
Reaching your goals without spilling the beans:
Boolean secrecy games

Nils Bulling1, Sujata Ghosh2 and Rineke Verbrugge3

1 Clausthal University of Technology
Clausthal, Germany.

bulling@in.tu-clausthal.de
2 Indian Statistical Institute

Chennai, India.
sujata@isichennai.res.in
3 University of Groningen
Groningen, Netherlands.
L.C.Verbrugge@rug.nl

Abstract. Inspired by the work on Boolean games, we present turn-
based games where each of the players controls a set of atomic variables
and each player wants to achieve some individual goal in such a way that
the other players remain unaware of the goal until it is actually achieved.
We present definitions of winning such games with hidden goals for dif-
ferent non-cooperative settings, and discuss in which types of situations
players have winning or equilibrium strategies. We also provide some
complexity bounds on deciding whether a player has a winning strategy.

1 Introduction

In many intelligent interactions, there are some goals that are commonly known
to all concerned, while individuals may also attempt to achieve a secret or hidden
goal of their own. For example, in a purportedly ‘win-win’ negotiation between
two companies, they aim to settle on certain issues in a way that is advanta-
geous to both. Still, while negotiating, both parties also consider their individual
benefits, possibly unknown to the other party [14, 18]. Thus, in the resulting set-
tlements, in addition to some goals commonly known to all, some hidden goals
are often achieved as well. Sometimes, these goals become common knowledge
once they are reached, whereas in other cases, they remain secret forever. It may
also happen that the secret goal is revealed before the actual settlement, which
may even lead to the cancellation of the settlement.

Such hidden individual goals occur not only in the mixed-motive negotia-
tions described above, where participants have both cooperative and adversarial
motives. Even in the case of teamwork, individual team members may try to se-
cretly achieve some individual goal while being involved in achieving the team’s
collective intention [6, 4]. As an example, consider The Count of Monte Cristo
by Alexandre Dumas (père) [5]. In this story, two of the ‘bad guys’, Fernand
Mondego and the deputy public prosecutor Villefort, achieve their common goal
of imprisoning the book’s hero Edmond Dantès for life in Château d’If. However,
both men are driven by entirely different secret goals that they do not divulge to
one another: Fernand Mondego has the hidden goal to marry Edmond Dantès’

fiancee Mercédès, while Villefort is secretly driven by the goal to save his repu-
tation and career by preventing Dantès from delivering a treasonous letter from
Napoleon to Villefort’s father.

Of course in openly competitive situations, there is even more reason to hide
one’s goals from opponents than in mixed-motive negotiations or seemingly co-
operative cases of teamwork. For example, during the Second World War, the
allied forces prepared an elaborate scheme, Operation Fortitude, to deceive the
Germans into thinking that the allies were going to invade Norway and Pas de
Calais, rather than Normandy [2]. The scheme to hide their real goal involved
faked armies, faked wireless traffic, faked information passed on by double agents,
and much more. Even after the actual landing in Normandy on June 6, 1944, the
allied forces managed to delay German reinforcement in Normandy by convinc-
ing them that the landings in Normandy were meant as a diversionary attack to
take attention away from Pas de Calais. In summary, from fictional adventure
stories through tales of deception in wars to modern day negotiations, hidden
goals may drive individuals involved in intelligent interactions.

In this paper, we aim to formalize the idea of achieving secret goals. Inspired
by the work on Boolean games [10, 3], we present turn-based games where each
player controls a set of atomic variables and wants to achieve some goals in such
a way that its opponents do not know which goals it pursues until those goals are
actually reached. This paper forms an initial investigation, intended to lead to
a better understanding of ways to obtain vital information from rivals without
revealing much of one’s own positions; after all, knowledge is power (cf. [1]). The
idea is to use very simple tools of logic and game theory to express hiding as
well as gaining information in an interactive process.

2 Boolean Secrecy Games

In this section we introduce the basic definitions. A Boolean secrecy frame (BSF)
is the basic model of our static setting. We use a game base for representing a
specific evolution of the BSF. Finally, a Boolean secrecy game (BSG) consists of
a BSF and a game base.

2.1 Boolean Secrecy Frames

Let Props be a non-empty finite set of propositional variables and let L(Props)
denote the set of formulas of propositional logic over Props, constructed with
the usual propositional connectives together with the propositional constants
> (truth) and ⊥ (falsity). In the following we will simply write L if the set of
propositions is clear from context.

We use Players to refer to the set of players. Players are denoted by 1, 2, 3,
In the following, if not said otherwise, we assume that Players = {1, . . . , n} and
use i, j, . . . to refer to players. We use ī to refer to “the opponents of i”, i.e. to
the set of players Players\{i}. Players can decide on the truth values of specific
propositions they control.

We want to model the question whether one player can achieve a certain goal
formula, without the other player(s) knowing what the goal is until it becomes

true. Let Γ be the set consisting of all possible goals that any of the players might
want to achieve. It is common knowledge among all the players that these are
the possible goals. However, these goals will certainly not all become collective
goals or collective intentions [6, 4]. We consider the case where players may not
be certain of the exact goal(s) that their opponents would like to achieve. The
subset of the secret goals of a player i is given by Γi ⊆ Γ .

Similarly to [8], achieving goals may involve some costs, and sometimes play-
ers need to minimalize the cost. To this effect, we introduce costs associated with
players’ actions and give restraining conditions by considering cost limits.

Definition 2.1 (Boolean secrecy frame). The sets Pi ⊆ Props of proposi-
tional variables stand for each player i’s set of propositions, such that Pi∩Pj = ∅
for all i, j ∈ Players with i 6= j. Furthermore, ¬Pi stands for {¬p : p ∈ Pi}.

For i ∈ Players, we define the set Σi := Pi ∪ ¬Pi ∪ {skipi} and for any
C ⊆ Players, we define ΣC :=

⋃
i∈C Σi. The set Σi represents the actions of

player i. We refer to actions in Pi ∪ ¬Pi as propositional actions.
A Boolean secrecy frame (BSF) is a tuple

F = (Players,Props, (Pi)i∈Players , Γ, (Γi)i∈Players , (ci)i∈Players , (Ci)i∈Players),

where Players and Props are as given above; function ci : Σi → R+ represents
the costs associated with the moves of player i; Ci ∈ R+ is the cost limit for
player i; Γ ⊆ L is the set of possible goals for the players, which is commonly
known to all players; and Γi ⊆ Γ is the set of secret goals of player i, not known
among the other players.

In contrast to [8] and similarly to [9], we do not require that the players’ sets of
propositions form a partition of Props, so not necessarily

⋃
i∈Players Pi = Props.

Propositions not contained in
⋃
i Pi are controlled by some external entity not

being part of the game. We also refer to the elements of Pi ∪ ¬Pi ∪ {skipi} as
actions of player i. An action p ∈ Pi corresponds to agent i making p true, and
action ¬p ∈ ¬Pi corresponds to i making p false; alternatively, when agents have
run out of propositions—a proposition can only be set once—they can skip.

As a running example for our subsequent discussions, let us consider the
misinformed German high command and the British command during Operation
Fortitude. We can set variables p1 for the British troops preparing for some
attack, p2 for the British attacking Normandy, and p3 for the British attacking
Pas de Calais, p4 for the German troops preparing for defending Normandy, p5

for the German troops preparing for defending Pas de Calais.4 Here follows the
relevant Boolean secrecy frame.

Example 2.1 (Boolean secrecy frame). We consider a BSF with two players {1
(British), 2 (German)} and the set of propositions Props = {p1, . . . , p5}. The
set of propositions controlled by the players are given by P1 = {p1, p2, p3},
and P2 = {p4, p5}. The set of possible goals Γ = {p1 ∧ (p4 → p3) ∧ (p5 →
p2), (p1 ∧ p4 ∧ p2) ∨ (p1 ∧ p5 ∧ p3)}. Player 1’s set of secret goals is given by
Γ1 = {(p1 ∧ (p4 → p3) ∧ (p5 → p2)}; player 2’s secret goal set is empty.

4 For simplicity, we leave out Norway from the example.

The first goal formula, which is also the secret goal for the British, says that
wherever the Germans put up their defense, the British will attack at the other
point. The other goal formula says that the troops from both sides will meet at
one of the regions, which corresponds more to the assumed (non-secret) German
goal. In this way, we represent a simplification of Operation Fortitude.

In the dynamic Boolean secrecy games that we will define, agents do not win
simply by reaching their goals: they must do so without spilling the beans; that
is, without the others knowing about their secret goals.

2.2 Histories and Propositional Truth Assignments

In the following, if not said otherwise we assume that F = (Players,Props, (Pi)
i∈Players , Γ, (Γi)i∈Players , (ci)i∈Players , (Ci)i∈Players) is a Boolean secrecy frame
(BSF). A BSF models the initial setting and the player characteristics. Now, the
players try to realize their hidden goals by following a specific course of action.
The performance of all players over time yields a finite sequence of actions which
we call a history. Histories encode possible dynamic evolutions in the given BSF.
We only impose the restriction that the action of making a particular atomic
proposition p in Props true or false can be executed at most once along any
history. Histories that contain a propositional action p or ¬p for each proposition
p in

⋃
i∈Players Pi are of particular interest and are called complete.

Definition 2.2 (History, subhistory, complete history). An F -history is
a finite sequence h = (aj)j=0,...k ∈ (

⋃
i∈Players Σi)

∗, k ≥ 0 (or, h = ε) such that:

1. if al ∈ {p,¬p} for some p ∈ ⋃
i∈Players Pi and 0 ≤ l ≤ k, then there is no

l′ 6= l with 0 ≤ l′ ≤ k and al′ ∈ {p,¬p};
2. if al = skipi, then for all p ∈ Pi,∃j : 0 ≤ j < l and (aj = p or aj = ¬p).

The length of h, |h|, is defined as |h| = k + 1. We write h[l] to refer to the lth
action al on h where 0 ≤ l < |h|. For two histories h, h′ we say that h′ is a
subhistory of h, denoted by h′ ≤ h, if h′ is an initial segment of h. We write
h′ < h if h′ ≤ h and h′ 6= h. The set of propositions occurring in h is referred to
as Props(h); i.e. Props(h) = {p | ∃j : 0 ≤ j < |h|and (aj = p or aj = ¬p)}. The
concatenation of two finite sequences h, h′ ∈ (

⋃
i∈Players Σi)

∗ is denoted by hh′.
Let C ⊆ Players. A history h is said to be C-complete if

⋃
i∈C Pi ⊆ Props(h).

As abbreviations, we say that h is i-complete if h is {i}-complete, and that h is
complete if it is Players-complete.

According to the definition, each history can consist of at most |Props|-many
propositional actions, and never contains a literal p or ¬p for which p ∈ Props \⋃
i∈Players Pi.

A history is one possible evolution of a BSF; usually, there are many possible
evolutions. Firstly, a player i can select any action from Σi. Secondly, the order
in which players act need not be fixed. One option, although not always realistic
in dynamic environments, would be to fix such an ordering. Instead, we impose
some constraints on the possible dynamic evolutions. A sensible requirement
could for instance be that each player is allowed to make all her controlled

propositions true or false, that is, each history could be Players-complete. A
player being allowed to make all her controlled propositions true or false in one
block of actions—,one after the other—is not sensible, however, as then she might
reveal what her secret goal is. In a two-player setting one could assume that the
players act alternately. We propose two possible intuitive fairness conditions:

Definition 2.3 (Fair and alternating histories). Let h be an F -history. (a)
h is said to be fair if it is Players-complete. (b) h is said to be π-alternating
where π is a permutation on Players if for all i ∈ Players and all l ∈ N with
l · |Players|+ π(i) ≤ |h|, we have h[l · |Players|+ π(i)] ∈ Σi.

Finally, we relate histories to valuations of propositional variables. Each history
gives rise to a partial valuation of the propositions occurring in it. A complete
history corresponds to a complete valuation of

⋃
i∈Players Pi.

As a reminder, a (truth) valuation is a function v : Props → {t, f} which
assigns a truth value to each proposition in Props. In order to evaluate Boolean
formulas we lift a valuation v to formulas in the standard way. We write v(ϕ) =
t (resp. v(ϕ) = f) to denote that valuation v makes ϕ true (resp. false). A
P -valuation is a partial valuation defined on a subset P ⊆ Props. Clearly, a
valuation is a Props-valuation and vice versa.

In order to check whether a player i can achieve a given goal, we introduce
an i-extension of a partial valuation, which extends it to a partial valuation that
specifies truth values for all propositions controlled by i. Thus, an i-extension
fixes all of i’s variables. Finally, a completion of a partial valuation extends it to
a complete one by assigning truth values to all propositions from Props not yet
specified by the original partial valuation:

Definition 2.4 (Induced valuation, i-extension, completion). Given an
F -history h, the h-induced valuation is the Props(h)-valuation vh with v(p) = t
(resp. v(p) = f) if p = aj (resp. ¬p = aj) for some j with 0 ≤ j < |h|. Let
P, P ′ ⊆ ⋃

i∈Players Pi. We say that a P -valuation v agrees with a P ′-valuation
v′ if for all p ∈ P ∩ P ′, we have that v(p) = v′(p). An i-extension v′ of a P -
valuation v is a (P ∪ Pi)-valuation that agrees with v on P . A completion v′ of
a P -valuation v is a Props-valuation v′ that agrees with v on P .

Note that an i-extension of an h-induced valuation is indeed a partial valuation
(see Definition 2.2). It is not difficult to see that for any fair history h and any
players i, j with i 6= j, history h gives a j-extension for a Pi-valuation agreeing
with the Props(h)-valuation vh. If ∪i∈PlayersPi = Props then any fair history h
gives a completion for each Pi-valuation agreeing with Props(h)-valuation vh.

2.3 Extensive Form Boolean Secrecy Game

We have just introduced Boolean secrecy frames (BSF) and histories. Each his-
tory represents one possible course of action, corresponding to some specific
combination of strategies (strategy profile) of the players. Initially, if there are
no fixed strategies, many histories may still be possible. We call the set that
contains all possible evolutions a game base.

Definition 2.5 (Game base, i-history). Let H be a non-empty set of F -
histories. We say that H is an F -game base if it satisfies the following conditions:

1. ε ∈ H (i.e., H contains the empty history);
2. if h ∈ H then every subhistory h′ of h is in H (i.e., H is downwards closed);
3. for all histories h ∈ H there is a player i ∈ Players such that for each history

h′ that has h as strict subhistory (i.e., h < h′), we have that h′[|h|] ∈ Σi;
for this player i who is about to play, we call h an i-history; and

4. all maximal histories h ∈ H are complete; here, a history h is maximal if
there is no history h′ ∈ H with h < h′.

We use Hi to denote the set of all i-histories in H. Moreover, H is π-
alternating if all histories h ∈ H are π-alternating. Note that all maximal his-
tories are fair.

In particular, requirement 3 ensures that the game base can be seen as the
underlying structure of a turn-based extensive form game. At each history (h),
it is the turn of the player who “owns” all the directly succeeding nodes (h′[|h|]).
Requirement 4 enforces that players eventually assign a truth value to all the
variables they control.

Definition 2.6 (Full-branching game base). An F -game base H is said to
be full-branching if for all i ∈ Players, the following holds for the set Hi of all
i-histories in H: If h ∈ Hi, then for all p ∈ Pi \ Props(h), both hp ∈ H and
h¬p ∈ H.

Note that in every F -game base H there is a unique player i ∈ Players such
that ε ∈ Hi. We refer to i as the initial player. It is also easy to see that each
combination of a BSF F and permutation π gives rise to a unique π-alternating
full-branching game base H.
Finally, we are ready to introduce Boolean secrecy games. They model all possible
evolutions of a BSF regarding a given F -game base without fixing any truth
assignment of any player in advance. Essentially, a Boolean secrecy game (BSG)
encodes an extensive form game, well-known from game theory [12]. However, in
order to define the players’ preference relations, we need some additional notions.

Definition 2.7 (Boolean secrecy game). A Boolean secrecy game (BSG)
is given by G = (F,H), where F is a Boolean secrecy frame and H is a full-
branching F -game base. We say that G is the H-based game over F . Moreover,
we lift the properties of H given in Definition 2.5 and Definition 2.6 to G.

A Boolean secrecy game G = (F,H) gives rise to a canonical extensive form game
frame E(G). Histories of H correspond to nodes in H(G). A player function,
indicating which player’s turn it is, can be extracted from the set of i-histories:
it is player i’s turn at history h if and only if h is an i-history.

Example 2.2 (Boolean secrecy game). The BSF F in Example 2.1 and the order
(1, 2) give rise to a unique full-branching (1, 2)-alternating BSG G = (F,H), as
shown in Figure 1(a).

The strategy s1 for player 1 makes her play p1 at the first node, and then al-
lows her to respond with p2 to all possible moves for player 2. Player 1 could have
given different responses to different moves of player 2. Note that decisions are
irreversible. Thus, after a player chooses to play pi or ¬pi, these possibilities dis-
appear from the subsequent play, while literals corresponding to not-yet-played
controlled variables remain possible for that player.

1

1

2 2 2 2

1 1 1

2 2
p1 p2 p3 ¬p3¬p2¬p1

¬p4 ¬p5p5p4

2 2 2 2
p2 ¬p2 p3 ¬p3

1

2

1 1 1 1

2 2 2 2

p1

p2p2p2p2

p4 p5 ¬p5¬p4

(a) (b)

Fig. 1. (a) A diagrammatic representation of the full branching F -game base, with F
given in Example 2.2. (b) A strategy s1 for player 1 and corresponding game base H|s1 .

2.4 Strategies, Histories, and Winning Criteria

We introduce the notion of strategy, prescribing how a player acts.

Definition 2.8 (Strategy). Let G = (F,H) be a Boolean secrecy game. An
i-strategy (in G) is a function si : Hi → Σi such that if si(h) ∈ {p,¬p} then
si(h

′) 6∈ {p,¬p} for all histories h′ that strictly extend h (i.e., h < h′); and such
that if si(h) = skipi, then h is i-complete.

A C-joint strategy for a coalition C ⊆ Players is a tuple of strategies, one
for each player in C. A strategy profile is a Players-joint strategy.

Now, not all histories are compatible with a player’s strategy, only those
that respect the actions specified by it. We say that such histories agree with a
strategy. Formally, we have:

Definition 2.9 (Agreeing, H|s). A history h = (aj)j=0,...k agrees with an i-
strategy si if for all h′ < h with h′ ∈ Hi we have that h[|h′|] = si(h

′) (i.e. the
action prescribed at h′ by si is the next action extending h′ in h). Similarly, for
C ⊆ Players, we say that h agrees with a C-joint strategy sC = (si1 , . . . , si|C|) if
h agrees with sij for j = 1, . . . , |C|. We use H|sC to denote the set of all histories
from H agreeing with sC and we write H|si for H|{si}.

Note that, if si is a member of the tuple sC , then H|sC ⊆ H|si .

Example 2.3 (Strategy).
A 1-strategy in the BSG given in Example 2.2 is shown in Figure 1(b).

The idea of the player 1 (British) strategy is to attack wherever the player 2
(Germans) is not building up their defense. The play given by the sequence
p1, p5, p2, . . . models the actual history to some extent [2].

When is a strategy “winning” for a player? We are interested in strategies
that keep the set of its intended goals secret, in the sense that the opponents
should not become fully aware of a subset of goals before they are achieved. We
capture this idea by introducing goal-achieving strategies. Suppose we are given
an i-strategy si. In order for si to be goal-achieving, player i must be able to
guarantee that some goal formula ϕ ∈ Γi becomes true; that is, ϕmust eventually
become true on all histories agreeing with si. Although this guarantees the truth
of a secret goal, it does not yet preserve its secrecy. What we want to model is
the following question: “Can player i achieve some member of Γi, that is, can
the agent make a certain goal formula true, without the other players knowing
what the goal is until it becomes true?”

For preserving secrecy, we also require that for each history h agreeing with
si there is a non-goal formula ϕ′ ∈ Γ\Γi that can be guaranteed by i to become
true at an extension of h: from ī’s point of view, ϕ′ could also be a goal of i.
Formally, there should exist an appropriate i-extension extending the choices
made so far.

Although these points capture the basic idea of keeping the goals secret, we
are not yet done. Consider the case where Γ = {a→ (b∨c), (b∨c)}, Γi = {b∨c},
si(ε) = a and si(ad) = b, where d is a move of a player in ī during their
turn. Clearly, si satisfies both conditions mentioned above. After the first step,
however, it should be clear for ī that i has the subgoal to make b∨c true. Although
ī is still not sure whether i’s actual goal is a→ (b∨ c) or b∨ c, they have a clear
idea of what comes next. To avoid this, we require that the deceiving goal ϕ′ is
sufficiently different from the actual goal at each step. Finally, we capture these
ideas formally:

Definition 2.10 (Goal-achieving). Let G = (F,H) be a BSG. An i-strategy
si is goal-achieving if the following holds. For all F -histories h ∈ H|si there is
a subhistory h′ ≤ h and a formula ϕ ∈ Γi such that:

1. v(ϕ) = t for all completions v of the h′-induced valuation (i.e. goal ϕ is
guaranteed to become true);

and for all h′′ < h′ the following conditions hold:

2. there is a formula ϕ′ ∈ Γ\Γi such that
(a) there is an i-extension v1 of the h′′-induced valuation vh′′ such that for
all completions v2 of v1, we have v2(ϕ′) = t (i.e. ϕ′ is a possible goal that i
could enforce);
(b) there is at least one completion v3 of the h′′-induced valuation vh′′ such
that v3(ϕ′) = f (i.e. ϕ′ is not yet guaranteed to be true);
(c) there is a completion v4 of the h′′-induced valuation vh′′ such that v4(ϕ′) 6=
v4(ϕ) (i.e. ϕ′ is sufficiently different from ϕ).

3. for all ψ ∈ Γi there exists a completion v5 of the h′′-induced valuation vh′′

such that v5(ψ) = f (i.e. no goal of agent i has been guaranteed to be true
before ϕ at h′).

Figure 2 illustrates the definition of goal-achieving strategies. There can be
more than one goal-achieving strategy. Naturally, which one to choose should

//h′′ //

[2(b),ϕ′]

,,

//

[2(c),ϕ′]

))
[3,ψ∈Γi]

''

[2(a),ϕ′]

33

h′
[1,ϕ] //h

Fig. 2. Goal-achieving strategies as described in Definition 2.10. The figure shows some
history h ∈ H|si and a subhistory h′. All completions of h′ (cf. the part labeled [1, ϕ])
make ϕ necessarily true. Moreover, before h′, at any subhistory h′′ of h′, no secret goal
formula of i is allowed to be necessarily true (existence of such completions shown by
the arrow labeled [3, ψ ∈ Γi]); in particular, ϕ is not allowed to be necessarily true at
h′′. Finally, there must also be a potential goal formula ϕ′, sufficiently different from
ϕ (cf. arrow labelled [2(c), ϕ′]), that is not a secret goal of i (cf. arrow labeled [2(b),
ϕ′]) and that can be made true by i (cf. arrow labelled [2(a), ϕ′]).

also depend on the costs of executing a strategy; in particular, the execution
may exceed the cost limit of a player.

Before defining the cost of a strategy, we observe that a strategy profile sC for
C 6= Players usually identifies a set of histories in the secrecy game, namelyH|sC .
Furthermore, note that although a complete profile s fixes all players’ choices,
the variables controlled by the environment are not yet set–again, resulting in
a set of possible histories. As a consequence, when defining a player’s costs of a
strategy we need to consider a set of possible histories. We take on the worst-
case perspective and define the cost as the maximal cost caused by any history
agreeing with the strategy.

Definition 2.11 (Cost of a strategy). Let G = (F,H) be a BSG. We de-
fine the cost of player i of an F -history h, denoted ci(h), inductively as fol-
lows: ci(ε) = 0 (i.e., the empty history is cost-free); and for h′a ≤ h, ci(h

′a) =
ci(h

′) if a ∈ Σī or h′ satisfies conditions (1) and (2) of Def. 2.10; and ci(h
′a) =

ci(h
′) + ci(a) otherwise.

The cost of a set H ′ ⊆ H of F -histories for player i is defined as ci(H
′) :=

maxh∈H′ ci(h). Finally, if sC is a C-joint strategy for C ⊆ Players, we define
the cost of player i corresponding to the strategy sC as ci(sC) = ci(H|sC). Thus,
ci(si) = ci(H|si).
Note that, if si is a member of the tuple sC , then ci(sC) ≤ ci(si). We have used
the intuitive additive model to define costs of strategies in terms of cost of indi-
vidual actions. The effect of different kinds of cost functions on the determination
of winning strategies is left for future work.

Definition 2.12 (Winning). Given a BSG G = (F,H), an i-strategy si is
winning in G iff it is goal achieving and ci(si) ≤ Ci. Player i is winning iff there
is a winning i-strategy.

Note that more than one player can have a winning strategy in a given game
G. Also, it is possible that no player can win, see Section 2.5.

One could think of different kinds of winning conditions, for example: one
that guarantees that nobody else’s goal is satisfied; one that finds out another
player’s goal before the goal becomes true; one that satisfies one’s goal formulas
(while possibly allowing others to satisfy theirs); one that satisfies one’s goal
formula and nobody else does; and various other possibilities. For now, we re-
strict ourselves to the winning condition of Definition 2.12. Ultimately, we are
interested in the question whether players have a strategy to keep their hidden
goals secret given a (static) BSF. This crucially depends on the order in which
players move. Formally, this is captured by game bases.

Definition 2.13 (Winning in Boolean secrecy frames). We say that a
player i wins in the Boolean secrecy frame F if i wins in the H-based game of F
for every full-branching F -game base H. If we consider complete π-alternating
game bases only, then we say that i wins in the π-alternating Boolean secrecy
frame F .

2.5 Non-Determinacy and Importance of Order

We show the existence of a Boolean secrecy game G = (F,H) in which no player
has a winning strategy. We consider a real-life situation. A hiring committee for
a faculty position, consisting of a mathematician with some expertise of biology
and a physicist. The committee has to hire a theoretical biology expert with good
managerial skills. Both committee members, however, are commonly known not
to be able to evaluate candidates’ managerial skills (there is an outside expert for
that). If the two committee members want to hire a candidate in their own expert
area, there is no chance of keeping that secret in committee discussions, as they
can only mention someone’s scientific expertise as argument in favor of a candi-
date. We now construct a BSF with as intuitive meanings of the propositional
atoms: p1 means that the chosen candidate is an expert on mathematics and
biology; p2 means that the chosen candidate is an expert on bio-physics; and p3

means that the chosen candidate has good managerial skills. Consider the frame
F = (Players,Props, (Pi)i∈Players , Γ, (Γi)i∈Players , (ci)i∈Players , (Ci)i∈Players), in-
stantiated as follows: Players = {1, 2}; Props = {p1, p2, p3}; P1 = {p1}; P2 =
{p2}; Γ = {p1 ∧ p3, p2 ∧ p3}; Γ1 = {p1 ∧ p3}; Γ2 = {p2 ∧ p3}; ci : Σi →
{1} for each i; Ci = 2 for each i.

Because neither player has control over p3, it can be shown that neither
player has a winning strategy in any full-branching F -game base H. Note that
the non-determinacy depends on the fact that

⋃
i∈Players Pi is a proper subset

of Props.
Perhaps surprisingly, it turns out that the order of the players’ moves matters

a lot when it comes to winning. One might think that for a full-branching π-
alternating game-base H, if i is winning in (F,H) then i could also win in all

π′-alternating game bases H ′, as long as π and π′ are equivalent with respect to
i, that is π(i) = π′(i). But this is not the case, as we now show by an example.

Consider a BSF with three players {1, 2, 3} and set of propositions Props =
{p1, . . . , p5}. The set of propositions controlled by the players are given by P1 =
{p1, p3}, P2 = {p2}, P3 = {p4, p5}. The set of possible goals Γ = {p1 ∧ p2, p3 ∧
¬p2, p4 ∨ p5}. Player 1’s set of secret goals is given by Γ1 = {p1 ∧ p2, p3 ∧ ¬p2};
player 2’s and player 3’s secret goal sets are empty. We let C1 = C2 = C3 = 10
and ci : Σi → {1} for i ∈ {1, 2}. If player 2’s first move is before player 1’s first
move, then player 1 has a winning strategy: “if player 2 has made p2 true, then
make p1 true; if player 2 has made p2 false, then make p3 true”.5 However, if
player 1 has her first move before player 2, then player 1 has no winning strategy.
So, in this three player frame F , if H is the (2, 1, 3)-alternating full branching
game base, then player 1 will have a winning strategy in G = (F,H), whereas
she will not have any winning strategy in G = (F,H ′) where H ′ denotes the
(3, 1, 2)-alternating game base. Note that the position of player 1 is the same in
both cases.

3 Computational Complexity

An interesting question is whether a player can win in a BSG (see Definitions 2.12
and 2.13). Here, we present some results on the complexity of such problems.

Firstly, let us consider the representation of the input. We measure the size
|F | of a BSF,

F = (Players,Props, (Pi)i∈Players , Γ, (Γi)i∈Players , (ci)i∈Players , (Ci)i∈Players)

as the sum of the sizes of all elements in F ; that is, |F | = |Players|+ |Props|+∑|Players|
i=1 Pi +

∑
γ∈Γ |γ|+

∑
γ∈Γi,i∈Players |γ|+

∑
i∈Players(|ci|+ |Ci|), where |γ|

denotes the length of the formula γ and we assume, omitting the details, that
|ci| and |Ci| refer to some reasonable encoding of the functions ci and numbers
Ci, respectively. |H| refers to the cardinality of set H.

The size of a BSG G = (F,H) is defined as |F |+ |H|. In this representation,
the size of H is usually exponential in the size of F . Hence, compact representa-
tions are of more interest. Instead of taking H as input, we only fix the struc-
ture of the game base according to Definition 2.3; for example, we can consider
only π-alternating game bases. Then, following Definition 2.13, we would like
to determine whether a player is winning in a frame together with a structural
description of the game base. For example, the input might be given by (F, π)
and the question to be answered is whether a player is winning in all BSG’s
(F,H) where H is a π-alternating F -game base. In the case of π-alternating
game bases, we even have that the BSG (F,H) is unique and that in most non-
trivial cases the size of the input (F, π) is exponentially smaller than the size
of the corresponding explicit input (F,H), where H is the unique π-alternating
F -game base. Naturally, complexity results for input (F, π) are more insightful
than for (F,H).

5 Note that different histories agreeing with this strategy may incur different costs for
player 1.

To start with, we show that the question whether a player is winning can
be solved efficiently for the class of games G = (F,H) for which the input is
given in explicit form and all propositions are controlled by the players, that is,
Props =

⋃
i∈Players Pi. We denote this class of games by G−. The general case,

in which not necessarily Props =
⋃
i∈Players Pi, is more complex. We have the

following complexity results:

Proposition 3.1. The problem whether a player is winning in G ∈ G− (in
explicit form) is in P with respect to the size of G.

Proof. Let F = (G,H) and player i be given. We propose a labeling procedure
to determine whether i has a winning strategy. For ease of understanding, we
interpret the game base H as a tree and use standard vocabulary: each history
h represents a node and each minimal extension ha of h is a (direct) child of
h, the empty history ε is the root, etc. We use four types of labels for nodes
h ∈ H, where ϕ ∈ Γ : ϕ, standing for “ϕ is true on all completions of vh”; [ϕ],
for “there is an i-strategy in h that guarantees that ϕ will be true”; 〈¬ϕ〉, for
“there is a completion of vh that makes ϕ false”; and Gϕ, for “a node labelled ϕ
is reachable”. We use L(h) to denote the set of labels of node h. We apply the
following steps to H. For each formula ψ ∈ Γ :
(1) Label all leaf nodes h (i.e. maximal histories) with [ψ] and ψ if vh(ψ) = t
and with 〈¬ψ〉 if vh(ψ) = f . (This is possible because Props =

⋃
i∈Players Pi.)

Now, we apply the following steps as long as possible:
(2) Let h ∈ H\Hi. Label h with [ψ] (resp. ψ) if all children (i.e. direct successors)
h′ of h are labelled with [ψ] (resp. ψ); otherwise, label h with 〈¬ψ〉.
(3) Let h ∈ Hi. Label h with [ψ] (resp. 〈¬ψ〉) if there is a child labelled [ψ]
(resp. 〈¬ψ〉) (i.e. player i can make ψ (resp. ¬ψ) true) and with ψ if all children
are labelled with ψ .6

Now we have for ϕ ∈ Γ : There is an i-strategy si such that for all F -histories
h ∈ H|si we have vh(ϕ) = t iff the root node is labeled [ϕ], i.e. [ϕ] ∈ L(ε).

The following steps label some subtrees as invalid (we use a label ⊥)—we
cannot immediately delete these trees due to technical reasons. For all nodes h
in the tree do the following:
(4) If ϕ ∈ L(h)∩Γi, then label all children of h with ⊥. [This ensures Condition
3 of Def. 2.10, identifies the lowest occurrence of a node labelled ϕ ∈ Γi.]
(5) If there is no ψ ∈ Γ\Γi with {[ψ], 〈¬ψ〉} ⊆ L(h), then label all children ⊥.
[Condition 2(a) and 2(b) of Def. 2.10.]
(6) If ϕ ∈ L(h) ∩ Γi and ⊥ 6∈ L(h), then label all predecessors of h with Gϕ.
(7) Check whether there is a ϕ ∈ Γi and ψ ∈ Γ\Γi with {Gϕ, [ϕ], [ψ], 〈¬ψ〉} ⊆
L(h) and a leaf node h′ reachable from h with {〈¬ψ〉, [ϕ]} ⊆ L(h′) or {[ψ], 〈¬ϕ〉} ⊆
L(h′). If this is not the case, then label h and all children with ⊥ [Condition 2(c)
of Def. 2.10.]
(8) Remove all labels Gϕ from all nodes and apply the following again: For all
h, if ϕ ∈ L(h) ∩ Γi and ⊥ 6∈ L(h), then label all predecessors of h with Gϕ.

6 If for some formula ψ both ψ,¬ψ ∈ Γ , a node could have all labels [ψ], [¬ψ], 〈¬ψ〉,
〈¬¬ψ〉; double negations cannot be removed! Also, ψ ∈ L(h) iff 〈¬ψ〉 6∈ L(h).

Now, we remove all nodes labelled ⊥ from H and observe: There is a goal-
achieving i-strategy si iff {[ϕ], Gϕ} ⊆ L(ε) for some ϕ ∈ Γi.

Finally, we need to consider costs. We introduce new labels Cϕx for the nodes
where ϕ ∈ Γi and x ∈ R∪{∞}.7 The intuitive reading is that ϕ can be guaranteed
with cost x.
(9) If h is a leaf node with ϕ ∈ L(h) ∩ Γi, then label it with Cϕĉi(h) where

ĉi(a1 . . . an) = ci(a1) + · · ·+ ci(an); otherwise with C∞.
In the following we say that a node is labelled with Cϕ? if it is labelled with a

label of the above type Cϕx for some x ∈ R∪{∞}. Finally, we apply the following
steps to H for as long as possible:
(10) If h ∈ H\Hi is not labelled Cϕ? and all children of h are labelled with
Cϕ? , then label h with Cϕ

max{x|h′∈S and h′ is labelled Cϕ
x }

, where S is the set of all

children of h. [Computes the costs, cf. Def. 2.12.]
(11) If h ∈ Hi is not labelled Cϕ? , and all children of h are labelled Cϕ? , then
label h with Cmin{x|h′∈S and h′ is labelled Cϕ

x }, where S is the set of all children of

h labelled Cϕ? . [Ensures Def. 2.12.]
Now, si is winning iff {[ϕ], Gϕ, C

ϕ
x } ⊆ L(ε) with x ≤ Ci for some ϕ ∈ Γi.

The described algorithm runs in time polynomial in |G|. ut

Proposition 3.2. The general problem whether a player is winning in a BSG
G is in ∆P

2 and is coNP-hard with respect to the size of G.

Proof. We modify the algorithm given in the proof of Proposition 3.1. We observe
that we only need to modify step 1 of the algorithm, since the propositions in
Props\⋃i∈Players Pi never occur on a history. Now, let ψ[vh] be ψ but with each
proposition p ∈ ⋃

i∈Players Pi in ψ replaced by > (resp. ⊥) if vh(p) = t (resp. if
vh(p) = f). Then in step 1, we replace vh(ψ) = t by |= ψ[vh] and vh(ψ) = f by
6|= ψ[vh]. The modified algorithm can be implemented by a deterministic Turing
machine with NP-oracle.

coNP-hardness is shown by a reduction of SAT to the complement of our
problem. Suppose ψ ≡ ∃x1, . . . xnϕ(x1, . . . , xn) is a SAT instance. We define
Props = {x1, . . . , xn}, Players = {1}, P1 = ∅, Γ = Γ1 = {¬ϕ}, omitting the
other elements of F . Then there is only a single game base H = {ε} and we have
that i is not winning iff v(¬ϕ) = f for some valuation of Props iff ψ is true [cf.
condition 1 of Def. 2.108]. ut

The next result sheds light on the interesting case of compact representations.
In this paper, we only consider the case of π-alternating (full-branching) game
bases. Note that there is a gap between lower and upper bound.

Proposition 3.3. The problem whether a player is winning in a frame F over
π-alternating F -game bases is in ΣP

4 and is ΣP
2 -hard in the size of F and π.

7 ∞ has its standard meaning; in particular, x <∞ for all x ∈ R.
8 Note that in this case conditions 2 and 3 of Def. 2.10 are vacuously true, as ε has no

proper subhistories.

Proof. Membership: Firstly, we sketch an algorithm checking whether i is win-
ning in (F, π) (cf. Def. 2.10). We proceed bottom-up and assume that h, h′, h′′

are given as in Definition 2.10.

The problem given in item 3 of Def. 2.10, denoted as the language L3, can be
solved by a non-deterministic TM in polynomial time by guessing a completion
v′′ of the h′′-induced valuation and because Γi is part of the input and can be
traversed in polynomial time. The same holds for the problem given in item 2(b)
of Def. 2.10, which we denote by L2b. Thus, L2b, L3 ∈ NP.

The problem given in 2(a) of Def. 2.10, denoted L2a, can be solved by a non-
deterministic NP-oracle TM in polynomial time by first guessing an i-extension
v′ of the h′′-induced valuation and checking whether for all completions v of v′,
v(ϕ′) = t. The latter can be implemented by an oracle guessing a completion v,
checking whether v(ϕ′) = f and reverting the answer. This shows that L2a ∈ ΣP

2 .

Problem L2c corresponding to 2(c) can also be solved analogously to 2(b) by
guessing an appropriate completion; thus, L2c ∈ NP.

Summing up, item 2, denoted by problem L2, can be solved by a deterministic
TM with an oracle solving L2a, L2b, L2c. Thus, L2 ∈ ΣP

2 .

Analogously, the complement of the problem in item 1 of Def. 2.10, L̄1, can
be solved by a non-deterministic TM in polynomial time: firstly, a completion v
of the h′-induced valuation is guessed and then it is verified whether v(ϕ) = f .
Hence, L1 ∈ coNP.

Now, for a given si the question whether for all F -histories h ∈ H|si there
is a subhistory h′ ≤ h and a formula ϕ ∈ Σi such that the conditions 1, 2 and
3 hold and can be solved in ΣP

3 . We denote the problem by L. To see this we
construct a non-deterministic TM with a ΣP

2 oracle accepting the complement
of L. (?) Firstly, the machines guesses an F -history h and checks whether for
all h′ ≤ h (there are only polynomially many) and all ϕ ∈ Γi (Γi is part of the
input), conditions 1, 2 or 3 are violated. The latter can be determined by a query

to a ΣP
2 oracle following our previous considerations. So, L ∈ coNPΣP

2 = ΠP
3 .

Finally, to check whether i is winning we use a non-deterministic ΠP
3 -oracle

TM to guess a strategy si and to verify whether it satisfies the conditions of
Definition 2.10 and whether c(si) ≤ Ci. We have just shown the verification of
the former can be done in ΠP

3 . Whether si adheres to the cost limit can be
incorporated in (?). This shows that whether there is a winning strategy can be
solved in ΣP

4 .

Hardness: Next, we prove ΣP
2 -hardness by a reduction of Q2SAT [13]. Let

X = {x1, . . . , xn}, Y = {y1 . . . ym} and let x 6∈ X ∪ Y be a fresh variable.
Suppose that ψ ≡ ∃X∀Y ϕ(X,Y) is a Q2SAT instance.9 We define Players =
{1}, Γ = {x} ∪ Γ1, Γ1 = {ϕ}, Props = X ∪ Y ∪ {x}, P1 = X ∪ {x}, and no cost
limits.

“⇒:” Suppose 1 is winning. Then, on all histories (there is only one for a
given strategy!) there is a (sub)history h′ = xi1 , . . . , xik such that it is true
that ∀X\{xi1 , . . . , xik}∀Y ϕ[vh′]; here, ϕ[vh′] is ϕ but with proposition p ∈

9 Here, ∃Xξ(X) abbreviates ∃x1 . . .∃xnξ(x1, ..., xn).

{xi1 , . . . , xik} in ϕ replaced by > if vh′(p) = t and by ⊥ if vh′(p) = f . How-
ever, this implies that ∃X\{xi1 , . . . , xik}∀Y ϕ[vh′] holds and thus that ψ is true.

“⇐:” Suppose ψ is true and let vX be a witnessing truth assignment of the
variables in X. Let sX be the strategy that assigns truth values to propositions
according to vX with respect to the order x1, . . . , xn and makes x true afterwards.
We show that sX is a winning strategy (again, note that there is only one
history for a fixed sX). Then there is a minimal subsequence h′ = x1, . . . , xk
with ∀X\{x1, . . . , xk}∀Y ϕ[vh′]. Such a sequence exists because the history h =
x1, . . . , xn, x satisfies ϕ (for, ψ is true). We need to show that all the other
conditions of a goal-achieving strategy are satisfied. We consider h′ and first
assume that h 6= h′ (i.e. xk 6= x) and consider x ∈ Γ . In this case, 3 of Def. 2.10
is true by definition. Condition 2(a) of Def. 2.10 holds because the 1-extension
in which x is set t is a witness. For condition 2(b), any completion where x is
set f is sufficient; and for 2(c), payer 1 has to choose an appropriate truth value
for x. For h = h′, the same argument holds for all subhistories, and in the last
step the goal of 1 is already true. ut
4 Conclusion

In this article, we propose a game-like model to describe how an agent can go
about trying to achieve a goal without letting the others know until the goal has
been reached. The turn-based Boolean games used in our setting facilitate mod-
eling situations where a player can play and strategize based on how the others
have acted in the history of the game, in order to keep the player’s intended
goals secret. The point of trying to achieve something in secret would be lost if
we considered normal form games instead of turn-based ones.

Various recent work [9, 8] has focused on variants of cooperative Boolean
games, introduced in [7]. The current work has taken some inspiration from those
articles, but we used the idea of Boolean games that was introduced in [10] for
modeling interactive situations.

We have addressed the question whether a player is winning in a game and
have analyzed the computational complexity with respect to explicit and com-
pact game representations. In our future research, we would like to close the
gaps in the complexity results and to consider more sophisticated solution con-
cepts. We also plan to elaborate on other compact game representations, not
only π-alternating game bases.

For future work, it would also be interesting to combine the notion of secret
goals with other forms of uncertainty; for example, agents could have incomplete
information about which other agent controls which variables, as in [16]. One
issue that has not been touched in this work is that of ‘cooperativeness’ [7]. In
what ways can some of the players cooperate to achieve their goals? We would
like to propose characterizations and complexity results for cooperativeness in
our setting. Finally, it would be interesting to investigate whether one can adapt
a dynamic framework similar to [11] to model the idea of achieving secret goals.

Acknowledgements We would like to thank the three anonymous reviewers
for their useful suggestions. This research was supported by Vici grant NWO
277-80-001 awarded to Rineke Verbrugge.

References

1. T. Ågotnes, W. van der Hoek, and M. Wooldridge. Scientia potentia est. In
Sonenberg et al. [15], pages 735–742.

2. M. Barbier. D-Day Deception: Operation Fortitude and the Normandy Invasion.
Greenwood Press, Westport, CT, 2007.

3. E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. Boolean games
revisited. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, ECAI,
volume 141 of Frontiers in Artificial Intelligence and Applications, pages 265–269.
IOS Press, 2006.

4. F. Dignum, B. Dunin-Keplicz, and R. Verbrugge. Creating collective intention
through dialogue. Logic Journal of the IGPL, 9(2):289–304, 2001.

5. A. Dumas. Le Comte de Monte-Cristo. Gallimard, Paris, 1844.
6. B. Dunin-Kȩplicz and R. Verbrugge. Teamwork in Multi-Agent Systems: A Formal

Approach. Wiley, Chichester, 2010.
7. P. E. Dunne, W. van der Hoek, S. Kraus, and M. Wooldridge. Cooperative boolean

games. In L. Padgham, D. C. Parkes, J. P. Müller, and S. Parsons, editors, 7th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pages 1015–1022. IFAAMAS, 2008.

8. U. Endriss, S. Kraus, J. Lang, and M. Wooldridge. Incentive engineering for
Boolean games. In Walsh [17], pages 2602–2607.

9. J. Grant, S. Kraus, M. Wooldridge, and I. Zuckerman. Manipulating Boolean
games through communication. In Walsh [17], pages 210–215.

10. P. Harrenstein, W. van der Hoek, J.-J. Meyer, and C. Witteveen. Boolean games. In
J. van Benthem, editor, Proceedings of the 8th Conference on Theoretical Aspects of
Rationality and Knowledge, pages 287–298, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

11. A. Herzig, E. Lorini, F. Moisan, and N. Troquard. A dynamic logic of normative
systems. In Walsh [17], pages 228–233.

12. M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge,
MA, 1994.

13. C. Papadimitriou. Computational Complexity. Addison Wesley : Reading, 1994.
14. H. Raiffa, J. Richardson, and D. Metcalfe. Negotiation Analysis: The Science and

Art of Collaborative Decision Making. Belknap Press of Harvard Univ. Press,
Cambridge (MA), 2002.

15. L. Sonenberg, P. Stone, K. Tumer, and P. Yolum, editors. Proceedings 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2011). IFAAMAS, 2011.

16. W. van der Hoek, N. Troquard, and M. Wooldridge. Knowledge and control. In
Sonenberg et al. [15], pages 719–726.

17. T. Walsh, editor. IJCAI 2011, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011.
IJCAI/AAAI, 2011.

18. G. Zlotkin and J. S. Rosenschein. Incomplete information and deception in multi-
agent negotiation. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, pages 225–231, 1991.

