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ABSTRACT
When agents know a protocol, this leads them to have ex-
pectations about future observations. Agents can update
their knowledge by matching their actual observations with
the expected ones. They eliminate states where they do not
match. In this paper, we study how agents perceive proto-
cols that are not commonly known, and propose a logic to
reason about knowledge in such scenarios.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic; D.4.7 [Organi-
zation and Design]: Distributed Systems; I.2.3 [Artificial
Intelligence]: Deduction and Theorem Proving

General Terms
Theory

Keywords
communication protocols, dynamic epistemic logic, informa-
tion hiding

1. INTRODUCTION
Talking about knowledge and protocols, some questions

that come foremost to our mind concern the following is-
sues. What do we mean by knowing a protocol? How does
this protocol knowledge affect our knowledge of facts about
the world? The existing literature abounds with various
formal models answering these questions from different an-
gles [5, 11, 13, 19, 7]. In some situations, agents have partial
knowledge of the underlying protocols that guide the behav-
iors of other agents. Based on their incomplete knowledge
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of protocols and their observations, the agents try to reason
about their epistemic attitudes as well as hard facts. These
protocols may occur when agents communicate using full-
blown secret codes (see [12] for many intriguing historical
examples). Our daily communications provide more mun-
dane protocols.

Consider, as Example 1, a café in the 1950’s, with three
persons, Kate, Jane and Ann sitting across a table. Suppose
Kate is gay and wants to know whether any of the other
two is gay. She wants to convey the right information to
the right person, without the other getting any idea of the
information that is being communicated. She states, “I am
musical, I like Kathleen Ferrier’s voice”. Jane, who is gay
herself, immediately realizes that Kate is gay, whereas, for
Ann, the statement just conveys a particular taste in music.1

Coming back to the present day, consider as Example
2 a similar café scenario with Carl, Ben and Alice. Carl
and Ben are childhood friends and know each other like the
back of their hands. Carl to Ben: “On Valentine’s day I
went to the pub with Mike and Sara. It was a crazy night!”.
This immediately catches the attention of Alice who is in
love with Mike. She asks: “What happened?” Carl winks
to Ben and says: “Nothing”. Knowing Carl very well Ben
immediately realizes that nothing has happened, whereas
Alice becomes unsure of that, as she saw the wink that Carl
has given to Ben.

This paper presents a dynamic epistemic logic (DEL, [1,
15]) that can suitably describe such scenarios. Knowing a
protocol can mean ‘knowing what to do according to the
protocol’ [5]. It can also correspond to ‘understanding the
underlying meaning of the actions induced by the proto-
col’ [11]. Here, we follow the latter interpretation, because
it aptly captures the notion of a protocol in situations we
are modeling. Kate making a statement like “I am musical,
I like Kathleen Ferrier’s voice” corresponds to the fact that
‘Kate is gay’. In the second situation, “Nothing” (even if ac-

1This example has been inspired by the interviews in [18],
from which it appears that in 1950’s Amsterdam,‘musical’
was indeed a code term for ‘gay’, known almost exclusively
by gay people. The additional mention of singer Kathleen
Ferrier strengthened this ‘gay’ hint. Among gay women,
Ferrier’s low contralto voice, for example in her performance
as Orfeo in Gluck’s Orfeo ed Euridice, was widely popular.



companied by a wink) corresponds to the fact that ‘Nothing
has happened’.

Our work is largely inspired by two lines of research: the
work relating DEL and ETL [13, 7, 10] and the work on
protocol changes [19, 20]. In [10] protocols are modeled as
tree compositions, basically equating protocols with plans.
In [13, 7], the notion of ‘state-dependent’ DEL-protocols
(sets of sequences of event models [15]) is proposed in or-
der to handle protocols that are not common knowledge.
For example, the model

s : p(a) 1,2 t : ¬p(b)

represents an epistemic scenario where the agents are not
only uncertain about the factual state of the world but also
about the protocol that can be executed given some factual
state; this is denoted by a state-dependent protocol assign-
ing singleton action sets {a} to s and {b} to t, where a and b
are actions. A system wherein the protocol can be different
in any state is clearly more complex than a system wherein
the protocol is a background parameter, and thus can be as-
sumed common knowledge to all agents. But in our example
we can still reclaim some form of common knowledge of the
protocol, namely by describing it as follows: if p then a and
if ¬p then b.

How do we obtain such epistemic models with protocol in-
formation from specifications of conditional protocols, and
vice versa? Similar questions are addressed in [19, 20], pre-
senting a logical framework that incorporates protocol speci-
fications on epistemic models. However, there, protocols are
assumed to be common knowledge. We do not assume that
here. Our work is based on the logic developed in [19] but it
uses epistemic models with procedural information as in [13,
7] to deal with uncertainties of protocols, an agent’s knowl-
edge of underlying protocols, and her current observations
affecting factual uncertainty. In our framework, the proto-
cols can be viewed as ‘given by nature’, so the framework
does not cover interesting aspects such as how and by whom
the protocols have been designed and how agents have come
to agree to use them.

@@RV still to add 200 words and 3 new bibliography items
on: Grice and more general speech acts. This seems relevant,
as we wish to emphasize a dinstinction between an observa-
tion and an action - more fine-grained than the ’standard’
DEL changes but less fine-grained than further Gricean as-
pects, that apart from observational powers of the agents
also model their assertive powers [6]@@

The ingredients of our work are: 1. epistemic models
encoding state-dependent expected observations; 2. an up-
date mechanism for eliminating impossible worlds according
to the observation of agents and their expectations; 3. a for-
mal language for specifying observations and protocols; 4.
protocol models that represent agents’ incomplete informa-
tion about the “real” protocols. 5. an update mechanism for
incorporating protocol information (as protocol models) on
epistemic (observation) models; 6. a notion of equivalence
between protocol models; 7. a logic for reasoning about
knowledge based on protocols.

The paper is organized as follows. Section 2 introduces
the epistemic observation models and a simple PDL-style
epistemic logic for reasoning about knowledge via matching
the expectations and observations. Section 3 discusses how
we obtain observation models from protocol models (i.e.,
epistemic protocols). We characterize three classes of ob-

servation models that can be generated from various epis-
temic models. Furthermore we give a characterization of
the effective-equivalence of epistemic protocols. A logic is
then given to incorporate the updates of protocols and rea-
soning about knowledge and observations. In the end we
address incorporation of factual-change actions in Section 4
and point out future work in Section 5.

2. REASONING VIA EXPECTATION AND
OBSERVATION

In this section, we introduce observation models, which
are Kripke models with expected observations, and propose
a dynamic logic style epistemic logic interpreted on such
models for reasoning about knowledge via matching obser-
vations with expectations.

2.1 Epistemic Observation Models
Let I be a finite set of agents, and P be a finite set

of propositions describing the facts about the world. Let
Bool(P) denote the set of all Boolean formulas over P. To
set up the semantics we first define a Kripke model in the
usual sense, which models agents’ epistemic uncertainties
regarding the actual state of the world.

Definition 1 (Epistemic model). An epistemic mod-
el Me is a triple 〈S,∼, V 〉: S is a non-empty domain of
states, ∼ stands for the set of accessibility (equivalence) re-
lations {∼i| i ∈ I}, V : S → P(P) is a valuation assigning
to each state a set of propositional variables (those that are
‘true in that state’).

We will introduce the concept of epistemic observation
models based on Kripke models, which captures the ex-
pected observations of agents. Agents observe what is hap-
pening around them and reason based on these observations.
One way of expressing such observations is by means of ‘ac-
tions’, viz. the action of making statements, going to the
right, nodding your head and many others. To this end,
we introduce a finite set of actions, viz. Σ. An observa-
tion is a finite string of actions, e.g., abcd. Note that an
agent may expect different (even infinitely many) potential
observations to happen at a given a state, e.g. she expects
a . . . ab to happen for any finite sequence of a preceding the
terminating action b. As human beings and computers are
essentially finite, we need to denote and talk about such ex-
pectations in a finitary way. To this end, we introduce the
observation expressions (as regular expressions over Σ):

Definition 2 (Observation expressions). The lan-
guage Lobs of observations is given by

π ::= ε | δ | a | π · π | π + π | π∗

where a ∈ Σ, and ε and δ are constants for the empty string
and the empty language respectively.

The semantics for the observation expressions are given
by sets of observations (strings over Σ), similar to that for
the regular expressions.

Definition 3 (Observations). Given an observation
expression π, the corresponding set of observations, denoted



by L(π), is the set of finite strings over Σ defined as follows.
L(ε) = {ε} L(δ) = ∅ L(a) = {a}
L(π · π′) = {wv | w ∈ L(π) and v ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪

S
n>0(L(π · · ·π| {z }

n

))

Definition 4 (Epistemic observation model). An
epistemic observation model Mobs is a quadruple

〈S,∼, V,Obs〉,

where 〈S,∼, V 〉 is an epistemic model (the epistemic skele-
ton ofMobs) and Obs : S → Lobs is an observation function
assigning to each state an observation expression π such that
L(π) 6= ∅ (non-empty set of finite sequences of observations).
An epistemic observation state is a pointed epistemic obser-
vation model. Intuitively, Obs assigns to each state a set of
potential or expected observations.

Given an epistemic observation model Mobs = 〈S,∼, V,
Obs〉, note that 〈S,∼, V 〉 is an epistemic model in the usual
sense. Hence, sometimes, we also denote an observation
model as (Me,Obs), where Me is the corresponding epis-
temic model. An epistemic model Me can be considered as
an epistemic observation model Mobs where for all s ∈ S,
Obs(s) = Σ∗(shorthand for (a0 + a1 + · · · + ak)∗ where
{a0, . . . , ak} = Σ), that is, in an epistemic model the ob-
servations possible at each state are not specified; one can
observe anything. In this sense, Me lacks in providing cer-
tain information about the world, andMobs fills up that gap.
In what follows we often leave out the subscripts, whenever
the respective models are clear from the context.

Example 5 (Dutch or not Dutch). In the Nether-
lands, people often greet each other by kissing three times on
the cheek (left-right-left) while in the rest of Europe people
usually kiss each other only once or twice. We can reason
whether a person is ‘Dutch-related’ by observing his behavior.
Let pD be the proposition meaning someone is Dutch-related,
a and b are two actions denoting kissing the left cheek and
kissing the right cheek, respectively. The following model is
what we expect (reflexive arrows are omitted):

s : pD(a · b · a)—–1—–t : ¬pD(a · b)

The indistinguishability relation above depicts that agent 1
does not know whether pD. The associated observations are
those that the agents might expect on each state. Intuitively
if we observe someone kissing three times (observation a · b ·
a), then we can infer that he or she is Dutch-related. In
the next section a simple logic is defined to handle such
reasoning based on actual observations.

2.2 Public Observation Logic
In this subsection we define a simple dynamic logic with

knowledge operators to reason about knowledge via the mat-
ching of observations and expectations. The idea is similar
to the one behind public announcement logic where people
update their information by deleting the impossible scenar-
ios according to what is publicly announced. Here we relax
the link between the meaning and public actions (like an
announcement), and assume that when observing an action,
people delete some impossible scenarios where they wouldn’t

expect such an observation to happen.To make such reason-
ing formal, we first define the update of observation models
according to some observation w. The idea behind M|w is
that we delete the states where the observed execution could
not have been performed.

Definition 6 (Update by observation). Let w be an
observation over Σ, let M = (S,∼, V,Obs) be an observa-
tion model. The updated model M|w = (S′,∼′, V ′,Obs′).
Here, S′ = {s | L(Obs(s)\w) 6= ∅}, ∼′i = ∼i|S′×I×S′ , V

′ =
V |S′ , and Obs′(s) = Obs(s)\w, where π\w is defined as the
regular expression denoting the language {v | wv ∈ L(π)}.

π\w is a regular language [3] and can be axiomatized with
the output function o from the set of regular expressions
over Σ to {δ, ε} as follows (cf. [2, 3]):

π\a0 . . . an = π\a0\a1 . . . \an
π = o(π) +

P
a∈Σ(a · π\a)

ε\a = δ\a = b\a = δ (a 6= b)
a\a = ε
(π · π′)\a = (π\a) · π′ + o(π) · (π′\a)
(π + π′)\a = π\a+ π′\a
π∗\a = π\a · π∗
o(π · π) = o(π) · o(π′)
o(π∗) = ε
o(ε) = ε
o(δ) = o(a) = δ
o(π + π′) = o(π) + o(π′)

These are used for the computation of observations in a
syntactic way.

We design a logic to reason about the observations, Public
observation logic (POL):

Definition 7 (public observation logic). The for-
mulas ϕ of POL are given by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [π]ϕ

where p ∈ P, i ∈ I, and π ∈ Lobs .

Definition 8 (Truth definition for POL). Given
an epistemic observation model M = (S,∼, V,Obs), a state
s ∈ S, and a POL-formula ϕ, the truth of ϕ at s, denoted
by M, s � ϕ, is defined as follows:

M, s � p ⇔ p ∈ V (s)
M, s � ¬ϕ ⇔ M, s 2 ϕ

M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ
M, s � Kiϕ ⇔ for all t : s ∼i t =⇒ M, s � ϕ
M, s � [π]ϕ ⇔ for each w ∈ L(π) : (w ∈ init(Obs(s))

implies M|w, s � ϕ)

where w ∈ init(π) iff ∃v ∈ Σ∗ such that wv ∈ L(π) iff
L(π\w) 6= ∅.

Consider the modelM in Example 5. If we observe one or
two kisses, we still cannot tell whether the person is Dutch-
related, but if there is one more kiss to follow then we know.
Formally, it can be verified that M, s � [a · b](¬KpD ∧
[a]KpD).

Clearly, standard bisimulation between epistemic models
is not an invariance of the above logic: POL can reason



about what may happen at each state. We now define bisim-
ulation between observation models, which facilitates char-
acterization results in later sections.

Definition 9 (Observation Bisimulation). A binary
relation R between the domains of two observation models
M = (S,∼, V,Obs) and N = (S′,∼′, V ′,Obs′) is called a
bisimulation if for any s ∈ S, s′ ∈ S′: (s, s′) ∈ R implies
that the following conditions hold:

Invariance V (s) = V ′(s′) and L(Obs(s)) = L(Obs′(s′)).

Zig if s ∼i t in M then there exists a t′ in N such that
s′ ∼i t′ and tRt′.

Zag if s′ ∼i t′ in N then there exists a t in M such that
s ∼i t and tRt′.

M and N are said to be bisimilar (M ↔o N ) if there is
a bisimilation R between them. (M, s) and (N , s′) are said
to be bisimilar (M, s ↔o N , s′) if there is a bisimulation R
between them such that (s, s′) ∈ R.

Note that the standard bisimulation (notation↔) is defined
as ↔o without the condition for the invariance for observa-
tions. It is not hard to show the following.

Proposition 10 (Bisimulation Invariance). For
any two finite epistemic observation states M, s and N , s′,
the following statements are equivalent:

• M, s ↔o N , s′

• For any formula ϕ ∈ POL :M, s � ϕ ⇐⇒ N , s′ � ϕ
Proof. [↔o =⇒ ≡POL]: by induction on ϕ: Boolean

and Kiϕ cases are trivial. Now consider ϕ = [π]ψ : suppose
M, s ↔o N , s′ but M, s � [π]ψ and N , s′ 2 [π]ψ. Then
there exists a w ∈ L(π) such that w ∈ init(Obs(s′)) and
N|w, s′ � ¬ψ.

By the definition of ↔o, L(Obs(s)) = L(Obs(s′)) there-
fore w ∈ init(Obs(s)). Thus M|w, s exists. We now show
that M|w, s ↔o N|w, s′. Let R be {(t, t′) ∈ SM|w × SN|w |
M, t↔o N , t′}. Clearly (s, s′) ∈ R. Note that if L(Obs(t)) =
L(Obs(t′) then L(Obs(t)\w) = L(Obs(t′)\w); this proves the
invariance for observations. Based on this invariance, it is
not hard to verify that R is indeed an observation bisimula-
tion between M|w and N|w.

Since M|w, s↔o N|w, s′, by induction hypothesis

M|w, s � ¬ψ.

Clearly, this contradicts the assumption that M, s � [π]ψ.

[≡POL =⇒↔o]: Let R = {(t, t′) ∈ SM × SN | M, t ≡POL
N , t′}. We can show that R is an observation bisimula-
tion. All the conditions are standard and thus can be han-
dled by standard techniques except the new clause about
the invariance for observations: we need to show tRt′ =⇒
L(Obs(t)) = L(Obs(t′)); however, this is trivial since in the
language of POL we can express 〈w〉> such that M, t �
〈w〉> ⇐⇒ w ∈ L(Obs(t)).

Intuitively, these observation models can be seen as compact
representations of certain epistemic temporal models [11,
13]. To make the link more precise, we can relate POL
on observation models to the same language on epistemic
temporal models with the usual PDL-style interpretation of
[π]ϕ formulas.

Definition 11. LetM be an epistemic observation model
〈S,∼i, V,Obs〉. The M-generated epistemic temporal model

is defined as ETL(M) = 〈H, a→,∼′i, V ′〉 where: H = {(s, w) |
s ∈ S,w = ε or w ∈ L(Obs(s))}; (s, w)

a→ (t, v) ⇐⇒ s =
t and v = wa, a ∈ Σ; (s, w) ∼i (t, v) ⇐⇒ s ∼i t and w =
v; p ∈ V ′(s, w) ⇐⇒ p ∈ V (s).

The formula [π]ϕ is true at a pointed epistemic temporal

model N , h iff for any w ∈ L(π), h
w→ h′ implies N , h �

ϕ. The truth definitions for observation-free formulas are
as usual. We call this logic EPDL (Epistemic-PDL). To
establish the precise link between observation models and
epistemic temporal models, we can prove the following.

Proposition 12. Given a pointed POL model M, s, and
a POL formula ϕ, it can be shown that:
M, s � ϕ ⇐⇒ ETL(M), (s, ε) �EPDL ϕ.

Proof. We need to show for any observation modelM, s
any POL formula ϕ:

M, s � ϕ ⇐⇒ ETL(M), (s, ε) �EPDL ϕ

We prove this by induction on ϕ.
The Boolean case and the Kψ case are trivial. Now

consider the case [π]ψ. Suppose without loss of general-
ity that there is an observation model M, s � [π]ψ and
ETL(M), (s, ε) 2 [π]ψ. Then there exists a w ∈ L(π) such
that ETL(M), (s, w) 2 ψ. By the definition of ETL(M),
w ∈ Obs(s) thus M|w exists. Based on the definition of
ETL(M), it is not hard to show that ETL(M|w), (s, ε) is
bisimilar (w.r.t. both ∼ and →) to ETL(M), (s, w). Since
EPDL is clearly invariant under bisimulation,

ETL(M|w), (s, ε) � ¬ψ.

By induction hypothesis,Mw, s � ¬ψ which contradicts the
assumption that M, s � [π]ψ.

Note that the generated epistemic temporal models can be
infinite, and thus the above result does not give a straightfor-
ward model checking procedure for POL. According to the
semantics of [π]ϕ we need to check infinitely many w ∈ L(π).
Fortunately, this can be handled by partitioning L(π) into
a finite number of regular expressions π0 . . . πk such that
for any w, v ∈ L(πi), M|w = M|v, providing decidability
of model checking after all (see [20] for details in a similar
setting).

3. EXPECTATION COMES FROM PROTO-
COLS

Observation models describe the agents’ expected obser-
vations, which in turn influence their reasoning. We inves-
tigate how agents acquire and change their expectations, by
looking at protocols and protocol models as sources for the
expected observations.

3.1 Protocol models
A protocol is a rule telling us what we should do under

what conditions. We can specify protocols in the following
language of protocol expressions Lprot:

Definition 13 (Protocol expression). The language
Lprot of protocols is given by

η ::= ε | δ | a | ?ϕ | η · η | η + η | η∗

where ϕ ∈ Bool(P).



The above language of protocol expressions is obtained by
adding Boolean tests to observation expressions. For exam-
ple, (?love · stay)∗ · (?¬love · separate) expresses “we should
stay together as long as we are in love”. For a discussion
on more complicated test scenarios (e.g. considering agents’
knowledge) see Section 5.

In the story of Example 5, there seems to be an underlying
protocol: if you are Dutch then you kiss three times and if
you are non-Dutch then you kiss two times. It is the reason
for the agent to have the corresponding expectations of the
observations. This protocol (call it πK) can be expressed as
?pD · a · b · a+?¬pD · a · b. We would like to generate the
observation model in Example 5 from the protocol πK and
the epistemic model

pD—–1—–¬pD

Intuitively, the information of the protocol πK can be incor-
porated by adding to each state the possible observations
allowed by the protocol. We now move on to the technical
details.

To compute the possible observations corresponding to
a given protocol we first define the semantics of protocol
expressions. Intuitively, we associate to each protocol η a
set Lg(η) of conditional observations in the form of

ρ0a0ρ1a1 . . . ρkak

where each ρi ⊆ P denotes a state of affairs (the basic propo-
sitions p ∈ ρ are true while the others are false), encoding the
conditions for the later observations to happen. For Boolean
formulas ϕ, we write ρ � ϕ if ϕ is true under ρ (viewed as a
valuation).

Definition 14. The set of conditional observations cor-
responding to η is defined as follows:

Lg(δ) = ∅, Lg(ε) = {ρ | ρ ⊆ P},
Lg(a) = {ρaρ | ρ ⊆ P}, Lg(?ψ) = {ρ | ρ � ψ},
Lg(η1 · η2) = {w � v | w ∈ Lg(η1), v ∈ Lg(η2)},
Lg(η1 + η2) = Lg(η1) ∪ Lg(η2),
Lg(η∗) = {ρ | ρ ⊆ P} ∪

S
n>0(Lg(ηn)),

where � is the fusion product: w � v = w′ρv′ when w = w′ρ
and v = ρv′, and not defined otherwise.

Note that the ρi’s in a conditional observation remain un-
changed since no factual change is introduced by the execu-
tion of the actions (see Appendix 4 for a detailed discussion
of fact changing actions). In the following we show how
to derive the set of observations to be expected under the
same condition ρ according to η, by defining the conversion
function fρ : LProt → Lobs ,

fρ(ε) = ε fρ(δ) = δ
fρ(a) = a fρ(?ϕ) = ε if ρ |= ϕ
fρ(η · η′) = fρ(η) · fρ(η′) δ if ρ 6|= ϕ
fρ(η + η′) = fρ(η) + fρ(η

′) fρ(η
∗) = fρ(η)∗

Proposition 15. For any η ∈ Lprot,
L(fρ(η)) = {w | w = a0 . . . ak,
where ai ∈ Σ ∪ {ε} and ρa0ρa1 . . . akρ ∈ Lg(η)}.

Therefore, every η has a normal form

η◦ =
X
ρ⊆P

(?ϕρ · fρ(η))

such that Lg(η) = Lg(η◦), where ϕρ is a characteristic for-
mulas for ρ ⊆ P (e.g. ϕ{p} = p ∧ ¬q if P = {p, q}).

Proof. We first show that L(fρ(η)) is equal to

{w | w = a0 . . . ak, ai ∈ Σ∪{ε} and ρa0ρa1 . . . akρ ∈ Lg(η)}

. We prove this by induction on η ∈ LProt.
The atomic cases are straightforward. Now we check the

complex cases:
η = η1 + η2:

L(fρ(η)) = L(fρ(η1 + η2)) = L(fρ(η1) + fρ(η2))
= L(fρ(η1)) ∪ L(fρ(η2))
= {w | w = a0 . . . ak, and ρa0ρ . . . ρakρ ∈ Lg(η1)}∪
{w | w = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η2)}(by IH)

= {w | w = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η1 + η2)}
η = η1 · η2:

L(fρ(η)) = L(fρ(η1 · η2)) = L(fρ(η1) · fρ(η2))
= {wv | w ∈ L(fρ(η1) and v ∈ L(fρ(η2)}
= {wv | w = c0 . . . cm st. ρc0 . . . cmρ ∈ Lg(η1)

and v = b0 . . . bn st. ρb0 . . . bnρ ∈ Lg(η2)}(by IH)
= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η1 · η2)}

(by fusion product)

η = η∗1 :

L(fρ(η)) = L(fρ(η
∗
1)) = L((fρ(η1))∗)

= {ε} ∪
S
n>0 L((fρ(η1))n)

= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ {ρ | ρ ⊆ P}
∪

S
n>0 Lg(η

n
1 )}(by IH)

= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η∗1)}

This completes the proof for the following statement :
For all η in Lprot , for all ρ ⊆ P, L(fρ(η)) = {w | w =
a0 . . . ak, where ai ∈ Σ ∪ {ε} and ρa0ρa1 . . . akρ ∈ Lg(η)}.

From the result above and the definition of Lg, it follows,

Lg(fρ(η)) = {ρ′a0 . . . akρ
′ | ρ′ ⊆ P and ρa0 . . . akρ ∈

Lg(η)}.

Let Gηρ = {ρa0ρa1 . . . akρ | ρa0ρa1 . . . akρ ∈ Lg(η)}, the
set of all ρ-guarded expressions in Lg(η). Then, by fusion
product, it follows that Lg(?ϕρ · fρ(η)) = Gηρ. Thus,

Lg(η◦) = Lg(
P
ρ⊆P(?ϕρ·fρ(η))) =

S
ρ⊆P Lg(?ϕρ·fρ(η)) =S

ρ⊆PG
η
ρ = Lg(η).

From Proposition 15, according to the protocol η, the ex-
pected observations on a state s in an epistemic model M
can be computed by fVM (s)(η). For example, f{p}(?p·a+?¬p·
b) = a. However, not every observation model can be gen-
erated by a single protocol.

Example 16. Consider the observation model:

s : p(a) 1,2 t : p(b)

We cannot associate a protocol η to its epistemic skeleton
such that fVM (s)(η) = a and fVM (t)(η) = b, since VM(s) =
VM(t). Note that taking ?p(a+ b) for η does not work.

In this example agents are uncertain about the protocol.
Their uncertainty may be seen as follows:

?p · a 1,2 ?p · b

The following definition formalizes this idea.



Definition 17 (Epistemic Protocol model). An
epistemic protocol model A is a triple 〈T,∼,Prot〉 where
T is a domain of abstract objects, ∼ stands for a set of
accessibility (equivalence) relations {∼i| i ∈ I}, and Prot :
T → Lprot assigns to each domain object a protocol. We call
a pointed epistemic protocol model an epistemic protocol and
a singleton epistemic protocol model a public protocol.

We will now proceed towards our main result in this sec-
tion, namely that an epistemic observation state uniquely
determines an epistemic protocol, and that an epistemic pro-
tocol and an epistemic state uniquely determine an epistemic
observation state. To show the correspondence, we need one
more semantic operation, that is a modal product operation
of an epistemic observation model and a protocol model. It
formalizes the change in possible observations induced by a
protocol. We should see this definition as installing a new
protocol, by means of novel observations, into the epistemic
observation model, and thus completely obliterating the cur-
rent expected observations.

Definition 18 (Protocol Update). Given an epis-
temic observation model Mobs = 〈S,∼, V,Obs〉 and an epis-
temic protocol model A = 〈T,∼,Prot〉. We define the prod-
uct (Mobs ⊗A) = (S′,∼′, V ′,Obs′) as follows:

• S′ = {(s, t) ∈ S × T : L(fVM(s)(Prot(t))) 6= ∅};

• (s, t) ∼′i (s′, t′) iff s ∼i s′ in Mobs and t ∼i t′ in A;

• V ′(s, t) = V (s);

• Obs′((s, t)) = fVM(s)(Prot(t)).

We mentioned that epistemic models can be seen as special
cases of epistemic observation models, namely with the ‘any-
thing goes’ protocol. Therefore, also in that case the product
operation between an epistemic model and a protocol model
corresponds to the installation of a protocol.

We now illustrate the definition by the two example sce-
narios of the introduction. In the pictures, assume reflex-
ivity and transitivity of access. In the first scenario, at the
beginning neither of Jane or Ann knows the fact g (Kate is
gay). However, one of them, Jane, is aware of the protocol
that: if Kate is gay then she will make the statement “I
am musical, I like Kathleen Ferrier’s voice” (action a); and
if she is not gay, then she will talk about something else
(action b). However, Ann has no idea whether a and b can
carry such information. The scenario is modeled as follows,
where the last model is the observation model resulting from
the update of the protocol on the first epistemic model (“real
states” are underlined):

g(Σ∗)

Jane,Ann ⊗

?g · a+?¬g · b

Ann
=

g(a)

Ann

Jane,Ann ¬g(b)

Ann

¬g(Σ∗) a+ b g(a+ b) Jane,Ann¬g(a+ b)

where g denotes the fact that ‘Kate is gay’, a denotes the
observation of Kate making the ‘musical statement’ and b
stands for Kate saying something else.

We now consider the second example. After Carl’s first de-
scription of the Valentine’s day night, Ben and Alice still do

not know what has happened. This prompts Alice’s ques-
tion. Now, the wink from Carl creates an uncertainty in
Alice regarding how to interpret Ben’s statements, while
knowing Carl so well, Ben immediately gets the idea of the
protocol Carl is using. The modeling is as follows:

p(Σ∗)

Ben,Alice ⊗

?p · Y+?¬p ·N

Alice
=

p(Y )

Alice

Ben,Alice¬p(N)

Alice

¬p(Σ∗) ?¬p · Y+?p ·N ¬p(Y )Ben,Alice p(N)

where p denotes the fact that ‘Something has happened in-
volving Mike and Sara on V-day night’ ‘Y ’ corresponds to
Carl’s saying something in the affirmative to Alice’s ques-
tion, and ‘N ’ the opposite.

According to our definition, an epistemic protocol model
acts on an epistemic model determining a unique observation
model. In the rest of this section we will investigate the
converse: whether an arbitrary observation model can be
generated by updating an epistemic model by an epistemic
protocol model.

Proposition 19. Given an epistemic observation model
M = (N ,Obs), there is an epistemic model N ′ and a pro-
tocol model A such that M↔o N ′ ⊗A.

Proof. Let N ′ = (S′,∼′, V ′) be the universal ignorant
model, i.e., S′ = P(P), for each i,∼′i= S′ × S′, and V (ρ) =
ρ ⊆ P. Given M = (S,∼, V,Obs), let A = (S,∼,Prot) such
that Prot(s) =?ϕV (s) ·Obs(s). where ϕV (s) is the character-
istic formula of V (s) ⊆ P (e.g. p ∧ ¬q is a characteristic
formula for {p} if P = {p, q}). Now we showM↔o N ′⊗A
by proving that R = {(s, (ρ, s)) | V (s) = ρ} is a bisimulation
relation.

The invariance conditions are immediate. Now suppose
s ∼i t in M then (ρ, s) ∼i (V (t), t) in N ′ ×A by the defini-
tion of the product. Obviously, tR(ρ′, t), where ρ′ = V (t).

Suppose (ρ, s) ∼i (ρ′, t). Then V (t) = ρ′. Therefore s ∼i t
and tR(ρ′, t).

This result shows that every observation model is reason-
able in the sense that it can be generated from an epistemic
model by some epistemic protocol model. Note that in the
above proposition, we consider an arbitrary epistemic model.
However, it is more intuitive to consider the particular epis-
temic model N in M = (N ,Obs), and ask if there is a
protocol model A such that N ⊗ A ↔o M. For singleton
protocol models, we have a characterization result.

Definition 20. An observation model M is said to be
Boolean normal if for any two worlds s, t in it, VM(s) =
VM(t) =⇒ L(Obs(s)) = L(Obs(t)).

Theorem 21. Given an epistemic observation model M
= (N ,Obs),M is Boolean normal iff there exists a singleton
protocol model A such that N ⊗A ↔oM, ↔o being a total
bisimulation.

Proof. ⇒: Let ϕs be the Boolean characterization for-
mula corresponding to VN (s). Let πM =

P
s in N ?ϕs ·

Obs(s). Because of the finiteness of P and Boolean normal-
ity, πM has a finite representation. Let AπM be the single
pointed protocol model with Prot assigning πM to the single
point. We can verify that N ⊗AπM ↔oM. ⇐: supposeM



is not Boolean normal then there are s, t in M such that
V (s) = V (t) and Obs(s) 6= Obs(t). Due to the normal form
of protocols, updating a single pointed protocol on s, t will
result in the same observations. So there cannot be any
single pointed protocol model to do the job.

Clearly, not every epistemic observation model is Boolean
normal, thus not every observation model can be generated
from a public protocol.

Example 22. Consider the following epistemic observa-
tion model M, we will show that M cannot be generated by
any epistemic protocol on its epistemic skeleton:

p(b) 1 p(a) 2 ¬p(b)

Suppose towards contradiction that there is a protocol model
A such that the execution of A on the epistemic skeleton of
M gives an observation model which is bisimilar to M. To
compose the middle world in the observation model we need
a state t in the protocol model such that Prot(t) allows a to
happen if p is true. Then t can be composed with the leftmost
p world above as well, since the left world and middle world
are Boolean indistinguishable. Therefore there will be a p(a)-
world in the resulting model which cannot reach any ¬p world
in one step, due to the definition of ⊗ (the leftmost state
above cannot reach any ¬p world in one step).

This leads us to consider a subclass of the observation
models given as follows.

Definition 23 (Boolean distinguishing). An epist-
emic (observation) model M is said to be Boolean distin-
guishing if for each state s ∈ M, there exists a Boolean
distinguishing formula for s, that is, there is a Boolean for-
mula which is only true at s and the states in M, related by
↔ (↔o) to s.

Theorem 24. Given an epistemic observation modelM =
(N ,Obs), if N is Boolean-distinguishing then there is a pro-
tocol model A such that N ⊗A↔oM.

Proof. Suppose N = (W,∼, V ) and let ϕNs be the Bool-
ean distinguishing formula corresponding to s ∈ W . Let
A = (W,∼,Prot) where Prot(s) =?ϕNs ·Obs(s). We will show
that N ⊗A↔oM.

Let R ⊆ W ×WN⊗A be the binary relation defined by
setting wR(v, t) iffM, w ↔oM, t. We need to show that R
is indeed an observation bisimulation.

Now suppose wR(v, t). Since Prot(t) =?ϕNt · Obs(t) and
(v, t) is in N ⊗A then N , v � ϕNt . Since ϕNt is a Boolean-
distinguishing formula for the world t, we have that N , v ↔e

N , t, since a state non-bisimilar to t will not satisfy ϕNt .
Due to the fact that M, w ↔oM, t we have N , w ↔e N , t,
thus N , w ↔e N , v. Therefore the propositional invariance
condition of observation bisimulation holds. SinceM, w ↔o

M, t, Obs(w) = Obs(t) = Obs((v, t)).
From the fact that M, w ↔o M, t and N , w ↔e N , v

the conditions Zig and Zag of Definition 9 can be verified
easily.

3.2 Equivalence of protocols
We motivated in the introduction that one observation

model might be generated in different ways (even based on

the same epistemic model). For example, consider the fol-
lowing model:

p(b) 1,2 ¬p(a)

It can be generated from its epistemic skeleton by updating
a public protocol ?p · b+?¬p · a or the epistemic protocol
model:

?p · b 1,2 ?¬p · a

Basically, the announcement of ?p·b+?¬p·a will always yield
the same result as the middle epistemic protocol model on
arbitrary epistemic models. On the other hand, the an-
nouncement ?p · (a+ b) has a different update result on the
same epistemic model compared to the update of the follow-
ing epistemic protocol:

?p · a 1,2 ?p · b

Such examples lead us to the following notion of equivalence
between protocol models.

Definition 25 (Effective equivalence). Two proto-
col models A and B are said to be effective-equivalent (nota-
tion: A ≡ef B) if for any observation modelM :M⊗A ↔o

M⊗B.

Inspired by the idea of action emulation in [17], we char-
acterize the notion of effective-equivalence by the following
structural equivalence.

Definition 26 (Protocol emulation). Two protocol
models A = (S,Prot) and B = (T,Prot) are said to be
emulated (notation: A ≈ B) if there is a binary relation
E ⊆ S × T such that whenever sEt we have:

• there exists ρ ⊆ P such that Lρ(Prot(t)) = Lρ(Prot(s)).

• if s ∼i s′ in A then there is a set T ′ ⊆ T such that:

1. for any t′ ∈ T ′: t ∼i t′;
2. for any t′ ∈ T ′: s′Et′;
3. for any ρ ⊆ P such that Lρ(Prot(s′)) 6= ∅ there

exists t′ ∈ T ′ such that Lρ(Prot(s′)) = Lρ(Prot(t′))

• if t ∼i t′ in B then there is a set S′ ⊆ S such that:

1. for any s′ ∈ S′: s ∼i s′;
2. for any s′ ∈ S′: s′Et′;
3. for any ρ ⊆ P such that Lρ(Prot(t′)) 6= ∅ there ex-

ists s′ ∈ S′ such that Lρ(Prot(s′)) = Lρ(Prot(t′))

When restricted to public protocols, it is not hard to see
that η ≈ η′ ⇐⇒ Lg(η) = Lg(η′). In general, we have the
following result.

Theorem 27. For any finite protocol models A and B:
A ≡ef B ⇐⇒ A ≈ B.

Proof. ⇐: Suppose A ≈ B, we need to show for any ob-
servation modelM :M⊗A ↔oM⊗B. We define a binary
relation between M⊗A and M⊗ B as (w, s)R(v, t) ⇐⇒
w = v, sEt and Obs((w, s)) = Obs((v, t)). Now we verify
the condition Zig of Definition 9 (the invariance condition
is trivial by definition of R). Suppose (w, s) ∼i (w′, s′)
then w ∼i w′ in M and s ∼i s′ in A. Since sEt, there



is a t′ in B such that t ∼i t′, s′Et′, and Lρ0(Prot(s′)) =
Lρ0(Prot(t′)) where ρ0 = V (s′). Clearly (w′, t′) is inM⊗B
and Obs((w′, t′)) = Obs((w, s′)). Thus we have that (w, t) ∼i
(w′, t′) and (w′, s′)R(w′, t′). The condition Zag can be proved
in a similar way.
⇒: Suppose A ≡ef B. It is clear that for a univer-

sal ignorant model M (cf. the proof of Proposition 19):
M ⊗ A ↔o M ⊗ B. We set a relation E between the
state spaces of A and B as sEt iff (w, s) ↔o (w, t). We
can verify that E is a protocol emulation relation. The
first (consistency) condition of protocol emulation is im-
mediate according to the invariance condition of observa-
tion bisimulation. Now we show the second one. Sup-
pose s ∼i s′ and sEt. Now consider an arbitrary ρ ⊆ P
such that Lρ(Prot(s′)) 6= ∅. Since M is a universal igno-
rant model, there is a state w′ in M such that V (w′) = ρ
and (w, s) ∼i (w′, s′). Since sEt then by definition of E,
(w, s)↔o (w, t). Thus there is a (v′, t′) in M⊗B such that
(w, t) ∼i (v′, t′) and (w′, s′)↔o (v′, t′) (clearly w′ = v′ since
M is a universal ignorant model). It follows that t ∼i t′ and
Lρ(Prot(s′)) = Lρ(Prot(t′)). Thus for all ρ ⊆ P such that
Lρ(Prot(s′)) 6= ∅ there is a state t′ such that t ∼i t′ in B,
s′Et′ and Lρ(Prot(s′)) = Lρ(Prot(t′)). The third condition
can be shown similarly.

We now extend the framework for POL to provide a DEL-
style logical language, describing the ‘installation’ or ‘change’
of protocols, together with the effect of the observations of
agents, based on the current protocol.

3.3 Epistemic Protocol Logic
In the language of the Epistemic protocol logic (EPL),

we consider protocol models as first-class citizens, giving a
DEL-like language.

Definition 28 (Language of EPL). The formulas ϕ
of EPL are given by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [π]ϕ | [!Ae]ϕ

where p ∈ P, i ∈ I, π ∈ Lobs , and Ae is an epistemic
protocol with the designated state e.

In defining the language we restrict ourselves to finite pro-
tocol models. The models for the logic EPL are taken to be
the epistemic observation models M = 〈S,∼, V,Obs〉. The
truth definition is given as follows:

Definition 29 (Truth definition for EPL). Given
an epistemic observation model M = 〈S,∼, V,Obs〉, a state
s ∈ S, and an EPL-formula ϕ, the truth of ϕ at s, denoted
by M, s � ϕ, is defined as follows:

M, s � [!Ae]ϕ ⇔ L(fV (s)(Prot(e))) 6= ∅
=⇒ M⊗A, (s, e) � ϕ

Recalling the meaning of the modal product operation, the
expression ‘[!Ae]ϕ’ therefore stands for ‘after installing the
new epistemic protocol Ae, ϕ is true’. As an example, let
us give the model of Example 1, the observation model in-
duced by the epistemic protocol (modelled earlier, call it

Ae), and the updated model according to observation a (in
the picture, visualized by |a):

g(a)

Ann

Jane,Ann ¬g(b)

Ann

|a g(ε)

Ann

g(a+ b) Jane,Ann ¬g(a+ b) g(ε) Jane,Ann ¬g(ε)

Suppose the actual state (underlined) was the leftmost
state in M, (say s), then we can verify:

M, s � [!Ae][a](KJaneg ∧ ¬KAnng), and M, s �
[!Ae][a]¬KAnn(KJaneg ∨KJane¬g).

The picture corresponding to Example 2 is as follows (A′e′
is the corresponding epistemic protocol modelled earlier):

p(Y )

Alice

Ben,Alice ¬p(N)

Alice

|N ¬p(ε)

Alice

¬p(Y ) Ben,Alice p(N) p(ε)

Let the actual state (underlined) be the rightmost state in
N (say t), we can verify:

N , t � [!A′e′ ][N ](KBen¬p∧¬KAlice¬p), butN , t �
[!A′e′ ][N ]KAlice(KBenp ∨KBen¬p).

The further investigation of this logic EPL and its relation
to DEL is future work.

4. INCORPORATING FACTUAL CHANGES
So far, we presented information-changing actions, not

fact-changing actions. Factual change can be modelled by
assigning to each action a function which changes the val-
uation of basic propositions (as in [14, 16]). Let us now
show how factual change can be incorporated in our current
setting.

Definition 30 (factual change actions). A set of
actions with factual changes (fc-actions) is a tuple (Σ, ι)
such that ι : Σ×P→ Bool(P).

Intuitively, after executing action a ∈ Σ, p is assigned the
truth value of ι(a, p) (evaluated before executing a). For ex-
ample, let p be the proposition denoting ‘the door is closed’
then slamming the door (a) has the post-effect: ι(a)(p) = >.
On the other hand, toggling the switch (b) has the post-
effects modelled by ι(b)(p) = ¬p if p expresses the switch is
on. Clearly non-factual change actions can be seen as (Σ, ι0)
where for any a ∈ Σ, ι0(a) is the identity function.

Definition 31 (factual change system). A Σ- fac-
tual change system (fc-system) F is a tuple (Q,−→) where
Q = P(P) and −→: Q×Σ→ Q.

Clearly, −→ is a deterministic transition function and thus
we can extend to the domain ofQ×Σ∗ such that (ρ, a0 · · · ak)
is the unique state of the fc-system that is reachable via
transitions subsequently labelled by a0, . . . , ak. We show
that a set of factual change actions can be seen as a factual
change system:



Proposition 32. For each set of fc-actions (Σ, ι) there
is a Σ-fc-system such that for each a ∈ Σ,ρ ⊆ P: ρ �V
p∈ρ′ ι(a, p) ⇐⇒ −→ (ρ, a) = ρ′. For each Σ-fc-system

there is a set of fc-actions (Σ, ι) such that for each a ∈
Σ,ρ ⊆ P: ρ �

V
p∈ρ′ f(a, p) ⇐⇒ −→ (ρ, a) = ρ′.

Given a set of fc-actions (Σ, ι) we denote the correspond-
ing Σ-fc-system as F ι. To interpret observation expressions
w.r.t. a fc-system F , we only need to revise the definition
of Lg as follows:

LFg (a) = {ρaρ′ | ρ a→ ρ′ in F}

Based on the automaton developed in [8], we can prove
an analogy of Proposition 15, viz. Proposition 33.

Proposition 33. Given an fc-system F , every η has a
normal form ηF =

P
ρ⊆P(?ρ · πρ) for some πρ ∈ Lobs such

that LFg (η) = LFg (ηF ).

Proof. (a sketch of the proof) In [8], Kozen gave a gen-
eral semantics for guarded expressions (the η’s in LProt as
in our paper), where the only difference concerns the clause
for the atomic a :

LKg (a) = {ρaρ′ | ρ, ρ′ ⊆ P}

Note that there is no constraint between ρ and ρ′ in the
above definition. It is not hard to see that given an fc-system
F we can define a translation tF : LProt → LProt by replacing
each a with

P
ρ⊆P{?ρ · a·?ρ

′ | ρ a→ ρ′ in F}. It follows that

LKg (tF (η)) = LFg (η). It is shown in [8] that guarded regular
expressions correspond to deterministic guarded automata
(finite automata with transitions labelled by Boolean tests)
satisfying the following properties:

• Each state is either a state that only has outgoing ac-
tion transitions (action state) or a state that only has
outgoing test transitions (test state).

• The start state is a test state.

• The outgoing test transitions are deterministic: they
are labelled by characteristic formulas of ρ ⊆ P and
for each test state q and each ρ, q has one and only
one {ρ}-successor.

Therefore by following the different ρ transitions from the
start state, we can separate the automaton that corresponds
to the guarded regular expression into |2P| zones. It is easy
then to generate the corresponding regular expressions (ob-
servations) for each zone (ignoring the test transitions). In
such a way, the normal form of η can be generated.

5. CONCLUSION AND FUTURE WORK
The information that the actions carry may depend on

agents’ knowledge of protocols. In this paper we studied
cases where protocols are not commonly known and pro-
posed a logic framework for updating knowledge by obser-
vations based on epistemic protocols. We consider various
extensions of our work.

We only used Boolean tests in the language Lprot . A more
expressive protocol language includes epistemic tests. An
example of such a protocol would be (?¬Kp · (a + b))∗ ·
(?Kp · c): as long as you do not know p, keep choosing an
a or b action, until you get to know p, and then do c. As

observed in [4], knowledge-based protocols are much more
involved than fact-based protocols. Defining the interpreta-
tion and executability of such protocols is a challenge, be-
cause, checking epistemic formulas is then non-local. Also,
the introduction of knowledge tests may make the satisfia-
bility problem of the logic undecidable. For example, the
observations may easily encode iterated public announce-
ment, which is known as a source of undecidability in such
logics [9]. On the positive side, by including more expressive
tests we expect better matching between observation models
and epistemic protocols (cf. Theorem 24).

Another extension is to consider less than radical update
mechanisms for installing new protocols. In our current ap-
proach, when installing a new protocol, we simply ignore and
overwrite the old expected observations completely. Con-
sider a singleton observation epistemic model with observa-
tion a+ c. Now, when updating with the protocol a+ b we
simply replace a + c by a + b. Instead, we could integrate
a+c with a+b, somehow. For example, such a ‘non-radical’
protocol update with a + b could result in b (intersected
refinement), or in (b + c) · (a + b) (concatenation), or in
(b+c)+(a+b) (choice), and so on. See [20] for a discussion.
Finally, we can relax the assumption of public observation,
e.g., some actions may not be observable to certain agents.
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