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Abstract. This article provides a three-way interaction between exper-
iments, logic and cognitive modelling so as to bring out a shared per-
spective among these diverse areas, aiming towards better understanding
and better modelling of human strategic reasoning in dynamic games.

1 Introduction

How suitable are idealized formal models of social reasoning processes with re-
spect to the nuances of the real world? In particular, do these formal methods
represent human strategic reasoning satisfactorily or should we instead concen-
trate on empirical studies and models based on those empirical data? Ghosh,
Meijering and Verbrugge [6] made an effort to bridge the gap between logical
and cognitive treatments of strategic reasoning in dynamic games. They pro-
posed to combine empirical studies, formal modeling and cognitive modeling to
study human strategic reasoning. In their words, “rather than thinking about
logic and cognitive modeling as completely separate ways of modeling, we con-
sider them to be complementary and investigate how they can aid one another
to bring about a more meaningful model of real-life scenarios”. In the current
article, we apply this combination of methods to the question to what extent
people use backward induction or forward induction in dynamic games.

Backward and forward induction reasoning Backward Induction (BI) is
the textbook approach for solving extensive-form games with perfect informa-
tion. In generic games without payoff ties, BI yields the unique subgame perfect
equilibrium. The assumptions underpinning BI are that all players commonly
believe in everybody’s future rationality, no matter how irrational players’ past
behaviour has already proven. See [15,18] for more details.

In Forward Induction (FI) reasoning, on the other hand, a player tries to
rationalize the opponent’s past behaviour in order to assess his future moves.
Thus, in a subgame where no strategy of the opponent is consistent with common
knowledge of rationality and his past behaviour, the player may still rationalize
the opponent’s past behaviour by attributing to him a strategy which is opti-
mal against a presumed suboptimal strategy of hers, or by attributing to him a
strategy which is optimal vis-a-vis a rational strategy of hers, which is only opti-
mal against a suboptimal strategy of his. If the player pursues this rationalizing



reasoning to the highest extent possible [2] and reacts accordingly, she ends up
choosing what is called an FEztensive-Form Rationalizable (EFR) strategy [17]
(see also [18,16,5]). Thus EFR strategies are based on FI reasoning, and in the
following we use the terms EFR and FI synonymously.

There have been extensive debates among game theorists and logicians about
the merits of backward induction. Experimental economists and psychologists
have shown that human subjects do not always follow the backward induction
strategy in large centipede games [10,14]. Recently, based on an eye-tracking
study and complexity considerations, it turned out that even when human sub-
jects produce the outwardly correct ‘backward induction answer’ in smaller
games, they may use a different internal reasoning strategy to achieve it [13,3].
To investigate human reasoning strategies, Ghosh, Meijering and Verbrugge [6]
presented a formal language to represent strategies on a finer-grained level than
was possible before. The language and its semantics helped to precisely distin-
guish different cognitive reasoning strategies, that can then be tested on the basis
of computational cognitive models and experiments with human subjects. The
syntactic framework of the formal system provided a generic way of constructing
computational cognitive models of the participants of a ‘marble drop’ game.

Aims of this article Ghosh, Heifetz and Verbrugge [5] conducted a game-
theoretic experiment that involves a participant’s expectations about the oppo-
nent’s reasoning strategies, that may in turn depend on expectations about the
participant’s reasoning. It deals with the following question: In a dynamic game
of perfect information, are people inclined to do forward induction reasoning
(i.e. show EFR behaviour)? In the current work, we extend our aim of bridging
formal and empirical studies to this question from behavioural game theory, uti-
lizing the experimental findings from [5]. The main new elements of this work
with respect to [6,5,8] are as follows:

— We study robustness of the findings of [5], to alleviate concern that differ-
ent participants might follow a variety of reasoning patterns. Thus, more
grounding is given to the outcomes, which is used for formal modelling.

— Unlike the eye-tracking studies used in [13,6], the experiment which forms
the backbone of this paper includes participants’ verbal comments regarding
the reasoning they applied to perform their actions (see [8]), which made it
possible to introduce agents’ beliefs about their opponents’ moves and beliefs
in the logical language. We conjecture that this language is more succinct
than the language proposed in [6] in describing strategic reasoning, which in
turn may lead to a more efficient modelling,.

In what follows, we briefly recall Ghosh and colleagues’ recent experiment on
forward induction [5,8], report a robustness study of the findings of the experi-
ment, and extend the language introduced in [6] to describe players’ reasoning
strategies, adding a belief operator to reflect players’ expectations. Finally, we
sketch how strategy-formulas in this extended language can be turned into com-
putational cognitive models that help to distinguish what is going on in people’s
minds when they play dynamic games of perfect information.
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Fig. 1. Collection of the main games used in the experiment. The ordered pairs at the
leaves represent pay-offs for the computer (C) and the participant (P), respectively.

2 An experimental study: do people use FI?

We provide a brief summary of the experimental games and the experimental
procedure underlying the current work. The experiment (previously reported
in [5]) was designed to tackle the question whether people are inclined to use
forward induction (FI) reasoning when they play dynamic perfect information
games. The main interest was to examine participants’ behaviour following a
deviation from BI behaviour by their opponent right at the beginning of the
game; for details, see [5,8].

The games that were used in the experiment are given in Figures 1 and 2. In
these two-player games, the players play alternately. Let C' denote the computer
and P the participant. In the first four games (Figure 1), the computer plays
first, followed by the participant. The players control two decision nodes each. In
the last two games (Figure 2), which are truncated versions of two of the games
of Figure 1, the participant moves first.

To explicate the difference between BI and EFR behaviour consider game
1, one of the experimental games (cf. Figure 1). Here, the unique Backward
Induction (BI) strategies for player C' and player P are a; e and c; g, respectively,
which indicate that the game will end at the first node, going down. In contrast,
EFR would proceed as follows, starting from the scenario in which the game
reaches the first decision node of P. Among the two strategies of player C that
are compatible with this event, namely b; e and b; f, only the latter is rational for
player C'. This is because of the fact that b; e is dominated by a;e, while b; f is
optimal for player C'if she believes that player P will play d; h with a high enough
probability. Attributing to player C' the strategy b; f is thus player P’s best way
to rationalize player C’s choice of b, and in reply, d; g is player P’s best response
to b; f. Thus, the unique Extensive-Form Rationalizable (EFR, [17]) strategy
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Fig. 2. Truncated versions of Game 1 and Game 3. The ordered pairs at the leaves
represent pay-offs for C' and P, respectively.

(an FT strategy) of player P is d;g, which is distinct from his BI strategy c; g.
For a detailed discussion on BI and EFR strategies in games 2, 3,4, 1,3, see [5].

The experiment was conducted at the Institute of Artificial Intelligence at
the University of Groningen, the Netherlands. A group of 50 Bachelor’s and
Master’s students from different disciplines took part. They had little or no
knowledge of game theory, so as to ensure that neither backward induction nor
forward induction was already known to them.® The participants played the
finite perfect-information games in a graphical interface on the computer screen
(cf. Figure 3). In each case, the opponent was the computer which had been
programmed to play according to plans that were best responses to some plan
of the participant, and this was told to the participants.

Fig.3. Graphical inter-
face for the participants.
The computer controls
the blue trapdoors and ac-
quires blue marbles (rep-
resented as dark grey in a
black and white print) as
pay-offs, while the partic-
ipant controls the orange
trapdoors and acquires
orange marbles (light grey
in a black and white print)
as pay-offs.

You decide here.

You decide here.

After 14 practice games, each participant played 48 experimental games.
There were 8 rounds, each comprised of 6 games as described above. Differ-

5 The candidate participants were asked about their educational details. Two students
who had followed a course on game theory were excluded.



ent graphical representations of the same game were used in different rounds.
Participants earned 10-15 euros for participation, depending on points earned.

At the end of the experiment, each participant was asked the following ques-
tion: “‘When you made your choices in these games, what did you think about
the ways the computer would move when it was about to play next?” The par-
ticipant needed to describe in his own words, the plan he thought was followed
by the computer on its next move after the participant’s initial choice. We used
these answers to classify various strategic reasoning processes applied by the
participants while playing the experimental games.

To analyse whether participants P played FI strategies in the games de-
scribed in figures 1 and 2, we can formulate the following hypothesis (see [5] for
an explanation) concerning the participant’s choice in his first decision node (if
reached in games 1, 2, 3, 4, and in all rounds of games 1’ and 3'):

“d will be played most often in game 3, less so in game 1, even less in
games 3’ and 4, least often in games 1’ and 2”7, which we henceforth
abbreviate as “d:3>1>3,4> 1,2

In games 1 and 3, d is the only EFR move; in games 1’ and 2, d is neither
a BI nor an EFR move; and in games 3’ and 4, both ¢ and d are EFR moves.
Moreover, in game 3, reaching the first decision node is compatible with common
knowledge of rationality.

Ghosh et al. [5] found that in the aggregate, participants were indeed more
likely to make decisions in accordance with their best-rationalization EFR con-
jecture, i.e., consistent with FI reasoning. For a detailed study and a discussion
of some alternative explanations of the results, see [5,8]. Our main concern in
the current paper is how we can construct cognitive models based on the exper-
imental findings and how logic can play a role in such construction. To justify
our aim, we first investigate the robustness of the results of [5] based on the
available group-divisions.

2.1 Robustness: different results for different groups?

We segregated the participants in terms of gender and discipline and went on to
test the hypothesis over the different groups formed by segregation.®

Segregation by gender The available data on the behaviour of participants
at their first decision node in the six games were divided into two groups: male
and female. Overall, 40 men and 10 women had participated in the experiment
reported in [5,8]. We studied the choices made by participants belonging to the
two groups.” For the hypothesis, we have the following, very similar to the results
reported in [5]:

— Male d:3,3>4>1>1>2
— Female d:3,3 >4>1,1>2

5 Because of little variance among participants, we did not segregate by age.
" The results are based on one sample and two sample proportion tests.



As to individual games, the tests revealed the following behaviour. We use the
notations ¢ ~ j to denote that options ¢ and j are chosen equally often, and
1 > j to denote that i is chosen more often than j. The null hypothesis was that
c and d were chosen equally often at the first decision node:

— Game 1: ¢ > d (male, female).

— Game 2: ¢ > d (male, female).

— Game 3: d > ¢ (male, female).

— Game 4: d ~ ¢ (male), d > ¢ (female).

— Game 1": ¢ > d (male, female).

— Game 3': d > ¢ (male, female).

Segregation by discipline For this study, the data on 50 participants was
separated into three broad groups based on the nature of the study fields of the
participants:

Artificial Intelligence (Al): artificial intelligence and human-machine commu-
nication (27 students);

Behavioural and Social Sciences (BSS): accountancy, economics and business
economics, human resource management, international relations, law and
business economics, and psychology (10 students);

Ezact Sciences (ES): biology, biomedical sciences, drug innovation, computer
science, mathematics, and physics (13 students).

Similar statistical analysis was done over the choices made by the participants
belonging to the three groups. We summarize the results for the hypothesis:

— Al d:3,3>4>1,1>2

— BSS d:3,3 >4>1,1>2

—ES d:3,3>4>1,1>2

For the hypotheses on the individual games:
— Game 1: ¢ > d (AL BSS), d ~ ¢ (ES).
— Game 2: ¢ > d (Al BSS, ES).
— Game 3: d > ¢ (Al BSS, ES).
— Game 4: d ~ ¢ (BSS, ES), d > ¢ (AI).
— Game 1: ¢ > d (Al, BSS), d ~ ¢ (ES).
— Game 3": d > ¢ (Al, BSS, ES).

The statistical analyses based on gender and discipline suggest that the results
mentioned in Section 2 about participants’ behaviour at their first decision node
are robust. We only found minor variations corresponding to certain groups.

3 A language for strategies

In the line of [6], we propose a logical language specifying strategies of players.
Our motivation for introducing this logical framework is to build a pathway
from empirical to cognitive modelling studies. A detailed formal study of this
framework regarding its expressive power and axiomatics is left for future work.

This framework uses empirical studies to provide insights into cognitive mod-
els of human strategic reasoning as performed during the experiment discussed



in Section 2. The main idea is to use the logical syntax to express the differ-
ent reasoning procedures as performed and conveyed by the participants and
use these formulas to systematically build up reasoning rules of computational
cognitive models of strategic reasoning.

A novel part of the proposed language is that we add an explicit notion of be-
lief to the language proposed in [6] in order to describe participants’ expectations
regarding future moves of the computer. This belief operator is parametrized by
both players and nodes of the game tree so that the possible expectations of play-
ers at each of their nodes can be expressed within the language itself. The whole
point is to explicate the human reasoning process, therefore the participants’
beliefs and expectations need to come to the fore. Such expectations formed
an essential part of the current experimental study. We first build a syntax for
game trees (cf. [19,7]). Let N denote a finite set of players and let X' denote a
countable set of actions.

Syntax for extensive form game trees Let Nodes be a countable set. The
syntax for specifying finite extensive form game trees is given by:

G(Nodes) := (i,z) | Xa,,es((3, ), am, ta,,)
where i € N, x € Nodes, J(finite) € X, and ¢,,, € G(Nodes).
Given h € G(Nodes), we define the tree T}, generated by h inductively as
follows (see Figure 4 for an example):

— h=(i,2): Th = (Sh,=h, A, Sz) where S, = {55}, An(sa) = i.
— h=((x),a1,te,)+- -+ ((4,2), ak, ta, ): Inductively we have trees T1,... T}
where for j: 1 <j <k, T; = (Sj,:j,ij,sm).
Define T}, = (Sh,:>h,3\h, Sz) where
o Sp={sx}uSn u...uSp;
. Xh(sx) =7 and for all j, for all s € St,, Xh(s) = Xj(s);
® =h = Uj:lgjgk(«sﬂi?aj’ 55,0} U =)
Given h € G(Nodes), let Nodes(h) denote the set of distinct pairs (i,z) that
occur in the expression of h.

1 o
/ \ Fig. 4. Extensive form game tree. The nodes
are labelled with turns of players and the edges
zy 2 2 = with the actions. The syntactic representation
c1 dy c2 da of this tree can be given by:
h=((1,z0),a,t1) + ((1,20),b, t2), where
1 ¥2 y3 va = ((2,$1),61,(2,y1))+((2,$1),d1,(2,y2));
ta = ((2,22), 2, (2,y3)) + ((2,72), d2, (2,94)).

3.1 Strategy specifications

A syntax for specifying partial strategies and their compositions in a structural
manner involving simultaneous recursion has been used in [6] to describe empir-
ical reasoning of participants involved in a game experiment in a dynamic game



called ‘marble drop’ [12,11], as demonstrated by an eye-tracking study [13]. The
main case specifies, for a player, which conditions she tests before making a
move. In what follows, the pre-condition for a move depends on observables that
hold at the current game position, some belief conditions, as well as some simple
finite past-time conditions and some finite look-ahead that each player can per-
form in terms of the structure of the game tree. Both the past-time and future
conditions may involve some strategies that were or could be enforced by the
players. These pre-conditions are given by the syntax defined below.

For any countable set X, let BPF(X) (the boolean, past and future combi-
nations of the members of X) be sets of formulas given by the following syntax:

BPF(X):=we X | = |1 v o [{a®)y [ {a™ ),

where a € X, a countable set of actions.

Formulas in BPF(X) can be read as usual in a dynamic logic framework
and are interpreted at game positions. The formula {(a* ) (respectively, (a™ )))
refers to one step in the future (respectively, past). It asserts the existence of an
a edge after (respectively, before) which ¢ holds. Note that future (past) time
assertions up to any bounded depth can be coded by iteration of the correspond-
ing constructs. The ‘time free’ fragment of BPF(X) is formed by the boolean
formulas over X. We denote this fragment by Bool(X).

For each h € G(Nodes) and (i,x) € Nodes(h), we now add a new operator

IB%;f’w) to the syntax of BPF(X) to form the set of formulas BPF,(X). The

formula B;f’x)q/z can be read as “in the game tree h, player ¢ believes at node x
that ¢ holds”. One might feel that it is not elegant that the belief operator is
parametrized by the nodes of the tree, however, our main aim is not to propose
a logic for the sake of its nice properties, but to have a logical language that can
be used suitably for constructing computational cognitive models corresponding
to participants’ strategic reasoning.

Syntax Let P' = {p{,pi,...} be a countable set of observables for i € N and
P = Uien P?. To this set of observables we add two kinds of propositional
variables (u; = ¢;) to denote ‘player 4’s utility (or payoff) is ¢;” and (r < ¢) to
denote that ‘the rational number r is less than or equal to the rational number
¢’® The syntax of strategy specifications is given by:

Strat' (P') := [y = a]’ [ 1 + 12 | m1 - 2,
where ¢ € BPF,(P"). For a detailed explanation see [6]. The basic idea is to
use the above constructs to specify properties of strategies as well as to combine
them to describe a play of the game. For instance, the interpretation of a player
i’s specification [p — a]’ where p € P, is to choose move a at every game
position belonging to player ¢ where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification
11 + 72 says that the strategy of player i conforms to the specification n; or 7s.
The construct 77 - 72 says that the strategy conforms to specifications 7 and 7.

® as in [6] and inspired by [4].



Semantics We consider perfect information games with belief structures as
models. The idea is very similar to that of temporal belief revision frame pre-_
sented in [4]. Let M = (T,{—7}, V) with T = (S, =, s9, A\,U), where (S, =, s0, A)
is an extensive form game tree, U : frontier(T) x N — Q is a utility function.
Here, frontier(T) denotes the leaf nodes of the tree T. For each s, € S with
X(sm) = ¢, we have a binary relation —7 over S (cf. the connection between h
and T}, presented above). Finally, V : S — 2% is a valuation function. The truth
value of a formula ¢ € BPF,(P) at the state s, denoted M, s |= 1, is defined as
follows:

— M,skEpiff pe V(s).
— M,s = -y iff M,s K= .
— M,skEv1 v iff M,sk=1 or M, s = s.
M, s |= {a* ) iff there exists an s” such that s—s" and M, s" = ).
M, s = {a~ Y iff there exists an s’ such that '—>s and M, s" = 1.
- M,skE Bii’w)w iff the underlying game tree of T, is the same as T} and for
all s’ such that s —7 ', s’ = 1.
The truth definitions for the new propositions are as follows:
- M,s = (u; = q;) iff U(s, i) = g;.
— M,s = (r < q) iff r < g, where r, ¢ are rational numbers.

Strategy specifications are interpreted on strategy trees of T. We also assume
the presence of two special propositions turn; and turns that specify which
player’s turn it is to move, i.e. the valuation function satisfies the property

— for all i € N, turn; € V(s) iff A(s) = i.
One more special proposition root is assumed to indicate the root of the game
tree, that is the starting node of the game. The valuation function satisfies the
property

— root € V(s) iff s = so.
We recall that a strategy for player i is a function ' which specifies a move at
every game position of the player, i.e. u® : S — X. A strategy p can also be
viewed as a subtree of T where for each node belonging to the opponent player
1, there is a unique outgoing edge and for nodes belonging to player 7, every
enabled move is included. A partial strategy for player 7 is a partial function
o' which specifies a move at some (but not necessarily all) game positions of
the player, i.e. o : §* — X. A partial strategy can be viewed as a set of total
strategies of the player [6].

The semantics of the strategy specifications are given as follows. Given a
model M and a partial strategy specification n € Strat’(P?), we define a semantic
function [-],, : Strat'(P?) — 22'(Tn)  where each partial strategy specification
is associated with a set of total strategy trees and §2°(T) denotes the set of all
player ¢ strategies in the game tree T'.

For any 7 € Strat'(P?), the semantic function [n],, is defined inductively:

— [ a]']y = T € 29 (Tv) satisfying: u € T iff u satisfies the condition
that, if s € S, is a player i node then M, s |= ¢ implies out,(s) = a.
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Above, out,(s) is the unique outgoing edge in p at s. Recall that s is a player
1 node and therefore by definition of a strategy for player i, there is a unique
outgoing edge at s.

Before describing specific strategies found in the empirical study, we would
like to focus on the new operator of belief, Bg’m) proposed above. Note that this
operator is considered for each node in each game. The idea is that the same
player might have different beliefs at different nodes of the game. We had to
introduce the syntax of the extensive form game trees to make this definition
sound, otherwise we would have had to restrict our discussion to single game
trees. The semantics given to the operator is entangled in both the syntax and
semantics, which might create problems in finding an appropriate axiom system.
A possible solution would be to introduce some generic classes of games similar to
the idea of generic game boards [20], using the notion of enabled game trees [7].
This is left for future work, as well as a comparison of the expressiveness of the
current language with those of existing logics of belief and strategies.

3.2 Describing specific strategies in the experimental games

Let us now express some actual reasoning processes that participants displayed
during the experiment. Some participants described how they reasoned in their
answers to the final question. Example 1 of such reasoning: “If the game reaches
my first decision node and if the payoffs are such that I believe that the computer
would not play e if its second decision node is reached, then I play d at my
current decision node”. This kind of strategic reasoning can be expressed using
the following formal notions.

Let us assume that actions are part of the observables, that is, > < P. The
semantics for the actions can be defined appropriately. Let nq, ..., n4 denote the
four decision nodes of game 1, with C' playing at n; and ns, and P playing at
the remaining two nodes ny and ny. We have four belief operators for this game
- two for each player. We abbreviate some formulas which describe the payoff
structure of the game:

XX ((uc = pc) A (up = pp
(XX ((uc = qo) ~ (up = qp
(dXe)((uc =rc) A (up =r1p)) =7
()((uc = s0) A (up = sp)) =6
b Xa)((uc = te) A (up = tp))
pi=aABAYAIAYX

Let 1; denote the conjunction of all the order relations of the rational payoffs

for player ¢ given in game 1. A strategy specification describing the strategic

reasoning of Example 1 (at the node ns) is:

np : [(¢ A e Athe A b droot A B (dy—e A B2 (d) f)g) — d]”

A BI reasoning at the same node can be formulated as follows:

I
@ e

=X



NP [(0 n dp Ao A b7 root A B (dye A By (d) frg) = ]

The example above shows how strategic reasoning of participants can be formu-
lated in the proposed framework (which could then be converted to appropriate
reasoning rules to build up computational cognitive models). Note that our rep-
resentations have become quite succinct using the belief operator, compared to
the representations we had in [6], because expressions for response strategies are
not needed anymore. We leave the details for future work.

4 Modelling in ACT-R

We now provide a brief description of the cognitive architecture at the basis of
our computational cognitive model. ACT-R is an integrated theory of cognition
as well as a cognitive architecture that many cognitive scientists use [1]. ACT-R
consists of modules that link with cognitive functions, for example, vision, motor
processing, and declarative processing. Each module maps onto a specific brain
region. Furthermore, each module is associated with a buffer and the modules
communicate among themselves via these buffers.

The computational cognitive models that we propose are inspired by [6].
We consider a class of models, where each model is based on a set of strategy
specifications that can be generated using the logical framework we presented in
Section 3. The specifications can represent both backward induction reasoning
or forward induction reasoning (in particular, EFR reasoning), among others.

Each of the specifications defined in Subsection 3.2 comprises comparisons
between relevant payoffs for both the players. For each comparison, a cognitive
model has a set of production rules that specify what the model should do.
To compare player C’s payoffs, say at two leaf nodes, the model first has to
find, attend, and encode them in the so-called problem state buffer [1]. For each
subsequent payoff, the model performs the following procedure (cf. Figure 5):

— request the visual module to find the payoffs’ visual locations;
— direct visual attention to that location; and
— update the problem state (buffer).

The specifications 75 and 1% (see Subsection 3.2) specify what the model should
do after encoding the payoffs in the problem state. First, the payoffs need to be
compared and the comparison needs to stored. Then the belief operators are
dealt with as follows (cf. Figure 5):

— attend visual location of the node depicted by the belief operator; and
— encode the actions and beliefs at the problem state (buffer).

The decisions are made corresponding to the recorded payoffs and the resulting
beliefs. An example production rule could be as follows; the model will select
and fire this production rule to generate a response:



loc = (b~ )root
loc 1=y, uc
loc 2 =v,uc
l Set goal: record
beliefs at loc
Set goal: Compare payoffs
at loc 1 and loc 2

Find location loc 1 Find location loc 2

l Attend belief at loc

loc 1 =a,up
Attend payoff at loc 1 Attend payoff at loc 2 loc 2= B,up

Find location loc

Update problem state:

store belief
Update problem state: Update problem state:
store payoff store payoff

no respond:
—> | playd

l yes
l yes yes l

respond: respond:
continue play ¢

Fl
3

no payoff 1

last
comparison

loc 1=06,up
comparison

>
loc 2 =,up payoff 2

respond:
continue

Fig. 5. Flowcharts for reasoning processes as described in Example 1 and BI

IF

Goal is to record Player P’s If the current goal is to record Player P’s beliefs
belief at node n at node n,

Problem State represents and the problem state has stored the actions,
Player P’s actions at n,

cand d

B ¢ and belief is f will be played (by C),

THEN

Decision is play d then request the manual (or motor) module

to produce a key press (i.e., play d).

5 Conclusion

In this paper we have continued the line of work started in [6] and proposed
another logical language to aid in the construction of computational cognitive
models based on the findings of a game-theoretic experiment. We have shown
that logic can play a major role in Marr’s computational and algorithmic levels
of inquiry for cognitive sciences [9]. In future we aim to implement various sets of
specifications in separate models, and to simulate repeated game play to study
possible learning effects. An advantage of constructing ACT-R models, not only
logical formulas, is that quantitative predictions are generated, for example,
concerning decision times, locus of attention and activity of brain regions, which
can then be tested in further experiments.
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