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Abstract

Inspired by a similar use in provability logic, formulas p�B q and p <B q are introduced in the

existing logical framework for discussing beliefs to express that the strength of belief in p is greater
than (or equal to) that in q. Besides its usefulness in studying the properties of the concept of

greater strength of belief itself this explicit mention of the comparison in the logical language aids

in defining several other concepts in a uniform way, namely, older and rather clear concepts like the
operators for universality (the totality of possibilities considered by an agent), together with newer

notions like plausibility (in the sense of ‘more plausible than not’) and disbelief. Relative expressive

powers of the proposed logics are also discussed. A major role is played in our investigations by
the relationship between the standard plausibility ordering of the worlds and the strength of belief

ordering. If we try to define the strength of belief ordering in terms of the world plausibility ordering

we get some undesirable consequences, so we have decided to keep the relation between the two
orderings as light as possible to construct a system that allows for widely different interpretations.

In fact, we start with considering these orderings to be independent of each other and towards the
end we provide a discussion on their possible inter-relationship. Finally, we provide an extension of

the framework to the multi-agent setting, and we discuss the possibilities of extending our system

to a dynamic one.

Keywords: doxastic logic, belief, disbelief, plausibility

1 Introduction

Being subject to doubts and dilemmas while making decisions is like second nature
to the human mind. The difference in the strengths of beliefs of an agent regarding
the occurrence of different events may clear doubts of this kind. In betting on games,
people make their choices for putting their money on different teams, based on their
strengths of beliefs about which team will win. Similarly, when voting, one’s prefer-
ence for the candidates is again based on the strength of beliefs about one candidate’s
ability to perform compared to the others. Thus, this notion is inherently present in
various fields of research like decision theory, game theory and others.

Before proceeding further, let us first consider the following real life situation where
comparison of strength of beliefs plays a key role in decision-making for recruitments.

Alice often has applications for jobs in her departmental store. The first time Burt
and Cora apply. Alice believes both can do the job, but her belief in Cora being able
to do it is stronger than that Burt will be able to do it. She chooses Cora.

The second time Deirdre and Egon apply. She believes that Egon can do the job
whereas she is ambiguous about Deirdre: she neither has the belief that Deirdre can
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do it, nor that she cannot. She chooses Egon.
The third time Fiona and Gregory apply. About both she is ambiguous, but her

strength of belief in Gregory being able to do it is stronger than that in Fiona. She
chooses Gregory, maybe she has to help him along a little.

The fourth time the applicants are Harold and Irma. She believes neither can do the
job. She decides not to take one of those two and hold another round of applications.
When she finds out that time is too short for that she thinks again, decides that she
believes even less in Irma being able to do it than in Harold, and she takes Harold.

Let us point out one possible misunderstanding. Alice does not judge how well she
thinks the applicants will perform, she just judges whether they will be able to do the
job or not, a simple yes-no question. Of course, to combine our set up with beliefs in
graded abilities would be highly interesting but that is a matter for future work.

All the discussed situations regarding the belief states of Alice can be aptly de-
scribed, if we talk not only about her beliefs but also compare the strength of her
beliefs in the applicants. One sees here how a stronger belief can induce a preference.

One can argue that these situations can be described by the well-studied notion of
preference, but the essence of describing the mental states of Alice will be lost then.
This paper adds a new notion to this line of work, viz. comparing the strengths of
beliefs, and very pertinently, doing this in a qualitative manner. The relationship
with preference will be developed somewhat further in Section 3.3.

The introduction of explicit notions of ordering for comparing strengths of beliefs
in the logical language has various applications. Besides its usefulness in studying
the properties of the concept of greater strength of belief itself it aids in defining
several other concepts in a uniform way. In models concerning knowledge (epistemic
logic) equivalence classes of worlds (and in case of one agent: the set of all worlds)
are naturally given by the indistinguishability relation connected with the knowledge
operator. In models concerning belief (doxastic logic) a universality operator U is
often introduced with the same purpose. In our set up this usually somewhat vague
operator can be defined in terms of the order, the idea that the worlds the agent
considers are the ones she considers possible in some manner is made explicit. In
the semantics, the question - which worlds are going to be a part of the model, gets
in our approach a clearer formal and intuitive understanding. It also becomes even
more evident that the universality operator must not be identified with the knowledge
operator even if they both share the S5-properties.

Additionally, newer notions like plausibility (in the sense of ‘more plausible than
not’) and disbelief can also be expressed. Above all it has its advantages in an explicit
study of the properties of the orderings themselves, semantically and axiomatically.
All these investigations can be carried over to a dynamic setting ([12], see also [3]),
but we leave this for future work.

Motivated by the ideas of provability logic [1], formulas ϕ�B ψ and ϕ<B ψ are
introduced in the existing logical framework for discussing beliefs to express that the
strength of belief in ϕ is greater than (or equal to) that in ψ. We should note here
that in the Rosser framework [17, 23] proofs of ϕ and ψ are compared only if at least
one of these proofs really exists, whereas strengths of beliefs are also discussed when
neither ϕ nor ψ are really believed. This makes them less concrete, and therefore we
express their comparison as ϕ�B ψ, rather than Bϕ � Bψ. As mentioned earlier,
these formulas can be used to express notions like ‘disbelief’ (the inclination to believe
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in ¬ϕ is greater than the inclination to believe in ϕ), and its dual ‘more plausible
than not’, which can be represented by ¬ϕ�B ϕ and ϕ�B ¬ϕ, respectively.

1.1 Related work

In [29, 10], orderings of formulas are considered but their interpretations are proba-
bilistic in nature. A binary sentential operator is introduced in the language with the
intended interpretation ‘at least as probable as’. While [10] takes the explicit ordering
operator in a simple language consisting of the truth-functional connectives only, [29]
discusses this issue in a modal setting. As the interpretation suggests, the semantics
is based on probability measures over worlds.

The notion of epistemic entrenchment [11] gives a syntactic ordering of formulas,
which is studied in connection with belief revision. The ordering influences the aban-
doning and retaining of formulas when a belief contraction or revision takes place.
Whereas this ordering of the formulas is on a meta-level, our goal in this work is to
propose an object-level ordering of formulas.

Ordering of worlds provide an intuitive way to model various kinds of logical opera-
tors, specially the epistemic ones. To mention a few, Lewis [26] proposed a plausibility
ordering of worlds to provide a semantics for the counterfactual statements. With the
goal of representing qualitative frameworks of belief in terms of the corresponding
probabilistic ones, Spohn defines a plausibility ordering of possible worlds in terms
of ordinal functions [30]. More recently, such orderings have been discussed in the
economics literature [4].

Our basic focus lies on giving a qualitative framework for differing strengths of
beliefs that an agent may have on different propositions (possibly, individuals), which
influence her decision making process. Semantically, rather than modeling in terms
of world ordering, we rely on set ordering for comparing belief strengths.

We should mention here that the idea of modeling epistemic notions in terms of
set orders is not really new. In [18], preferential structures are considered to give
semantics to a logic of relative likelihood. A preference ordering over worlds is lifted to
an ordering of sets of worlds. Plausibility measures over sets of worlds are considered
in [9] to give a semantics of default logic. These measures induce a set ordering which
provides an interpretation of the notion of belief (similar to our notion of plausibility
in Section 3.1). For a detailed overview, see [19].

While our interpretation of belief is given in terms of world ordering, a set ordering
is used to interpret strength of belief. This distinguishes our work from the ones
mentioned above. Moreover, this ordering of sets of worlds is only partly determined
by the ordering of the worlds. We discuss our reasons for this in later sections,
especially in Section 7.

1.2 Overview of the paper

With this background, we now provide a brief summary regarding the structure of
this paper. Explicit belief-ordering over formulas is introduced in Section 2, giving a
complete axiomatization of this belief logic with explicit ordering (KD45−O). Sev-
eral possible interpretations of the belief-ordered formulas, viz. plausibility, disbelief,
and preference are discussed in Section 3. Complete axiomatizations of plausibility
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logic (P -logic), logic of belief and plausibility (BP -logic) and logic of belief and dis-
belief (BD-logic) are also provided under their interpretations with respect to belief-
ordering. Relative expressive powers of the proposed logics are discusssed in Section
4. In Section 5, the inter-relationship of these ordering formulas and safe belief is
discussed, with a brief look at the relative expressive powers. Section 6 lifts the whole
framework to a multi-agent setting. A discussion on the relationship of the world
ordering and the corresponding set ordering is held in Section 7. Some conclusions
are drawn in Section 8.

2 Comparing strengths of beliefs explicitly

Modal logic is a useful tool to study knowledge and belief of human agents, which
has been a main issue of concern to philosophers as well as computer scientists. Von
Wright’s work [32] is generally accepted as initiating this line of research, which was
further extended by [22]. Subsequently a huge research area has been developed,
trying to provide answers to various philosophical issues as well as aiding into the
development of several areas of computer science, like distributed systems, security
protocols, database theory and others.

Possible-world semantics [25] has been used to model knowledge as well as belief.
An extensive discussion together with all pre-requisite definitions can be found in
[20]. In this work we are only concerned with beliefs of agents, comparison of their
strengths as well as some related notions like universality, safe beliefs, plausibility,
disbelief and others. Various debates and discussions are still going strong among
the philosophers regarding the axioms that characterize belief - for this paper we will
stick to the KD45 -model of belief.

In the following, we talk about Kripke structures as well as the plausibility models
[3, 2] as and when needed while talking about beliefs. The readers should note that
plausibility models are more general in nature in the sense that one can always build
up a KD45 Kripke structure from them, as described in [2].

With this brief overview, we now move on to introduce explicit ordering of beliefs
in the logical language, which is the essential new feature of this paper. This explicit
mention of such comparison of beliefs provides an informative and uniform way to
discuss certain relevant issues like disbelief, plausibility and others.

To introduce this comparison of strengths of beliefs explicitly in the logical language,
we add new relation symbols to the existing modal language of belief to form the
language of Belief logic with explicit ordering (KD45−O), whose language is defined
as follows:

Definition 2.1
Given a countable set of atomic propositions Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ϕ<B ϕ |

where p ∈ Φ.

The intuitive reading of the formula Bϕ is “ϕ is believed”, and that of ϕ<B ψ is
“belief in ϕ is at least as strong as belief in ψ”. We introduce the notations ϕ�B ψ
for (ϕ<B ψ) ∧ ¬(ψ<B ϕ) and ϕ≡B ψ for (ϕ<B ψ) ∧ (ψ<B ϕ). Intuitively, they can
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be read as “belief in ϕ is stronger than that in ψ” and “belief in ϕ and ψ are of same
strength”, respectively. We now move on to define a model for this logic.

Definition 2.2
A KD45−O model is defined to be a structureM = (S,≤,≥B , V ), where S is a non-
empty finite set of states, V is a valuation assigning truth values to atomic propositions
in states, ≤ is a quasi-linear1 order relation (a plausibility ordering) over S, and ≥B
is a quasi-linear order relation over P(S), satisfying the conditions:

1. If X ⊆ Y , then Y ≥B X.
2. If B is the set of all ≤-minimal worlds (the set of most-plausible worlds, called the

center), then B ⊆ X and B 6⊆ Y imply X >B Y , where X >B Y iff X ≥B Y and
not (Y ≥B X).

3. If X is non-empty, then X >B ∅.

The first condition says that larger sets of worlds are at least as plausible, the second
one, which we call the sufficient belief condition, that the sets containing the center
are more plausible than those not containing it; the third one that non-empty sets are
more plausible than the empty set. Truth on the center suffices to make an assertion
to be believed. Note that all the models are considered to be finite. This assumption
ensures the existence of minimal worlds in terms of the plausibility ordering of the
model. The truth definition for formulas ϕ in a KD45−O model M is as usual with
the following clauses for the belief and ordering modalities.

M, s |= Bϕ iff M, t |= ϕ for all ≤-minimal worlds t.
M, s |= ϕ<B ψ iff {t |M, t |= ϕ} ≥B {t |M, t |= ψ}.

We consider <B to be a global notion, if ϕ<B ψ is true anywhere in the model,
it is true everywhere. So, it is either true or false throughout the whole model; <B
is a global notion like B. Of course, being global in the model is strongly connected
with introspection. From the definition of �B , it follows that,

M, s |= ϕ�B ψ iff {t |M, t |= ϕ} >B {t |M, t |= ψ}.

Thus, �B is also a global notion. We will now show that the universal modality U
can also be expressed in the language. The modality Eϕ (the abbreviated form of
¬U¬ϕ) can be defined as follows:

Eϕ := ϕ�B ⊥,

Hence Uϕ (= ¬E¬ϕ) itself can be defined as ⊥<B ¬ϕ: Uϕ expresses that ϕ is true
in all possible worlds in the model, whereas Eϕ stands for existence of a possible world
in the model where ϕ is true. The formula ϕ�B ⊥, which defines Eϕ, expresses the
intuition that those worlds should be considered in the model of which the existence
is expressed by a positive strength of belief, those possibilities which the agent does
not want to exclude. Evidently, we have,

M, s |= Uϕ iff M, t |= ϕ for all worlds t.

1A binary relation ≤ on a non-empty set S is said to be quasi-linear if it is reflexive, transitive and linear, i.e. a

total pre-order. That we do take the order to be quasi-linear, but not more generally a pre-order is not a matter of

principle but rather of convenience.
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Alice’s belief states (as described in the introduction) can now be formally presented
as follows: Suppose each of the applicants’ names denotes the proposition that “he
(she) can do the job”. Cora�B Burt in the first case; B(Egon) ∧ (¬B(Deirdre) ∧
¬B(¬Deirdre)) implies that Egon�B Deirdre in the second case, with the third case
simply being Gregory�B Fiona again, and the fourth one, B(¬Harold)∧B(¬Irma),
and later Harold�B Irma. The readers can easily see that in the second case there
is some reasoning going on which leads to Egon being given the job, because Alice’s
belief in the ability of Egon is stronger than her belief in the ability of Deirdre.

2.1 Definability

We have introduced two orderings, a world ordering and a set ordering in the definition
of our KD45−O model (cf. Definition 2.2). We now show that we indeed need those
two orderings separately, that is, one cannot always be defined in terms of the other.

Let us first consider two models M1 and M2 as follows:

s1 s2 s3 s1 s2 s3
• <1 • <1 • • <2 • <2 •

M1 M2

In both these models {s1} is the center. The respective set orderings ≥1
B and ≥2

B are
given as follows:

≥1
B : {s1, s2, s3} >1

B {s1, s2} >1
B {s1, s3} >1

B {s1} >1
B {s2, s3} >1

B {s2} >1
B

{s3} >1
B ∅

≥2
B : {s1, s2, s3} >2

B {s1, s3} >2
B {s1, s2} >2

B {s1} >2
B {s2, s3} >2

B {s2} >2
B

{s3} >2
B ∅

We have that the world orderings ≤1 and ≤2 are the same, where as the different set
orderings ≥1

B and ≥2
B satisfy the conditions of Definition 2.2. Thus we have shown

that ≥B is not definable in terms of ≤.
In the same way, consider two models M1 and M2 as follows:

s1 s2 s3 s1 s3 s2
• <1 • <1 • • <2 • <2 •

M1 M2

Once again, in both these models {s1} is the center. The respective ≥1
B = ≥2

B is
given as follows:

≥B : {s1, s2, s3} >B {s1, s2} >B {s1, s3} >B {s1} >B {s2, s3} >B {s2} >B
{s3} >B ∅

Thus ≥B satisfies the conditions of Definition 2.2, whereas ≤1 and ≤2 are different
from each other. Thus we have shown that ≤ is not definable in terms of ≥B .

We should note here that the matter of definability of the plausibility ordering in
terms of the set ordering or vice versa is not hereby closed. It is possible, in fact in
both directions, to give definitions that by means of one of the orderings we can define
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an ordering of the other type with the right properties. For example, we will see that
defining an ordering of the worlds s and t by {s}≤B {t}, under certain conditions gives
a plausibility ordering. What we have shown here is that this plausibility ordering is
not uniquely determined by the set ordering, no choice of ordering is forced on us in
either direction. A more detailed discussion can be found in Section 7.

2.2 Axioms and Completeness

In this subsection we introduce the proof system KD45−O , and discuss its relation-
ship to the KD45−O-models. The system consists of the following axioms and rules.

Definition 2.3
The system KD45−O consists of

a) all KD45 axioms and rules for B

b) ordering axioms:
ϕ<B ϕ (reflexivity)

(ϕ<B ψ) ∧ (ψ<B χ) → ϕ<B χ (transitivity)

(ϕ<B ψ) ∨ (ψ�B ϕ) (linearity)

(Bϕ ∧ ¬Bψ)→ (ϕ�B ψ) (center)

(ϕ<B ψ)→ B(ϕ<B ψ) (introspection1)

(ϕ�B ψ)→ B(ϕ�B ψ) (introspection2)

⊥<B ¬(ϕ→ ψ) → (ψ<B ϕ) (U <B -axiom)

ϕ→ (ϕ�B ⊥) (existence)

(Bϕ�B ⊥)→ Bϕ (unique-center)

c) inclusion rule:
ϕ→ ψ (inclusion rule)
ψ<B ϕ

Let us discuss these axioms, and, more or less informally, their soundness for the
models introduced above. On the way, we will make clear that the S5-properties of
the universal modality U [16] are all provable in KD45−O . We will discuss possible
additional axioms in the subsection immediately after this one.

Since, by the set-ordering relation in the KD45−O model, ≥B is a reflexive, tran-
sitive and connected relation over P(S), and >B is the corresponding strict ordering,
the three basic ordering axioms are evidently sound. From these axioms it immedi-
ately follows that >B is a transitive relation and also that Uψ and ¬E¬ψ are provably
equivalent.

The soundness of the inclusion rule follows from the condition (1) that larger sets in
the models are at least as plausible as smaller sets. It has two important consequences.
The first one is the equivalence rule:

ϕ↔ ψ

ϕ ≡B ψ
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which implies that substituting logically equivalent formulas for each other in ordering
formulas leads to logically equivalent formulas. Since the rest is modal logic, this is
the only thing needed to show that substituting them for each other anywhere leads to
logically equivalent formulas. The second important consequence is the necessitation
rule for U (Ugen-rule). It holds because, if `KD45−O ϕ, then `KD45−O ¬ϕ → ⊥.
The inclusion rule now gives `KD45−O ⊥<B ¬ϕ, i.e., `KD45−O Uϕ.

Three axioms, by definition, involve U and/or E. We have the U <B -axiom, which
can be reformulated as:

U(ϕ→ ψ)→ (ψ<B ϕ),

and which is also connected to condition 1 in Definition 2.2. In fact, it expresses that
formulas that are equivalent in the model when replacing each other lead to formulas
that are equivalent in the model. Moreover, this axiom can be used to prove the K-
axiom for U

(
U(ϕ → ψ) → (Uϕ → Uψ)

)
. For, assume we have Uϕ and U(ϕ → ψ),

but not Uψ, i.e., ¬ψ�B ⊥. Then, by the first assumption we have⊥<B ¬ϕ, and hence
¬ψ�B ¬ϕ. By the second assumption, we have also U(¬ψ → ¬ϕ) (equivalence!), and
using the U <B -axiom, ¬ϕ<B ¬ψ, a contradiction.

Next we have the existence axiom, which can be reformulated as:

ϕ→ Eϕ

The existence axiom is basically the same as the ordered formula for Uϕ→ ϕ, one of
the S5-axioms for U . The last of the three is the unique-center axiom, which can be
reformulated as:

EBϕ→ Bϕ (unique-center)

It derives from the fact that the KD45−O models have a unique center B. It makes B
a global property: the principle Bϕ→ UBϕ readily follows by first proving E¬Bϕ→
¬Bϕ.

Since the ordering formulas are either globally true or globally false in the models,
we have the soundness of the two introspection axioms:

(ϕ<B ψ)→ B(ϕ<B ψ)
(ϕ�B ψ)→ B(ϕ�B ψ)

It immediately follows that:

¬(ϕ<B ψ)→ B¬(ϕ<B ψ)
¬(ϕ�B ψ)→ B¬(ϕ�B ψ)

The converses of all these implications above follow from the linearity axiom. This
means that all these ordering statements can be considered to be B-statements, i.e.
ϕ<B ψ, ϕ�B ψ, Uϕ, Eϕ are all B-statements (and remember that equivalent for-
mulas can be replaced by each other modulo provable equivalence). As a result, the
inclusion formula concerning the belief and the universal modality, viz. Uϕ→ Bϕ fol-
lows. And the Uψ → UUψ and ¬Uψ → U¬Uψ axioms for U follow as well; because
of the very significant property of Uψ being a B-statement the unique-center axiom
applies to U -statements as well. We have now covered all the S5-axioms for U .

We are now ready to prove the following completeness theorem, which is the most
basic and important result of this work.
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Theorem 2.4
KD45−O is sound and complete with respect to KD45−O models.

Proof. Soundness has been treated above. Moreover we will freely use U meaning
its translation into KD45−O , and we can assume that U has the S5-properties. We
will show completeness using finite sets of sentences.

Assume 0KD45−O ϕ. We will have to construct a countermodel to ϕ as a KD45−O-
model. We take a finite adequate set Φ containing ϕ. An adequate set can be defined
as follows: a set of formulas that is closed under subformulas containing with each
formula ψ (a formula equivalent in propositional logic to) ¬ψ, containing with Bψ and
Bχ (a formula equivalent to) B(ψ ∧ χ) and (a formula equivalent to) B(ψ ∨ χ). We
also need Φ to contain with each formula Bϕ the formula UBϕ. Finally, Φ contains
B> and B⊥. It is easy to see that any finite set is contained in a finite adequate set.
We use the Henkin method restricted to Φ. Consider the m.c. (maximally consistent)
subsets of Φ. In particular consider such an m.c. set Φ0 containing ¬ϕ.

The relations RB and RU are defined as follows:

PRBQ iff (1) for all Bϕ in P , ϕ as well as Bϕ are in Q,
(2) for all ¬Bϕ in P , ¬Bϕ in Q.

PRUQ iff (1) for all Uϕ in P , ϕ as well as Uϕ are in Q,
(2) for all ¬Uϕ in P , ¬Uϕ in Q

We have to show that RU is an equivalence relation and RB an Euclidean subrelation
of RU . Finally, within one U -equivalence class there is one, nonempty, set of B-
reflexive elements, which forms a B-equivalence class. Since all these things are
standard we skip this part.

We now take the submodel generated by RU from Φ0. The set of worlds W of our
model will be the set of worlds in this submodel and the RB and RU the restrictions
of the original RB and RU to this submodel. RU is now the universal relation.

As before, we write B for the set of RB-reflexive elements. The axiom Bϕ→ UBϕ
implies that this set of formulas is unique and a B-equivalence class. The world
plausibility ordering is given as follows: any world in B is more plausible than any
in W \ B, and within these two sets, the worlds are equi-plausible. So, with respect
to the modal operators B and U the model behaves properly, and we have a proper
world-ordering as well. We will now have to order P(W ) in a proper way.

Let us say that ψ represents subset X of W if X is the set of nodes where ψ is true,
which we may write as V (ψ) = X. We say that X is representable if for some Bψ
in Φ, ψ represents X. By the conditions on Φ the representable sets are closed under
unions and intersections, and contain W itself and the empty set.

The representable subsets of Φ are quasi-linearly ordered by the relation ≥1 defined
by V (ψ) ≥1 V (χ) iff ψ<B χ is true in the model, V (ψ) >1 V (χ) iff ψ�B χ is true in
the model. This follow sfrom the first three ordering axioms.

Moreover, if V (ψ) ⊆ V (χ) then V (ψ) ≥1 V (χ) (subset condition), by the axiom:
U(χ→ ψ)→ ψ<B χ. Finally if V (ψ) properly contains B and V (χ) does not, then
V (ψ) >1 V (χ) (sufficient belief condition) by the axiom Bψ ∧ ¬Bχ→ ψ�B χ.

So, ≥1 behaves properly on the representable elements of P(W ). What remains is
to extend ≥1 to an ordering ≥ with the right properties over all of P(W ).

Take an arbitrary subset X of W . We define R(X) to be the largest subset of X that
is representable. That such a set exists follows from the fact that the representable
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subsets are closed under finite unions and the finiteness of the model.
We now define X ≥ Y iff R(X) ≥1 R(Y ). This immediately makes ≥ a quasi-linear

order. That ≥ satisfies the subset condition follows from the fact that, if X ⊆ Y , then
R(X) ⊆ R(Y ).

We will conclude this proof with a lemma showing that B is representable, i.e.
B=R(B). From that result it follows that, if B ⊆ X, then B ⊆ R(X). This is clearly
sufficient to ensure the sufficient belief condition (condition 2 in Definition 2.2): if
B 6⊆ Y then B 6⊆ R(Y ) ⊆ Y . So, once we finish the proof of the following lemma, we
are done.

B is representable: Consider w not in B. Then it is not the case that wRBw.
This means that, for some particular B(ψw) in Φ, B(ψw) is in w but ψw is not.
(Other possibilities are excluded because we already know that B(ψw) and ¬B(ψw)
true everywhere or nowhere.) Note that we have ψw true all over B. Consider the
conjunction ψ of all ψw for w in the complement of B. B(ψ) is a member of Φ and ψ
is true in all elements of B, but it is falsified at all elements u in the complement of
B, since ψ implies ψu and ψu is falsified in u. We have shown that B is represented
by ψ.

This completes the proof of the theorem.

Since the countermodel constructed is finite, we also have that the logic KD45−O
is decidable.

2.3 Additional principles

Before ending this section we would like to discuss some principles that might be
added to the system KD45−O . For the basic results we wanted to obtain in this
paper we did not need them, but they are definitely worth thinking about as possible
additions to KD45−O . The four following principles have been arranged in order
of strength. The second principle will be useful when we discuss in Section 7 the
possibilities of defining the plausibility ordering in terms of the set ordering.

1. (ϕ�B ⊥)↔ (>�B ¬ϕ),
2. (B¬ψ ∧ ¬B¬ϕ)→ (ϕ�B ψ).
3. (ϕ�B ψ)→ (¬ψ�B ¬ϕ).
4. (ϕ�B ψ)↔ (ϕ ∧ ¬ψ)�B (ψ ∧ ¬ϕ).

Principle (1) (ϕ�B ⊥) ↔ (>�B ¬ϕ), says that > and ⊥ play a dual role. With
the existence axiom it implies ϕ → (>�B ¬ϕ), if ϕ is true somewhere, then ¬ϕ is
less believable than a tautology. The right to left direction is already provable in
KD45−O , as the reader can check by the semantics (completeness has been proved!).
An equivalent formulation is (ϕ<B >) ↔ (⊥<B ¬ϕ). To make (1) true, the models
need an extra clause, saying that,

if S 6= X then S >B X.
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This condition is dual to Condition 3 of Definition 2.2. Thus (1) seems a very rea-
sonable addition as it makes the models more symmetric. Also Uϕ can by its use be
more simply and intuitively defined as ϕ<B >.

Principle (2) (B¬ψ ∧ ¬B¬ϕ) → (ϕ�B ψ) expresses another form of symmetry,
this time connected with Condition 2 on the models. It expresses that if a set lies
completely outside the center, then it is less plausible than a set that intersects with
the center:

if X ∩ B 6= ∅ and Y ∩ B = ∅, then X >B Y .

This is of course equivalent to

if X 6⊆ B and Y ⊆ B, then X >B Y .

In the system as it was presented one can only get ¬ψ�B ¬ϕ from B¬ψ ∧¬B¬ϕ. In
the final discussion we will use this axiom to define the world order in terms of the
set order.

After the above discussion the more general principle (3) (ϕ�B ψ)→ (¬ψ�B ¬ϕ)
that implies both (1) and (2) immediately springs to mind. It expresses that

X >B Y iff Y >B X.

Principle (3), if implemented, would definitely strengthen the probabilistic flavor of
the axiomatization. We did not mention this before but, of course, KD45−O can be
considered to be a weak axiomatization of qualitative probability.

Principle (4) (ϕ�B ψ) ↔ ((ϕ ∧ ¬ψ)�B (ψ ∧ ¬ϕ)) is in the same vein and even
stronger. To see that (4) implies (3) just write (4) out for ¬ψ and ¬ϕ. This principle
is based on the idea that if ϕ is more believable than ψ, then that can only be based
on the non-intersecting parts of the extensions of ϕ and ψ: the intersection of ϕ and
ψ should be irrelevant in the estimation of their relative believability. In terms of the
semantics:

X >B Y iff X −Y >B Y −X.

The completeness proof for a system including one of these principles would hardly
change, it would suffice to note that a principle is satisfied in the model that is
constructed.

3 Applying the explicit ordering framework

We now show that the explicit notions of ordering for comparing strengths of beliefs
in the logical language aid in expressing several other related concepts in a uniform
way, viz. plausibility, disbelief, and preference.

3.1 Plausibility

Comparing the strength of beliefs explicitly has its various advantageous applications.
In this subsection we concentrate on plausibility. By plausibility of a proposition we
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generally mean that we tend to believe in its happening rather than its not happening.
That is the interpretation we take here. Hence, in terms of ordered formulas, Pϕ can
be expressed as ϕ�B ¬ϕ. Of course, there are other possible notions of plausibility,
but here we interpret Pϕ as ‘more plausible than not’. We now explore this notion
of ‘plausibility’ in terms of belief ordering.

An important principle that will be valid for the plausibility operator P under this
interpretation is U(ϕ → ψ) → (Pϕ → Pψ). This holds because if U(ϕ → ψ), not
only ψ<B ϕ, but U(ϕ→ ψ) implies U(¬ψ → ¬ϕ), so also ¬ϕ<B ¬ψ. So, if Pϕ, i.e.,
ϕ�B ¬ϕ, then ψ�B ¬ϕ, so ψ�B ¬ψ, i.e., Pψ. This principle leads to consequences
like P (ϕ ∧ ψ)→ Pϕ.

An important principle that we do not want to be valid is Pϕ ∧ Pψ → P (ϕ ∧ ψ),
This would make the modal logic of P a normal modal logic (of weak belief), because
it is equivalent to Pϕ ∧ P (ϕ→ ψ)→ Pψ, the K-axiom of modal logic, which makes
a logic normal. The principle Pϕ ∧ Pψ → P (ϕ ∧ ψ) is not intuitively valid. For
example, you may judge it more plausible than not that your next client will be male.
Similarly, you may consider it to be plausible that your next client will be a foreigner.
But, it does not follow that it is more plausible than not that the next client will be
a foreign male, most of one’s foreign clients may be female. Our proposed semantics
clearly does not make it valid.

This discussion makes plausibility logic an important test case for our semantics. As
we will see plausibility logic does turn out to be a monotonic logic and for those logics
a semantics using sets of worlds instead of single worlds is standard, e.g. neighborhood
models (see for a more complete discussion Subsection 3.1.1).

We now move on to exhibiting an independent axiomatization of the plausibility
logic P . The language of the P -logic is given by

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ

We read Pϕ as “ϕ is plausible”. As mentioned above, the intuitive meaning of Pϕ
can be captured by the formula ϕ�B ¬ϕ, and as such, the truth definition of Pϕ in
a KD45−O model is given by,

M, s |= Pϕ iff {t |M, t |= ϕ} >B {t |M, t |= ¬ϕ}.

Definition 3.1
The system of P -logic consists of the following axioms and rules:

(a) all propositional tautologies and inference rules

(b) plausibility axioms:
Pψ ∧ Pϕ→ P (ψ ∧ Pϕ) (P∧)

¬Pϕ→ P¬Pϕ (P5)

Pϕ→ ¬P¬ϕ (PD)

P>

c) monotonicity rule:
ϕ→ ψ (monotonicity rule)

Pϕ→ Pψ
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Before giving a completeness proof of this system let us make some remarks on the
axioms. The monotonicity rule implies the necessitation rule ϕ/Pϕ, by the axiom
P>. Moreover, from the monotonicity rule the equivalence rule,

ϕ↔ ψ (equivalence rule)
Pϕ↔ Pψ

immediately follows. This, in its turn means that provable equivalents can be sub-
stituted for each other without impairing provability. As a second plausibility axiom
one might have expected Pψ ∧ ¬Pϕ → P (ψ ∧ ¬Pϕ), but this follows from P5 and
PD; just note that by these axioms ¬Pψ and P¬Pψ, are provably equivalent.

On the way to proving completeness we prove a lemma. In its statement and proof
we will use the following notation: ϕ[χ/ψ] stands for a formula arising from ϕ by
replacing some occurrences of ψ by χ. There may be some unclarity here because it is
not a unique formula that is defined in this manner, but since our results are valid for
any formula obtained in this way it does not matter. One could be more precise by
considering formulas with an additional propositional variable p not used elsewhere.
Then one can arrange it so that, if ϕ is θ[ψ/p], then ϕ[χ/ψ] is θ[χ/p].

Lemma 3.2
Any formula in P -logic is equivalent to a formula with P -depth at most one.

Proof. For the purpose of the proof we first derive the following schemes:

1. Pψ → (ϕ↔ ϕ[>/Pψ])
2. ¬Pψ → (ϕ↔ ϕ[⊥/Pψ])

We prove these simultaneously by induction on the complexity of formulas ϕ with
possible occurrences of > and ⊥. In the base case, that is, for the atomic propositions,
propositional constants and Pψ, the result follows immediately.

Induction step. This is trivial for the Boolean connectives. So, it suffices to prove
it for Pϕ assuming it holds for ϕ. The induction hypothesis for the first scheme says

(Pψ ∧ ϕ)↔ (Pψ ∧ ϕ[>/Pψ]) (IH)

Now assume Pψ and Pϕ. By use of the axiom P∧, P (ϕ ∧ Pψ) follows. From IH
it follows that P (ϕ[>/Pψ] ∧ Pψ) and hence P (ϕ[>/Pψ]). The proof for the second
scheme is very similar.

To see that these schemes imply that each formula in P -logic is equivalent to a
formula with P -depth at most one, just note that ` ϕ ↔ ((Pψ ∧ ϕ) ∨ (¬Pψ ∧ ϕ)).
Now, if we want to get rid of occurrences of Pψ in ϕ we can replace ϕ by ((Pψ ∧
ϕ[>/Pψ])∨ (¬Pψ∧ϕ[⊥/Pψ])). One applies this of course to Pψ with no occurrences
of P in ψ. One consecutively removes all occurrences of such Pψ from ϕ to obtain
the desired result.

Theorem 3.3
P -logic is complete with respect to the KD45−O models.

Proof. Using the lemma we now show that any consistent set has a model. Assume
we have a consistent set in the P -logic. It can be extended to a maximal P -consistent
set, say Γ. Since we can restrict attention to formulas which are Boolean combinations
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of atoms and formulas of the form Pϕ where ϕ no longer contains P , a maximal
consistent set is essentially only a set of atoms, negations of atoms, and such Pϕ’s
and ¬Pϕ’s.

Let us just take a finite number of atoms to keep things finite, and let us take a
maximal consistent set Γ of the form described. We now make a KD45−O-model
where Pϕ gets interpreted as ϕ�B ¬ϕ. The worlds will simply be defined by a num-
ber of atoms being true in it and the rest of the atoms false. Let us now consider
the following model, M= (S,≤,≥B , V ), where S is the set of all such worlds. The
ordering of the subsets is as follows: There are 5 equivalence classes in the ordering
starting with the highest grade of believability. We take membership of those classes
to determine the degree of belief in the sets. As representing formulas we just take
purely propositional ones.

(1) The whole set, which is of course represented by > (or other tautologies).
(2) The sets represented by those ϕ for which Pϕ is in Γ (except for >).
(3) The sets represented by those ϕ for which ¬Pϕ is in Γ as well as ¬P¬ϕ.
(4) The non-empty sets represented by ϕ for which P¬ϕ is in Γ.
(5) The empty set, which is of course represented by ⊥.

These are all possibilities because of the axiom Pϕ→ ¬P¬ϕ. Finally we take B, the
center, to be the whole set (so, there are no beliefs except the trivial one in >).

The two things we have to check are: First, that, if a set is in class (2), then
any larger one will be in (2) as well (or in (1)). This follows from the monotonicity
rule, since by the fact that the worlds are determined by the atoms true in them all
inclusions are logical inclusions. Similarly for the other classes. Second, that, if a set
X contains all of B, and another set Y doesn’t, then X >B Y . That is trivial: X has
to be B, the whole set, and Y is not.

Finally, we see that Γ is satisfied by the world in the model that makes exactly its
atoms true. So, for each consistent set we can have a model in KD45−O . Thus, the
axioms and rules given in Theorem 2.6 axiomatize the P -logic of ‘more plausible than
not’. It is also worth mentioning why Pϕ∧Pψ → P (ϕ∧ψ) will fail in general. There
may be sets in (2) the intersection of which is not in (2).

Evidently, Pϕ is a global notion - its value does not vary through the model. Again,
P is clearly an introspective notion.

Let us finally note that an interpretation of Pϕ as ϕ having probability more
than 0.5 (or any other fixed number between 0.5 and 1) leads to exactly the P -
axioms, provided one considers the probability statements themselves to always have
probability 1.

3.1.1 Neighborhood models
It is good to mention that a different, more standard but equivalent semantics for
the P -logic exists: neighborhood models [7]. A neighborhood frame consists of a set
of states S and a function ν that maps each state s onto a set of subsets of S such
that, if X∈ ν(s) and X ⊆ Y , then Y ∈ ν(s). A neighborhood model is a neighborhood
frame with a valuation as usual. A formula Pϕ will be true in s if V (ϕ)∈ ν(s).

It is clear that in our case the set of states S together with the (constant) function
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ν that maps each state to {X |X >B S−X} is a neighborhood frame. The cor-
responding neighborhood models will give exactly the same truth conditions as our
models. The special properties that the neighborhood frames for the P -logic have
beyond the standard ones mentioned above are:

• The function ν is constant on S,
• If X ∈S, then S−X 6∈ S,
• ν(s) is non-empty, it contains S.

The logics corresponding to the neighborhood frames are called monotonic logics [21].
The minimal monotonic logic has beyond propositional logic just the axiom P> and
the monotonicity rule.

The fact that this standard semantics for monotonic logics is for this particular case
equivalent to our semantics with set ordering strengthens our claim that one needs to
involve sets of states in the semantics to discuss strength of belief.

3.1.2 Belief and plausibility
We now consider a system having both belief and the plausibility operator, viz. the
BP -system. It is a very natural extension of the P -logic and will provide pointers to
discuss logics of belief and disbelief in the next subsection. The language is that of
the P -logic, together with the additional modal operator B for belief.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ | Bϕ

Definition 3.4
BP -logic is axiomatized by the following axioms and rules:

a) all propositional tautologies and inference rules
b) all KD45 axioms and rules
c) all P axioms and rules
d) special axioms:

Bϕ→ Pϕ

Pϕ→ BPϕ

It is easy to see that ¬Pϕ→ B¬Pϕ is derivable in BP -logic.

Theorem 3.5
BP -logic is complete with respect to the KD45−O-models.

The proof is very similar to that for the P -logic. It starts with proving that the
axioms force all formulas to be equivalent to Boolean combinations of atoms and
formulas of the form Pϕ and Bϕ, where ϕ is Boolean. Analogously to the P -logic
one first has to prove

1. Pψ → (ϕ↔ ϕ[>/Pψ])
2. ¬Pψ → (ϕ↔ ϕ[⊥/Pψ])
3. Bψ → (ϕ↔ ϕ[>/Bψ])
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4. ¬Bψ → (ϕ↔ ϕ[⊥/Bψ])

One needs the theorem Bϕ → PBϕ, which follows immediately from Bϕ → BBϕ
and Bϕ→ Pϕ. Instead of five grades of belief we will now have seven, e.g. the second
class (in proof of Theorem 3.3) splits into sets represented by ϕ with Bϕ true and the
ones representable by ϕ with ¬Bϕ and Pϕ true.

It is noteworthy that the principle Bϕ∧Pψ → P (ϕ∧ψ) of [5] fails in the BP -logic.
Let us consider the model M as follows:

s1 s2 s3
• ≡ • < •
p, q p,¬q ¬p, q

The center is then {s1, s2}. The set ordering ≥B is given as follows:

≥B : {s1, s2, s3} >B {s1, s2} >B {s1, s3} >B {s2, s3} >B {s1} >B {s2} >B
{s3} >B ∅

In this model Bp and Pq hold, but P (p∧q) does not hold. Thus we have our required
counterexample. Also in this case we have chosen our model in such a way that the
additional principles hold in it.

3.2 Disbelief

Disbelief in a proposition is governed by exactly the opposite situation to the one
discussed in the previous subsection, Dϕ can be expressed as ¬ϕ�B ϕ, that is P¬ϕ.

With the huge amount of work going on in logics of belief and belief revision,
consideration of disbelief as a separate epistemic category came to fore in the latter
part of last decade [13, 14]. Consideration of changing or revising disbeliefs as a
process analogous to belief revision was taken up by [15]. Belief-disbelief pairs i.e.
simultaneous consideration of belief and disbelief sets were also taken up [8, 6] through
which various connections of possible inter-connectivity of beliefs and disbeliefs have
come into focus. As mentioned earlier our notion of explicit belief ordering provides
another path into expressing the concept of disbelief.

The basic idea for disbelieving a proposition is that the inclination to believe in
its negation is stronger than that to believe it. Consequently, disbelieving is a much
weaker notion than believing the negation of the proposition, but it should imply that
one does not believe in the proposition. In other words, Dϕ is implied by B¬ϕ and
implies ¬Bϕ but not the other way around in either case.

In general, if a person faces a decision based on whether a certain state of affairs
is the case or an event happens, she may not have enough evidence to believe that
the state of affairs is the case or is not the case. Then she may base her decision
on whether she thinks the state of affairs plausible or disbelieves in it. Only in the
case that her strength of belief in the two possibilities is equal, translated into our
framework as ϕ ≡B ¬ϕ, it is a real tossup for her.

Various principles for the ‘disbelief’ operator together with the ‘belief’ one have
been discussed in [14] in the autoepistemic logic framework of [28]. As such, the
possible world semantics provided there which is based on separate sets of worlds
for beliefs and disbeliefs is not very interesting, and suffers from ‘disjointedness’ as
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well as ‘mirror-image’ problems. These questions will not arise in the semantics we
propose here. The basic reason is the fact that ‘disbelief’ is given a global stance in
contrast to ‘belief’ which is apparent from their respective interpretations. This also
emphasizes the fact that disbelieving something is different from both ‘not believing’
as well as ‘believing the negation’.

We now focus on getting a more feasible logic of belief and disbelief in similar lines
to BP -logic introduced earlier. From our formal understanding Dϕ is same as P¬ϕ
and hence we get the following dual axiomatization of the BD-logic .

Theorem 3.6
BD-logic is complete and its validities are completely axiomatized by the following
axioms and rules:

a) all propositional tautologies and inference rules
b) all KD45 axioms and rules
c) disbelief axioms:
Dψ ∧Dϕ→ D(ψ ∨ ¬Dϕ)
¬Dϕ→ DDϕ

Dϕ→ ¬D¬ϕ
D⊥

d) special axioms:
Bϕ→ D¬ϕ
Dϕ→ BDϕ

e) anti-monotone rule:
if ϕ→ ψ then Dψ → Dϕ.

The proof follows similarly as in the case of BP -logic. Some interesting validities
of this logic are,

• B¬ϕ→ Dϕ

• Dϕ→ ¬Bϕ
• ¬Dϕ→ B¬Dϕ
• ¬Dϕ→ DDϕ

• ¬Bϕ→ DBϕ

As in the cases of P -logic and BP -logic, the corresponding intuitively incorrect prin-
ciple, Dϕ ∧ Dψ → D(ϕ ∨ ψ) can also be avoided in the BD-logic. It may be very
hard to believe that your friend Craig is the traitor and even that another close friend
Denis is the traitor, but circumstantial evidence may make it perfectly plausible that
one of them is.

3.3 Preference

There is a very close relationship between an agent’s beliefs and her preferences,
which has been extensively discussed in [24, 27]. Based on the ideas from optimality
theory, intrinsic preference on the basis of priority sequences P1 >> . . . >> Pn is
formulated. Here, the Pi ′s are predicates with exactly one free variable. Preferences
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over objects can be defined in terms of these sequences. The basic idea is to define
objective preference by:

Pref(d, e)⇔ ∃i(Pid ∧ ¬Pie) ∧ ∀j < i (Pjd↔ Pje)

Let us give an example. Alice again has applicants for a simple position. She still
judges them on a yes-no basis, but this time in regard to three aspects: are they
strong enough (P1), can they drive a truck sufficiently well (P2), do they understand
English well enough (P3). These aspects are strictly ordered in the way described
above, i.e., if Jennifer is strong but a poor driver who doesn’t speak English, she is
graded higher objectively than Karl, an excellent driver with fluent english, but a
weakling.

If these aspects are subject to belief one can consider subjective preferences over ob-
jects. Several options to implement this idea are considered in the papers mentioned,
their meanings are more or less obvious.

Pref(d, e)⇔ ∃i(B(Pid) ∧ ¬B(Pie) ∧ ∀j < i(B(Pjd)↔ B(Pje)))

Pref(d, e)⇔ ∃i(¬B(¬Pid) ∧B(¬Pie) ∧ ∀j < i(B(¬Pjd)↔ B(¬Pje)))

Pref(d, e)⇔ ∃i ((B(Pid)∧¬B(Pie))∨(¬B(¬Pid)∧B(¬Pie))∧∀j < i ((B(Pjd)↔
B(Pje)) ∧ (B(¬Pjd)↔ B(¬Pje))))

The first option directly subjectivizes the original idea, the criteria are made a matter
of belief; truth and falsity have been replaced by believing and not believing. If Alice
believes that Jennifer is strong but has a low opinion about her other capabilities,
while she does not believe that Karl is strong but does believe he can drive a truck
well and that he speaks english she will prefer Jennifer.

In the second option ‘believing that not’ is more central. Returning to the example,
let us change things only in so far that Alice is now not able to make up her mind
about the strength of Karl, she does not believe he is strong enough but she also
doesn’t believe he isn’t. Under the first option she will still prefer Jennifer. But,
under the second option she would only disqualify Karl immediately if she believes
he isn’t strong enough – she doesn’t, so under that option she rates Karl higher than
Jennifer whom she believes not to be a good driver.

It is clear that the above three approaches are different ways of expressing that up
to a certain level of the priority sequence the degree of belief in the objects d and e
having the mentioned properties is the same and that at the next level the degree of
belief in d having the right property is greater than that in e having it. With the
availability of explicit ordering in the language we can express this in a general way
as below, giving one uniform definition.

Pref(d, e)⇔ ∃i (Pid�B Pie ∧ ∀j < i (Pjd ≡B Pje)).

In specific models one may then apply this definition of Pref to obtain the effect
of one of the three approaches above, or use any other fitting procedure. As in the
introduction, we point out that for many decisions involving preference it may be
unavoidable to grade the priorities in some way or other. The system described is a
basic approach just tailored to decisions involving yes-no questions.
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4 Relative expressiveness

Till now we have proposed various logics to describe different but related notions in
belief and plausibility. In this section we study the relative expressive powers of the
languages of these logics. To aid our discussion, let us first list the different languages
as follows:

- L1: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ϕ<B ϕ
- L2: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ
- L3: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ<B ϕ
- L4: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Pϕ

Let Li > Lj denote that the language Li is more expressive than Lj . We now do a
comparative expressiveness study for these languages.

Theorem 4.1
The only relations Li > Lj that exist between the languages L1, . . . ,L4 are L1 > L2

and L1 > L3 > L4.

Proof. We prove the inequalities as follows:

• L1 > L2

Let us consider two models M1 and M2 as follows:

s1 s2 s1 s2
• ≡1 • • ≡2 •
p ¬p p ¬p

M1 M2

The center is then {s1, s2}. The respective ≥1
B and ≥2

B are given as follows:

≥1
B : {s1, s2} >1

B {s1} >1
B {s2} >1

B ∅

≥2
B : {s1, s2} >1

B {s2} >1
B {s1} >1

B ∅

We have that the language L2 cannot distinguish between the models, whereasM1 |=
p�B ¬p, and M2 |= ¬p�B p. Thus L1 > L2. It also follows that L2 6> L4 (because
p�B ¬p is Pp) and L2 6> L3.

• L1 > L3

Let us consider two models M1 and M2 as follows:

s1 s2 s1 s2
• ≡1 • • <2 •
p ¬p p ¬p

M1 M2

The center of M1 is then {s1, s2}. The center of M2 is {s1}. The respective ≥1
B =

≥2
B = ≥B is given as follows:
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≥B : {s1, s2} >B {s1} >B {s2} >B ∅

We have that the language L3 cannot distinguish between the models, whereasM1 |=
¬Bp, andM2 |= Bp. Thus L1 > L3. It also follows that L3 6> L2, and hence L4 6> L2.

• L3 > L4

Let us consider two models M1 and M2 as follows:

s1 s2 s3 s1 s2 s3
• ≡1 • <1 • • ≡2 • <2 •
p, q p,¬q ¬p, q p, q p,¬q ¬p, q

M1 M2

The center is then in both cases {s1, s2}. The respective ≥1
B and ≥2

B are given as
follows:

≥1
B : {s1, s2, s3} >1

B {s1, s2} >1
B {s1, s3} >1

B {s2, s3} >1
B {s1} >1

B {s2} >1
B

{s3} >1
B ∅

≥2
B : {s1, s2, s3} >2

B {s1, s2} >2
B {s2, s3} >2

B {s1, s3} >2
B {s2} >2

B {s1} >2
B

{s3} >2
B ∅

We have that M1 |= (p ∧ q)�B (p ∧ ¬q), and M2 |= (p ∧ ¬q)�B (p ∧ q), whereas the
language L4 cannot distinguish between the models, since in both cases all 2 -element
sets are more plausible than all 1-element sets and therefore the order between a set
and its complement is unchanged. Thus L3 > L4.

We have now made all relevant comparisons of the strength of the four languages.
This completes the proof.

We do remark that adding one of the additional axioms of Section 2.3 does not
change the situation. We did not stress this in the proof but even the additional
axiom (4) is satisfied in all the models in the proof above.

5 Safe belief

The notion of ‘safe belief’ has been introduced in [2]. The authors gave this name
to single out those beliefs “that are safe to hold, in the sense that no future learning
of truthful information will force us to revise them.” It closely related to “Stalnaker
knowledge” [31] where evidence is considered as true information. The safe belief
modality is generally denoted by �. Evidently, ‘safe beliefs’ are truthful (�ϕ |= ϕ)
and positively introspective (�ϕ |= ��ϕ), but not necessarily negatively introspective
(in general, ¬�ϕ 6|= �¬�ϕ).

Adding safe belief to our ordering framework is interesting both from the technical
as well as intuitive point of view. This is because in the interpretation of [2] there is a
very close relationship between the notion of safe belief and the plausibility ordering.

In the plausibility models, the truth definition of �ϕ is given by the following clause:

M, s |= �ϕ iff M, t |= ϕ for all worlds t ≤ s.
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which says that ϕ can be safely believed at some world s if it holds at all the worlds
which are at least as plausible as s. In the following we will introduce the safe belief
modality in the setting of KD45−O , and give a complete axiomatization of this logic.
The language of the logic KD45−OS is defined as follows:

Definition 5.1
Given a countable set of atomic propositions Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | �ϕ | ϕ<B ψ

where p ∈ Φ.

We now present the axioms of the logic KD45−OS in which the operators U and
E are defined as before. Together with the axioms and rules of the KD45 -logic of
beliefs, and the relevant ordering axioms, viz. reflexivity, transitivity, linearity, center,
existence, U <B -axiom and the S4-axioms and rules for the safe belief � operator,
we will have the following extra axioms,

(�ϕ ∧ ¬�ψ)→ (ϕ�B ψ) (�-order)
(ϕ<B ψ)→ �(ϕ<B ψ) (�-introspection1)
(ϕ�B ψ)→ �(ϕ�B ψ) (�-introspection2)

The �-ordering axiom generalizes the center axiom. It expresses that, if a set X
contains all worlds with a certain grade of plausibility or higher, and Y does not,
then X >B Y . In addition to all of these, the following axiom relates the operator �
with B.

�ϕ→ Bϕ (�B-axiom)

The introspection axioms (1-2) and the unique-center axiom of KD45−O are derivable
from KD45−OS . We can also derive:

Uϕ→ �ϕ.

Theorem 5.2
The logic KD45−OS is sound and its validities can be completely axiomatized by the
following axioms and rules.

a) all KD45−O axioms and rules

b) S4-axioms and rules for the modal operator �

c) ordering axioms:
ϕ<B ϕ (reflexivity)

(ϕ<B ψ) ∧ (ψ<B χ) → ϕ<B χ (transitivity)

(ϕ<B ψ) ∨ (ψ�B ϕ) (linearity)

U(�ϕ→ �ψ) ∨ U(�ψ → �ϕ) (�-linearity)

(Bϕ ∧ ¬Bψ)→ (ϕ�B ψ) (center)

(�ϕ ∧ ¬�ψ)→ (ϕ�B ψ) (�-order)

(ϕ<B ψ)→ �(ϕ<B ψ) (�-introspection1)
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(ϕ�B ψ)→ �(ϕ�B ψ) (�-introspection2)

U(ϕ→ ψ) → (ψ<B ϕ) (U <B -axiom)

ϕ→ Eϕ (existence)

d) �ϕ→ Bϕ (�B-axiom)

e) inclusion rule:
ϕ→ ψ

ψ<B ϕ

Proof. Assume 0KD45−OS ϕ. We will have to construct a countermodel to ϕ which
is a KD45 −OS -model. We take a finite adequate set Φ containing ϕ. Consider the
m.c. (maximally consistent) subsets of Φ. In particular consider such an m.c. set Φ0

containing ¬ϕ.
Define the plausibility ordering among m.c. sets as follows: P ≤ Q iff for all �ψ in

the adequate set, if �ψ is in P , then �ψ and ψ are in Q. Then immediately we have
that ≤ is reflexive and transitive.

The relations RB and RU are defined as follows:

PRBQ iff (1) for all Bϕ in P , ϕ as well as Bϕ are in Q,
(2) for all ¬Bϕ in P , ¬Bϕ in Q.

PRUQ iff (1) for all Uϕ in P , ϕ as well as Uϕ are in Q,
(2) for all ¬Uϕ in P , ¬Uϕ in Q

As in the proof of Theorem 2.4, we can show that RU will be an equivalence relation
and RB an Euclidean subrelation of RU .

It follows from the �-introspection axioms that Uϕ → �ϕ is derivable, and so ≤
is a subrelation of RU . From the axioms relating � and B, it follows that RB is a
subrelation of ≤.

We now take the submodel generated by RU from Φ0. The set of worlds W of our
model will be the set of worlds in this submodel and the RB and RU the restrictions
of the original RB and RU to this submodel. RU is now the universal relation. As
before, we write B for the set of RB-reflexive elements. Because of the �-linearity
axiom ≤ becomes linear in this model. So, with respect to the modal operators B and
E and � the model behaves properly. We will now have to order P(W ) in the proper
way, which can be done as in the proof of Theorem 2.4, using the �-order axiom in
addition to the center axiom.

Similar to the work done in [2], belief and conditional belief can be expressed in
terms of safe belief and the existential modality as,

Bψϕ := Eψ → E(ψ ∧�(ψ → ϕ));
Bϕ := B>ϕ.

We do not talk about conditional belief here but belief can be defined in terms of the
existential modality and safe belief (and therefore, in terms of safe belief and belief
ordering) as follows:
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Bϕ := B>ϕ
:= E> → E(> ∧�(> → ϕ))
:= E(> ∧�(> → ϕ))
:= E�(> → ϕ)
:= E�ϕ

Once we have in this manner the modal operator B as a defined concept we can
easily derive all its well-known properties in KD45−OS , but if that holds fully for its
relations with <B remains to be seen.

5.1 Relative expressiveness

We have already seen that belief can be expressed in terms of belief ordering and safe
belief, but similar other questions arise. Can safe belief be expressed in terms of belief
and belief ordering? Can belief ordering be expressed in terms belief and safe belief?
To answer these questions, we first list the different languages as follows:

- L5: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | �ϕ | ϕ<B ϕ
- L6: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | �ϕ
- L7: ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ϕ<B ϕ

Theorem 5.3
The only relations Li > Lj that exist between the languages L5, L6 and L7 are
L5 > L6 and L5 > L7.

Proof. We prove the inequalities as follows:

• L5 > L6

Let us consider two models M1 and M2 as follows:

s1 s2 s1 s2
• ≡1 • • ≡2 •
p ¬p p ¬p

M1 M2

The center is then in both cases {s1, s2}. The respective orderings ≥1
B and ≥2

B are
given as follows:

≥1
B : {s1, s2} >1

B {s1} >1
B {s2} >1

B ∅

≥2
B : {s1, s2} >1

B {s2} >1
B {s1} >1

B ∅

We have that the language L6 cannot distinguish between the models, whereasM1 |=
p�B ¬p, and M2 |= ¬p�B p. Thus L5 > L6. It also follows that L6 6> L7.

• L5 > L7

Let us consider two models M1 and M2 as follows:
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s1 s2 s3 s1 s2 s3
• ≡1 • <1 • • <2 • ≡2 •
p p ¬p p p ¬p

M1 M2

The center inM1 is {s1, s2}, and the center inM2 is {s1}. The respective ≥1
B = ≥2

B

= ≥B is given as follows:

≥B : {s1, s2, s3} >B {s1, s2} >B {s1, s3} >B {s1} >B {s2, s3} >B {s2} >B
{s3} >B ∅

We have thatM1, s2 |= �p, andM2, s2 |= ¬�p. The language L7 cannot distinguish
between the models. Thus L5 > L7. It also follows that L7 6> L6.

We have now made all relevant comparisons of the strength of these three languages.
This completes the proof.

6 Multi-agent system

The main focus of this paper has been on beliefs and strengths of beliefs of a single
agent. The whole idea can be generalized to the multi-agent framework which is what
we do in the following. The language of the logic of belief ordering in the multi-agent
case, KD45−OM can be defined as follows:

Definition 6.1
Given a finite set of agents A, and a countable set of atomic propositions Φ, formulas
ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Baϕ | ϕ<Ba ψ

where p ∈ Φ, a ∈ A.

The indices in the belief modality and in the ordering formula denote the agents
whose beliefs or strengths of beliefs are considered. The operators �Ba and Ua are
defined in the usual way. The fact that U is also indexed may surprise the reader for
a moment but it is the only coherent way to extend the one agent case. Existence of
a location for a proposition to be true meant for us that for the one agent case, belief
in the proposition was stronger than belief in a contradiction. With more agents, we
may have those who differ in regard to the existence of propositions: more worlds will
have to be added to the model, and it will not stop there because there is no reason
for EaEb to be equivalent to Ea or Eb, etc.

Keeping all these considerations in mind, the models for KD45−OM have to be
suitable multi-agent generalizations of those for KD45−O . The basic idea to consider
here is that we can no longer rule out worlds that are impossible for an agent a. They
might well be possible for another agent b and also have to be considered while
talking about agent a’s belief about agent b’s beliefs and so on. Evidently, the earlier
plausibility ordering and set ordering of worlds will get indexed by agents (one for
each agent), and the global concept of belief will give way to more local concepts
of beliefs. This fact becomes apparent in the syntax also, with the introduction of
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formulas like Uaϕ. The notion of comparative classes [2] which gives the set of worlds
that an agent considers relevant while positioned at her current world comes into play.
Formally, a comparative class of some world is just the set of worlds that are related
to the current world by the plausibility order. To give meaning to agents’ beliefs,
strength of beliefs, these relevant worlds are needed to be considered only, unlike the
single agent case, where the whole model is taken into account.

Definition 6.2
Given a finite set of agents A, a KD45−OM model is defined to be a structure
M = (S, {≤a: a ∈ A}, {≥Ba

: a ∈ A}, V ), where S is a non-empty finite set of states,
V is a valuation assigning truth values to atomic propositions in states, and for each a,
≤a is a pre-order relation over S, which forms a partition of S given by ∼a=≤a ∪ ≥a,
an equivalence relation over S. Finally, for each a ∈ A, ≥Ba is a quasi-linear order
relation over P(T ) for each equivalence class T of ∼a, satisfying the conditions:

1. If X ⊆ Y ⊆ T , then Y ≥Ba X

2. If Ba ⊆ T is the set of a-plausible worlds, truth on which suffices to make an
assertion to be believed (that is, the set of all ≤a-minimal worlds in T ), then
Ba ⊆ X ⊆ T ∧ Ba 6⊆ Y ⊆ T ⇒ X >Ba Y , where >Ba denotes the corresponding
strict ordering.

3. If X ⊆ T is non-empty, then X >Ba ∅.

For any s ∈ S, let sa denote the set of all members of S which are ∼a-equivalent
to s. The truth definition for formulas ϕ in a KD45−OM model M is as usual with
the following clauses for the belief and ordering modalities.

M, s |= Baϕ iff M, t |= ϕ for all ≤a-minimal worlds t ∈ sa.
M, s |= ϕ<Ba ψ iff {t ∈ sa |M, t |= ϕ} ≥Ba {t ∈ sa |M, t |= ψ}.

We considered <B to be a global notion – if ϕ<B ψ is true anywhere in the model,
it is true everywhere. But in the multi-agent case, <Ba does become to a certain
extent state-dependent, which is intuitive as different agents may perceive the world
in different ways. But, of course, the notion does stay a global notion within each ∼a
equivalence class. From the definition of �Ba it follows that,

M, s |= ϕ�Ba ψ iff {t ∈ sa, |M, t |= ϕ} >Ba {t ∈ sa |M, t |= ψ}.

Thus, �Ba also becomes a more local notion. We will now define the corresponding
localized universal modality Ua for each agent a ∈ A. As earlier, the modality Eaϕ
(the abbreviated form of ¬Ua¬ϕ) can be defined as ϕ�Ba ⊥, and hence Uaϕ as
⊥<Ba ¬ϕ. The formula Uaϕ expresses that ϕ is true in all a-accessible worlds in the
model, whereas Eaϕ stands for existence of a possible a-accessible world in the model
where ϕ is true. Evidently, we have,

M, s |= Uaϕ iff M, t |= ϕ for all worlds t ∈ sa.

As earlier, each of these Ua modalities needs to satisfy the S5-axioms that hold for
U [16] plus the axiom Baϕ → UaBaϕ, which expresses that Ba is a global notion in
each of the ∼a-equivalence classes, where Ua expresses this universality.

The logic KD45−OM arises from the logic KD45−O by indexing, for each agent
a, in each axiom both the operator B and <B by a so that, for each agent the same
axioms arise with Ba instead of B and <Ba instead of <B .
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Definition 6.3
The system KD45−OM consists of, for each agent a ∈ A,

a) all KD45 axioms and rules for Ba
b) ordering axioms:
ϕ<Ba ϕ (reflexivity)

(ϕ<Ba ψ) ∧ (ψ<Ba χ) → ϕ<Ba χ (transitivity)

(ϕ<Ba ψ) ∨ (ψ�Ba ϕ) (linearity)

(Baϕ ∧ ¬Baψ)→ (ϕ�Ba ψ) (center)

(ϕ<Ba ψ)→ Ba(ϕ<Ba ψ) (introspection1)

(ϕ�Ba ψ)→ Ba(ϕ�Ba ψ) (introspection2)

⊥<Ba ¬(ϕ→ ψ) → (ψ<Ba ϕ) (U <Ba -axiom)

ϕ→ (ϕ�Ba ⊥) (existence)

(Baϕ�Ba ⊥)→ Baϕ (unique-center)
c) inclusion rule:
ϕ→ ψ (inclusion rule)
ψ<Ba ϕ

As in the single-agent case we have the following result.

Theorem 6.4
KD45−OM is sound and complete with respect to KD45−OM models.

The completeness proof is a generalization of the completeness proof for KD45−O
by executing within each Ua-equivalence class the same prodeure as in that proof. We
refrain from going into the proof details. Evidently, KD45−OM is also decidable.

7 World ordering versus set ordering: a discussion

We return here to the issue of the definability of the plausibility ordering and set
ordering in terms of each other. The discussion will be to a certain extent informal.
We have not fully researched it.

There are various possible ways of interpreting X >B Y in plausibility models. The
following option immediately comes to mind: the interpretation of X >B Y is that
there exist X-worlds which are more plausible than any Y -world (similar to the pro-
posal in [26]). This will not do because the sufficient belief condition does not follow,
one needs that if X contains all worlds in the center and Y does not, then X >B Y . If
one defines X >B Y as saying that X contains all worlds in the center and Y does not,
then ϕ�B ψ becomes equivalent to Bϕ ∧ ¬Bψ erasing all distinctions we would like
to make. The disjunction of these two options would lead X >B Y to be equivalent
to (Bϕ ∧ ¬Bψ) ∨ (¬B¬ϕ ∧B¬ψ), not very attractive either.

A more complicated option is the following. Let us call a set in a plausibility model a
layer if it is an equivalence class w.r.t. ≤, i.e. it contains all worlds in the same ordering
as one particular one. The center is then the layer with highest plausibility. We now
take the disjunction above spread over all layers. Let us callX better than Y in layer Z
if there are either someX-worlds and no Y -worlds in Z, or all worlds in Z areX-worlds
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and not all are Y -worlds, in symbols (Z ∩X 6= ∅∧Z ∩Y = ∅)∨ (Z ⊆ X ∧¬ (Z ⊆ Y )).
And we may call X equivalent to Y in layer Z if neither X is better than Y nor Y
better thanX in Z, in symbols (Z ⊆ X∧Z ⊆ Y )∨(Z∩X = ∅ ∧Z∩Y = ∅)∨(Z∩X 6= ∅ ∧
Z ∩ Y 6= ∅ ∧ Z ∩X 6= ∅ ∧ Z ∩ Y 6= ∅). One might then define X >B Y iff there exists
a layer Z such that X is better than Y in Z, whereas X and Y are equivalent in all
layers with higher plausibility. This definition will give the right properties to X >B Y
but clearly a flavor of arbitrariness remains (compare the discussion in Section 3.3).
We have shown in this paper that an independent set ordering is natural and fruitful
in the study of stronger belief, and we do think that attempts as the above to define
it in terms of the plausibility ordering are too artificial.

An attempt in the other direction, to define the plausibility ordering s< t as
{t}>B {s} fails in first instance because we cannot guarantee that if s∈B and t 6∈ B,
then {t}>B {s}. This does however follow if we adopt axiom (2) of Section 2.3, as is
explained there. This makes us advocate to take the set ordering to be the primary
ordering, and to define the plausibility ordering in terms of it, adopting principle (2).
There is one catch here, there is no reason that all the worlds in the center get the
same maximal degree of plausibility. For our intuitions this is not a great problem,
but it does mean a definite obstacle in making our system dynamic, since in the stan-
dard plausibility models the center consists of the most plausible worlds, and this
fact provides the means to single out the new center after a public announcement or
other information has been received. We do have ideas to solve this problem. We can
show that any model for KD45−O can be transformed into one that adheres to this
standard condition but still satisfies the same formulas. So it may be reasonable to
restrict the attention to these models, but that is for a future occasion.

8 Conclusion and further work

An explicit ordering of formulas to compare the strengths of belief is introduced in
this paper. A complete axiomatization for this belief logic with explicit ordering is
provided with respect to a semantics that includes a set ordering in addition to the
standard plausibility ordering. The notion aids in giving intuitive formulations for
various related concepts as well as some other epistemic attitudes - much older and
thoroughly discussed notions like universality and preference, together with relatively
newer ones like plausibility and disbelief. Independent axiomatizations for the logics
of plausibility, belief and plausibility as well as belief and disbelief are also provided.
Interplay of belief ordering with the concept of safe beliefs is discussed. Relative
expressive powers of the proposed logics have been discussed as well. Lastly, we lift
the proposed framework to a multi-agent setting.

In Section 7 we advocate the usage of set ordering as a more fundamental ordering
and provide pointers towards defining plausibility ordering in terms of the set ordering,
so that all the intuitive properties of world ordering can still be satisfied. We discuss
the possibilities of providing a dynamic version of the present work. This seems
definitely promising, but as is indicated there it is connected with how one sees the
relationship between the plausibility ordering and the new set ordering.
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