction hypothesis there exists X1 which is a valid tree
with frontier(X1) ⊆ X and root(X1) = u such that (u, X1) ∈ Ri

h or there
exists X2 which is a valid tree with frontier (X2) ⊆ X and root(X2) = u such
that X2 ∈ Ri

h. Hence we have X1 ∈ Ri
g1∪g2

or X2 ∈ Ri
g1∪g2

.

– g = g1; g2: By axiom (A3b), û ∧ 〈g1, i〉〈g2, i〉X̃ is consistent. Hence û ∧

〈g1, i〉(
∨

(ŵ∧〈g2, i〉X̃)) is consistent, where the join is taken over all w ∈ Y =

{w | w ∧ 〈g2, i〉X̃ is consistent }. So û ∧ 〈g1, i〉Ỹ is consistent. By induction
hypothesis, there exists Y ′ which is a valid tree with Y ′ = frontier(Y ′) ⊆ Y
and root(Y ′) = u such that (u, Y ′) ∈ Ri

g1
. We also have that for all w ∈ Y,

ŵ ∧ 〈g2, i〉X̃ is consistent. Therefore we get for all wj ∈ Y ′ = {w1, . . . , wk},

ŵj ∧ 〈g2, i〉X̃ is consistent. By induction hypothesis, there exists Xj which
is a valid tree with Xj = frontier (Xj) ⊆ X and root(Xj) = wj such that

Xj ∈ Ri
g2

. Let X ′ be the tree in Y ′; {Xj | j = 1, . . . , k} obtained by pasting

Xj to the leaf node wj in Y ′. We get X ′ ∈ Ri
g1;g2

.
– g = g1||g2: Note that for all g ∈ Γ and h ∈ head(g), the complexity of g\h

is less than that of g. Therefore by making use of axiom (A3c) we can show
that there exists X ′ with frontier(X ′) ⊆ X ′ and root(X ′) = u such that
X ′ ∈ Ri

h.

References

1. K. Abrahamson. Decidability and expressiveness of logics of processes. PhD thesis,
Dept. of Computer Science, Univ. of Washington, 1980.

2. T. Ågotnes. Action and knowledge in alternating time temporal logic. Synthese,
149(2):377–409, 2006.

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

4. J. Broersen. CTL.STIT: Enhancing ATL to express important multi-agent system
verification properties. In Proceedings of AAMAS-2010. ACM Press, 2010.

5. J. Broersen, A. Herzig, and N. Troquard. Embedding Alternating-time Tempo-
ral Logic in strategic STIT logic of agency. Journal of Logic and Computation,
16(5):559–578, 2006.

6. R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In Proc. 5th Symposium in Computation Theory, Lecture Notes in
Computer Science, pages 34–53. Springer, 1984.

7. V. Goranko. Coalition games and alternating temporal logics. In Proceedings of
TARK-2001, pages 259–272, 2001.

8. D. Harel. Dynamic logic. Handbook of Philosophical Logic, 2:496–604, 1984.
9. D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability,

completeness. Journal of Computer and System Sciences, 25(2):144–170, 1982.
10. J. Horty. Agency and Deontic Logic. Oxford University Press, 2001.
11. M. Lange and C. Lutz. 2-EXPTIME lower bounds for propositional dynamic logics

with intersection. Journal of Symbolic Logic, 70(4):1072–1086, 2005.
12. R. Parikh. The logic of games and its applications. Annals of Discrete Mathematics,

24:111–140, 1985.
13. M. Pauly. Logic for Social Software. PhD thesis, Univ. of Amsterdam, 2001.
14. D. Peleg. Concurrent dynamic logic. Journal of the ACM, 34(2):450–479, 1987.
15. R. Ramanujam and S. Simon. Dynamic logic on games with structured strategies.

In Proceedings of KR-08, pages 49–58. AAAI Press, 2008.
16. J. van Benthem. Extensive games as process models. Journal of Logic Language

and Information, 11:289–313, 2002.
17. J. van Benthem, S. Ghosh, and F. Liu. Modelling simultaneous games with dynamic

logic. Synthese (Knowledge, Rationality and Action), 165:247–268, 2008.
18. W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic for strategic reasoning.

Proceedings of AAMAS-2005, pages 157–164, 2005.
19. D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-time temporal

logic with explicit strategies. In Proceedings of TARK-2007, pages 269–278, 2007.

