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Abstract: Sometimes, in dynamic games, it is useful to reason not only about the existence of strategies for players, but
also about what these strategies are, and how players select and construct them. We study dynamic games
with simultaneous moves, repeated normal form games and show that this reasoning can be carried out by
considering a single game, and studying composition of “local” strategies. We study a propositional modal
logic in which such reasoning is carried out, and present a sound and complete axiomatization of the valid
formulas.

1 INTRODUCTION

Game theory provides a normative view of what
rational players should do in decision making sce-
narios taking into account their beliefs and expecta-
tions regarding other players’ (decision-makers’) be-
haviour. In this sense, the reasoning involved is more
about games, rather than within the games them-
selves. The entire game structure is known to us, and
we can predict how rational players would play, so
that we can ask whether rational play could / would
result in equilibrium strategy profiles, whereby play-
ers would not deviate from such strategic choices.
Strategies of players in a game are assumed to be
complete plans of actions that prescribe a unique
move at each playable position in the game.

When games are finite, and strategies are complete
plans, each player has only finitely many strategies to
choose from and the study of normal form games sim-
ply abstracts strategies and sets of choices and studies
the effect of each player making a choice simultane-
ously. Probabilistic (or mixed strategies) become the
focus of such a study, and equilibrium theory then as-
signs probabilities to expected modes of player be-
haviour.

Even if we retain the structure of games, and
study them as trees of possible sequences of player
moves, as in extensive form games, a backward induc-
tion procedure (BI procedure (Osborne and Rubin-
stein, 1994)) can be employed to effectively compute
optimal strategies for players, leading to predictions
of stable play by rational players. Questions of how

players may arrive at selecting such strategies and
playing them, and their expectations of other players
symmetrically choosing such strategies are (rightly)
glossed over.

And, when the moves are simultaneous, for ex-
ample, in the case of infinitely repeated normal form
games, even though there exists an equilibrium strat-
egy (the grim strategy) (Rasmusen, 2007), Folk theo-
rem tells us that under certain reasonable conditions,
the claim that a particular behaviour arises is mean-
ingless in such a game.

1.1 Strategies as partial plans

For dynamic games with simultaneous moves, one
can think of both individual and group strategies, and
the BI-procedure works bottom up on the game tree,
and assumes players who have the computational and
reasoning ability required to work it out (and hence
each player can assume that other rational players do
likewise). If the game is finite but consists of a tree
of large size, such an assumption is untenable. Strate-
gizing during play (rather than about the entire game
tree) is meaningful in such situations and we need to
consider players who are decisive and active agents
but limited in their computational and reasoning abil-
ity.1 Unlike the BI-procedure, strategizing during
play follows the flow of time and hence works top

1The notion of players whose rationality is also limited
in some way is interesting but more complex to formal-
ize; for our considerations perfectly rational but resource
bounded players suffice



down. Hence, unless a player has access to the entire
subtree issuing at a node, she cannot compute opti-
mal strategies, however well she is assured of their
existence. It is in fact for this reason that although
the determinacy of chess was established by Zermelo
(Zermelo, 1913) the game remains fascinating to play
as well as study even today.

Indeed, resource limited players working top
down are forced to strategize locally, by selecting
what part of the past history they choose to carry in
their memory, and how much they can look ahead in
their analysis. In combinatorial games, complexity
considerations dictate such economizing in strategy
selection. Predicting rational play by resource limited
players is then quite interesting.

When game situations involve uncertainty, as in-
evitably happens in the case of games with large struc-
ture or large number of players, such top down strate-
gizing is further necessitated by players having only
a partial view of not only the past and the future but
also the present as well. Once again, we are led to
the notion of a strategy as something different from
a complete plan, something analogous to a heuris-
tic, whose applicability is dictated by local obser-
vations of game situations, for achieving local out-
comes, based on expectations of other players’ locally
observed behaviour. The notion of locality in this de-
scription is imprecise, and pinning it down becomes
an interesting challenge for a formal theory.

As an example, consider a heuristic in chess such
as pawn promotion. This is generic advice to any
player in any chess game, but it is local in the sense
that it fulfils only a short term goal, it is not an advice
for winning the game. A more interesting example
is the heuristic employed by the computer Deep Blue
against Gary Kasparov (on February 10, 1996) threat-
ening Kasparov’s queen with a knight (in response to
Kasparov’s 11th move). The move famously slowed
down Kasparov for 27 minutes, and was later hailed
as an important strategy.2 The point is that such
strategizing involves more than “look-ahead”.

1.2 Strategy selection

The foregoing discussion motivates a formal study
of strategies in extensive form games, where we go
beyond looking for existence of strategies for play-
ers to ensure desired outcomes, but take into ac-
count strategy structure and strategy selection as well.
This work was initiated in (Ramanujam and Simon,
2008b), and we extend it to incorporate extensive
form games with simultaneous moves, so that they too

2https://en.wikipedia.org/wiki/Deep_Blue_
versus_Kasparov,_1996,_Game_1

can be studied through ‘top-down strategizing’. Re-
lating strategy structure with game structure was in-
dependently taken up in (Ghosh, 2008) and (Ramanu-
jam and Simon, 2008a), see (Ghosh and Ramanujam,
2012) for a survey of such work.

When we reason about the existence of strategies
for players to ensure desired outcomes, we can sim-
ply formalize the collection of strategies as a set and
a rational player can be depended upon to pick the
right one from the set and play it. In this case, rea-
soning about strategies amounts to assigning names
to strategies and we can speak of player A playing a
strategy σ to ensure outcome α from game position
s. Such a player, in effect, chooses between outcomes
and we reason about players’ consideration of choices
by other players.

In the case of a resource limited player who re-
lies on partial and local plans, choice of strategies
can be seen as composition of local plans to make
‘more global’ plans, and in this sense we can ascribe
structure to strategies. As an example, consider a
chess player who strategizes locally to capture either
a knight or a bishop, and makes further conditional
plans based on the success of either attempt, while
at the same time formulating backup plans to counter
unforeseen disasters along the way. In such a situ-
ation, each player can be seen as composing partial
strategies, and exercising selections at each stage of
the composition. Such strategy structure would then
include hypothesizing about partial strategies of other
players (as witnessed by their moves) as well. This
mutual recursion in strategy structure and selection
has been explicated in the logical study of (Ramanu-
jam and Simon, 2008b) and in this paper we extend
the approach to a class of games with simultaneous
moves.

1.3 Related work

When an extensive form game is presented as a finite
or infinite tree, strategies constitute selective quantifi-
cation over paths. When every edge of the tree corre-
sponds to a normal form game, we obtain a concur-
rent game structure. The temporal evolution of such
structures is studied in the pioneering work on Alter-
nating time temporal logic (ATL) (Alur et al., 2002).
In this logic, one reasons about groups of players hav-
ing a strategy to force certain outcomes. Since the
game played at one node of the tree is essentially dif-
ferent from that at any other node in the tree, strategiz-
ing is local at any node in the basic framework. These
can be construed as subgames and hence ATL can be
also seen as a logic of game composition. Further,
named strategies can be introduced as in extensions



of ATL with explicit treatment of strategies (such as
in (Chatterjee et al., 2007; van der Hoek et al., 2005;
Walther et al., 2007; Ågotnes, 2006)). However, they
principally reason about the existence of functional
strategies in both normal form and extensive form
games. For a detailed survey, see (Bulling et al.,
2015).

Strategy composition arises from a different per-
spective. The point of departure here is in working
with the heuristic notion of strategies as partial plans,
and studying compositional structure in strategies. In
this sense the contrast of ATL to this work is akin to
that of temporal logics to process logics (which incor-
porate dynamic logic into temporal reasoning).

The stit frameworks of (Horty, 2001) work with
notions such as “agent sees to it that” a particular
condition holds, and automatically refers to agents
having strategies to achieve certain goals. Exten-
sive form game versions of stit have been discussed
in (Broersen, 2009; Broersen, 2010), where strate-
gies are considered as sets of histories of the game.
Each such history gives a full play of the game, and
hence, only total strategies are taken into account.
See (Broersen and Herzig, 2015) for a detailed sur-
vey. We note here that such reasoning may be relevant
for strategy logics with more detailed agency. Strate-
gies as move recommendations of players based on
game description language are considered in (Zhang
and Thielscher, 2015).

Our work, which is an extension of the work
done in (Ramanujam and Simon, 2008b), is closest in
spirit to logical studies on games such as (Benthem,
2002; Benthem, 2007), (Harrenstein et al., 2003),
(Bonanno, 2001). However, rather than formalizing
the notion of backward induction and its epistemic en-
richments, we study top down reasoning in the same
basic framework as in these logics.

An aspect that comes out of our studies of compo-
sitional strategy structures is the fact that we are able
to model players’ responses to other players while
playing a game, even in the case of games with simul-
taneous moves, which occurs naturally in repeated
normal form games. Thus one can study the differ-
ent strategic responses of the players leading to dif-
ferent outcomes. Simple games or strategies are com-
bined to form complicated structures which provide
a way to describe actual plays of a game - how a
player with limited resources, without knowing how
a game might proceed in the future, can actually go
about playing the game.

1.4 Contributions

Thus the main contributions of this paper are the fol-
lowing:

• We propose a logical language in which strate-
gies are partial plans, have compositional struc-
ture and we reason about agents employing such
strategies to achieve desired outcomes. The focus
is on games with simultaneous moves (also known
as concurrent games structures).

• We present a complete Hilbert-style axiomatiza-
tion of this logic. A decision procedure can be
extracted with some more work, as demonstrated
in (Ramanujam and Simon, 2008b).

The syntax for composing strategies presented
here is not proposed to be definitive, but merely
illustrative. When we build libraries of strategies
employed in games that programs modelling player
agents make use of, we will have a more realistic un-
derstanding of compositional structure in strategies.

We note here that plays in many popular dynamic
board games with simultaneous moves (e.g. Robo-
Rally) are actually based on heuristic strategizing and
local plans, and a library of strategies will aid the
game developers and the general game playing crowd
towards providing a better game-playing and strategy-
developing experience. In what follows we will use
the repeated normal form game, Iterated Prisoner’s
Dilemma (Rasmusen, 2007) to explicate the concepts
introduced.

2 PRELIMINARIES

We start with defining dynamic games with simul-
taneous moves, the basic underlying structure for this
work, and what is meant by player-strategies in such
games. Let N = {1,2, . . . ,n} be a non-empty set of
players. For each player i ∈ N, we associate a finite
set Γi, the set of symbols which constitute player i’s
actions. Let Γ̃ = Πi∈NΓi, the cartesian product of the
Γi’s over all i∈N. Throughout the text we will denote
the elements of Γ̃ by γ. For each i ∈ N, let γ−i denote
the tuple (γ1, . . . ,γi−1,γi+1, . . . ,γn), and Γ̃−i denote the
set of all such γ−i’s.

In case of Iterated Prisoner’s Dilemma (IPD), we
have that N = {1,2}. For each player i ∈ N, we as-
sociate a finite set Γi = {ci(confess),di(defect)}, and
Γ̃ = Πi∈NΓi.

Game arena with simultaneous moves A game
arena with simultaneous moves is a tuple
G = (W,→,w0,χ) such that W is the set of
game positions, w0 is the initial game position,



χ(w) = χ1(w)× . . .× χn(w), for any w ∈ W , with
χi : W → 2Γi \{ /0} giving the set of possible actions
that an agent can take when she is at a certain game
position, and the move function →: W × Γ̃ → W
satisfies that for all w,v ∈ W , if w

γ−→ v, then
γ[i] ∈ χi(w).

Extensive form game tree Given a game arena G =
(W,→,w0,χ), we can associate its tree unfolding,
also referred to as the extensive form game tree,
TG = (S,⇒,s0,X ,λ), where (S, ⇒) is a tree rooted at
s0 with edges labelled by members of Γ̃, X : S→ 2Γ̃,
and λ : S→W is such that:

- λ(s0) = w0,

- ∀s,s′ ∈ S,if s
γ
=⇒ s′, then λ(s)

γ−→ λ(s′),

- if λ(s) = w and w
γ−→ w′, then ∃s′ ∈ S s.t. s

γ
=⇒ s′

and λ(s′) = w′.
- X(s) = χ(λ(s))

We have X i(s)= χi(λ(s)). We define moves(s)= {γ∈
Γ̃ : ∃s′ ∈ S, such that s

γ
=⇒ s′}, and moves(s)i is the

set of ith projections of the members of moves(s).

When we are given the tree unfolding TG of a
game arena G and a node s in it, we define the re-
striction of TG to s, denoted by Ts to be the subtree
obtained by retaining the unique path from root s0 to
s and the tree rooted at s.

Let us come back to our example. The game arena
in case IPD is a tuple G = (W,→,w0,χ) such that
W = {w}, w0 = w is the initial and only game posi-
tion, χ(w) = χ1(w)×χ2(w), with χi : w 7→ Γi giving
the set of possible actions that an agent can take when
she is at a certain game position. The arena consists of
a single game state and four loops labelled by (c1,c2),
(c1,d2), (d1,c2) and (d1,d2). The tree unfolding of
this arena gives us the IPD. Let us now define strate-
gies in the following.

Strategies Let a game be represented by G = (W,→
,w0,χ). Let TG be the tree unfolding of the game
arena G and s be a node in it. A strategy for player i at
node s, µi is given by Ts �µi = (Sµi ,⇒µi ,s,Xµi) which
is the subtree of Ts containing the unique path from
root s0 to s and is the least subtree satisfying the fol-
lowing property: ∀s∈ Sµi ,∃ a unique γi ∈Γi such that,

∀γ−i ∈ Γ̃−i, ∀s′ with s
(γi,γ−i)
====⇒ s′, s

(γi,γ−i)
====⇒µi s′. Xµi is

the restriction of X to Sµi . The idea is that we pick
a single action for player i and all possible actions
for other players and consider those tuples of moves
corresponding to each game position in the subtree
rooted at s.

For example, the tuples of actions (c1,c2) and (c1,d2)
at each node of the IPD tree constitute a strategy tree

for player 1. Let Ωi denote the set of all strategies of
player i in G. Given a game tree TG and a node s in it,
let ρs

s0
: s0

γ1
=⇒ s1 . . .

γm
=⇒ sm = s denote the unique path

from s0 to s. In what follows we restrict the number
n of elements in N to 2 for convenience. The ensuing
discussion and results would follow similarly (with
minor modifications) for any arbitrary n≥ 2.

3 STRATEGY LOGIC

We now propose a strategy logic (SL) to reason
about such strategies and their compositions and to
describe what these strategies can ensure in the po-
sitions where they are enabled. We give the syntax
in two levels, as in (Ramanujam and Simon, 2008b),
the first level consists of the strategy specification lan-
guage, and the second level provides a syntax for rea-
soning in games with simultaneous moves.

3.1 Strategy specifications

We first provide a specification language to describe
such strategies. These strategies can be given as ad-
vices from the point of view of an outsider advising
the players how to play in such games, and also can
be considered from the players’ perspectives at game
positions, given the facts that hold in such positions.
A propositional syntax with certain past formulas is
used to describe observations at game positions.

Observation syntax Let P be a countable set of
propositions. Then we define,

φ ∈Φ : p | ¬φ | φ1∨φ2 |3−φ

where p ∈ P. Here, 3−φ denotes that φ has happened
sometime in the past and can be evaluated in terms of
finite sequences.

Specification Syntax For i = 1,2, the set of strategy
specifications, Strat i(P) is given by,

σ ∈ Strat i(P) : [φ 7→ γ
i]i | σ1 +σ2 | σ1 ·σ2 | π⇒i σ,

where, φ ∈ Φ, and π ∈ Strat ī(P). Here ī = 2(1) if
i = 1(2).

The main idea is to use the above constructs to
specify properties of strategies as well as to combine
them to describe a play of the game, say. For in-
stance the interpretation of a player i’s specification
[φ 7→ γi]i where φ ∈ Φ, is to choose move γi at every
game position where φ holds. At positions where φ

does not hold, the strategy is allowed to choose any
enabled move. The constructs ‘+’ and ‘·’ correspond



to ‘or’ and ‘and’ respectively. The strategy specifica-
tion σ1+σ2 says that the strategy of player i conforms
to the specification σ1 or σ2. The construct σ1 · σ2
says that the strategy conforms to specifications σ1
and σ2. The strategy specification π⇒i σ says that if
player ī’s strategy conforms to the specification π in
the history of the game, then play σ.

Semantics Let V : S → 2P be a valuation. Then a
model is given by M = (TG,V ), where TG is an ex-
tensive form game tree (defined in Section 2) and V
is a valuation. Let M be a model and s be a node in
it. Let ρs

s0
: s0

γ1
=⇒ s1 . . .

γm
=⇒ sm = s denote the unique

path from s0 to s. We define for all k ∈ {0, . . . ,m},
- ρs

s0
,k � p iff p ∈V (sk),

- ρs
s0
,k � ¬φ iff ρs

s0
,k 2 φ,

- ρs
s0
,k � φ1∨φ2 iff ρs

s0
,k � φ1 or ρs

s0
,k � φ2,

- ρs
s0
,k � 3−φ iff there exits a j : 0≤ j ≤ k such that

ρs
s0
, j � φ.

For any σi ∈ Strat i(P), we can define σi(s) (the set of
player i actions at node s conforming to the strategy
specification σi) as follows:

([φ 7→ γ
i]i)(s)=

{
{γi} i f ρs

s0
,m � φ and γi ∈ X i(s),

X i(s) otherwise;

(σi
1 +σ

i
2)(s) = σ

i
1(s)∪σ

i
2(s),

(σi
1 ·σi

2)(s) = σ
i
1(s)∩σ

i
2(s).

(π⇒i σ)(s)=
{

σ(s) i f ∀ j : 0≤ j < m,γī
j ∈ π(s j)

X i(s) otherwise.

Here, X i(s) denotes the set of moves enabled for a
player i at s, γī

j denotes an action of player ī, and π(s j)

denotes the set of actions enabled at s j for player ī by
the strategy specification π.

Given a game tree TG and a node s in it, and a
strategy specification σ∈ Strat i(P), we define Ts�σ=
(Sσ,⇒σ,s,Xσ) to be the subtree of Ts containing the
unique path from root s0 to s and is the least subtree
satisfying the following property: ∀s ∈ Sσ,∃γi ∈ Γi

such that, ∀γī ∈ Γī, ∀s′, s
γ
=⇒ s′, where γ = (γi,γī) iff

γi ∈ σ(s). Xσ is the restriction of X to Sσ.
In IPD one can consider strategies like always

cooperate or always defect, which can be easily de-
scribed in the syntax as follows:

- always cooperate - [> 7→ c]i

- always defect - [> 7→ d]i

Consider the following non-trivial strategy:

- Start by choosing d (defect)

- As long as the opponent cooperates, cooperate, or
as long as the opponent defects, defect

This strategy can be represented as follows:
[root 7→ d]i.(([> 7→ c]ī⇒i [> 7→ c]i)+ ([> 7→ d]ī⇒i
[> 7→ d]i)). Here, root can be considered as an atomic
formula, true only at the root node. A commonly
known strategy is given in the following. If both
players choose this strategy in the infinite IPD, then
one can find a simple perfect equilibrium (Rasmusen,
2007).

The Grim Strategy
- Start by choosing d

- Continue to choose d unless some player has cho-
sen c, in which case, choose c forever.

We will show how this Strategy Logic, SL can de-
scribe such strategies. Let us now provide a language
to reason with such strategies.

3.2 Logic

We are now ready to propose a logic, SL for describ-
ing strategic reasoning in games with simultaneous
moves.

SL syntax The syntax of SL is defined as follows:

α∈Θ : p∈P | ¬α |α1∨α2 | 〈γ〉α | 〈γ〉α |3−α |σi :i γ
i |

σi ↪→i φ

where, γi ∈ Γi, σi ∈ Strat i(P), and φ ∈Φ.

The formula 〈γ〉α says that after a γ move α holds,
and 〈γ〉α says that α holds before the γ move was
taken. The formula σi :i γi asserts, at any game po-
sition, that the strategy specification σi for player i
suggests that the move γi can be played at that posi-
tion. The formula σi ↪→i φ says that from this position,
there is a way of following the strategy σi for player i
so as to ensure the outcome φ. These two modalities
constitute the main constructs of our logic.

The connectives ∧, ⊃ and the formulas [γ]α,
[γ]α are defined as usual, �α = ¬3−¬α, 〈N〉α =∨

γ∈Γ̃
〈γ〉α, [N]α = ¬〈N〉¬α, 〈P〉α =

∨
γ∈Γ̃
〈γ〉α,

[P]α = ¬〈P〉¬α, root = ¬〈P〉>, enabledγ1 =∨
γ2∈Γ2〈(γ1,γ2)〉>, enabledγ2 =

∨
γ1∈Γ1〈(γ1,γ2)〉>.

SL semantics Let M be a model as described in Sec-
tion 3.1 and s be a node in it. Let ρs

s0
be s0

γ1
=⇒

s1 . . .
γm
=⇒ sm = s, as earlier. The truth definition of

the SL formulas is given as follows:

- M,s � p iff p ∈V (s),



- M,s � ¬α iff M,s 2 α,
- M,s � α1∨α2 iff M,s � α1 or, M,s � α2,

- M,s � 〈γ〉α iff ∃s′ ∈ S s.t. s
γ
=⇒ s′ and M,s′ � α,

- M,s � 〈γ〉α iff m > 0,γ = γm and M,sm−1 � α,
- M,s � 3−α iff ∃ j : 0≤ j ≤ m s.t. M,s j � α,
- M,s � σi :i γi iff γi ∈ σi(s),
- M,s`σi ↪→i φ iff for all s′ ∈ Ts�σi with s⇒∗ s′ we

have M,s′ � φ ∧ enabledσi , where enabledσi =∨
γ∈Γ̃

(〈γ〉> ∧ σi :i γi).

The Grim Strategy (followed by player 1, say) de-
scribed earlier can be represented as follows: (root ⊃
(〈d1,c2〉>∨〈d1,d2〉>))∧ (〈P〉3−(([> 7→ c2]

2 +[> 7→
d2]

2) : 2c2) ⊃ (〈c1,c2〉>∨ 〈c1,d2〉>)). We now pro-
vide the main technical result of the paper, that is a
sound and complete axiomatization of SL.

4 A Complete Axiomatization

The following axioms and rules provide a sound
and complete axiomatization for SL. A proof sketch
is provided below.

- (A1) tautologies in classical propositional logic.

- (A2)(a)[γ](α1 ⊃ α2)⊃ ([γ]α1 ⊃ [γ]α2)

(b)[γ](α1 ⊃ α2)⊃ ([γ]α1 ⊃ [γ]α2)

- (A3)(a)〈γ〉α⊃ [γ]α

(b)〈γ〉α⊃ [γ]α

(c)〈γ〉> ⊃ ¬〈γ′〉>, for all γ′ 6= γ

- (A4)(a)α⊃ [γ]〈γ〉α
(b)α⊃ [γ]〈γ〉α

- (A5)(a)3−root
(b)�α≡ (α∧ [P]�α)

- (A6)(a)enabledγi ≡ [φ 7→ γi]i :i γi, γi ∈ Γi

(b)[φ 7→ γi]i :i γi
l ≡ ¬φ∧ enabled

γi
l
, γi 6= γi

l

- (A7)(a)(σi
1 +σi

2) :i γi ≡ σi
1 :i γi∨σi

2 :i γi

(b)(σi
1.σ

i
2) :i γi ≡ σi

1 :i γi∧σi
2 :i γi

(c)(π 7→i σ) :i γi ≡ ((�(〈γ〉>⊃ 〈γ〉(π :ī γī))⊃
(σ :i γi))∧(¬�(〈γ〉>⊃ 〈γ〉(π :ī γī))⊃ enabledγi))

- (A8) σi ↪→i φ ⊃ (φ∧ ./ ∧ enabledσ), where ./
is σi :i γi ⊃ [γ](σi ↪→i φ).

- (A9)(a)
∨

γi∈Γi enabledγi

(b)
∨

γī∈Γī enabled
γī

Inference Rules

M.P.
α, α⊃ β

β

G1
α

[γ]α
G2

α

[γ]α

P
α⊃ [P]α
α⊃�α

I1
α∧σ1 :1 γ1 ⊃

∨
γ2∈Γ2 [γ1,γ2]α, α⊃ enabledσ. α⊃ φ

α⊃ σ ↪→1 φ

I2
α∧σ :2 γ2 ⊃

∨
γ1∈Γ1 [γ1,γ2]α, α⊃ enabledσ. α⊃ φ

α⊃ σ ↪→2 φ

The axioms (A2) and rules G1 and G2 show that
the modalities [γ] and [γ] are normal modalities. Ax-
ioms (A3) account for uniquely labelled moves. Ax-
ioms (A4) show that the modalities [γ] and [γ] are con-
verses of each other. Axioms (A5) and rule P take
care of the past modality. Axioms (A6) deal with the
atomic strategy advices, whereas axioms (A7) deal
with the complex ones. For example, axiom (A7(c))
says that the response specification suggests the move
γi iff whenever the opponent strategy specification π

suggests γī in the history of the game, player i strat-
egy σ suggests γi, and if not, γi has to be enabled at
the game position. Finally, the (A8) axiom (if φ is
ensured under the strategy σ then φ holds, σ is en-
abled and if σ suggests γi at the game position, then
after every γ move containing γi, φ is ensured under
the strategy σ) and the I1 and I2 rules give the nec-
essary and sufficient conditions for ensuring φ under
the strategy σi, and (A9) ensures infiniteness of each
branch of the game tree. Note that we are assuming
game trees without leaf nodes. This is not a matter of
principle but rather of convenience. We can incorpo-
rate finite branches to our game trees, thereby having
leaf nodes and change the axiomatization accordingly.
The completeness proof will work.

The validities of these axioms and rules can be
checked routinely. We now provide a proof sketch
for the completeness.

4.1 Completeness

To prove completeness, we have to prove that every
consistent formula is satisfiable. We mention all the
intermediate propositions and lemmas to prove the re-
sult without providing any detailed proof due to lack
of space.

Let α0 be a consistent formula and let W denote
the set of maximal consistent sets (mcs). We use w,w′

to range over mcs’s. Since α0 is consistent, there ex-
ists an mcs w0 such that α0 ∈ w0.

Define a transition relation on mcs’s as follows:

w
(γ1,γ2)−−−→ w′ iff {〈γ1,γ2〉α| α ∈ w′} ⊆ w. For a for-

mula α, let cl(α) denote the subformula closure of α.



In addition to the usual download closure, we also re-
quire that 3−root ∈ cl(α) and σ ↪→i φ ∈ cl(α) implies
that φ,enabledσ ∈ cl(α).

Let AT denote the set of all maximal consistent
subsets of cl(α), referred to as atoms. Each t ∈ AT is
a finite set of formulas, we denote the conjunction of
all formulas in t by t̂. For a nonempty subset X of AT ,
we denote by X̃ the disjunction of all t̂, t ∈ X . Define

a transition relation on AT as follows: t
(γ1,γ2)−−−→ t ′ iff

t̂∧〈γ1,γ2〉t̂ ′ is consistent. Call an atom t a root atom if

there does not exist any atom t ′ such that t ′
(γ1,γ2)−−−→ t for

some (γ1,γ2) in Γ̃. Note that t0 = w0∩ cl(α0) ∈ AT .

Proposition 4.1. There exist t1, . . . , tk ∈ AT and
(γ1

1,γ
2
1), . . . ,(γ

1
k ,γ

2
k) ∈ Γ̃ with (k ≥ 1) such that

tk
(γ1

k ,γ
2
k)−−−→ tk−1 . . .

(γ1
1,γ

2
1)−−−→ t0, where tk is a root atom.

Lemma 4.2. For every t1, t2 ∈ AT , the following are
equivalent:

1) t̂1∧〈γ1,γ2〉t̂2 is consistent.
2) 〈γ1,γ2〉t̂1∧ t̂2 is consistent.

Lemma 4.3. Consider the path tk
(γ1

k ,γ
2
k)−−−→

tk−1 . . .
(γ1

1,γ
2
1)−−−→ t0 where tk is a root atom. Then:

(i) For all j ∈ {0, · · · ,k− 1}, if [γ1,γ2]α ∈ t j

and t j+1
(γ1,γ2)−−−→ t j, then α ∈ t j+1,

(ii) For every j ∈ {0, · · · ,k − 1}, if

〈γ1,γ2〉α ∈ t j and t j+1
(γ′,γ′′)−−−→ t j, then

(γ1,γ2) = (γ′,γ′′) and α ∈ t j+1, and

(iii) For all j ∈ {0, · · · ,k−1}, if 3−α∈ t j, then
there exists i such that j ≤ i≤ k and α ∈ ti.

Thus there exist mcs’s w1,w2, · · · ,wk, and

(γ1
1,γ

2
1), · · · ,(γ1

k ,γ
2
k) ∈ Γ̃ such that wk

(γ1
k ,γ

2
k)−−−→

wk−1 . . .
(γ1

1,γ
2
1)−−−→ w0, where w j ∩ cl(α0) = t j. This

path defines a tree T0 = (S0,⇒0,s0) rooted at s0,
where S0 = {s0, · · · ,sk} and for all j ∈ {0, · · · ,k}, s j
is labelled by the mcs wk− j. The relation is ⇒0 is
defined as usual From now on we will denote α ∈ s
whenever α ∈ w, w being the mcs associated with s,
where s is a tree node.

For k ≥ 0, we can inductively define Tk = (Sk,⇒k
,s0) such that the past formulas at every node will
have witnesses as ensured by lemma 4.3(iii). Given
any Tk, one can extend it to Tk+1 = (sk+1,⇒k+1,sk+1)
by adding new nodes corresponding to formulas like
〈γ1,γ2〉> ∈ s, for some s ∈ Sk, for which there exists

no s′ ∈ Sk such that s
(γ1

1,γ
2
1)−−−→ s′. The new node would

correspond to the mcs w associated with s and some

other w′, where w
(γ1,γ2)−−−→ w′.

Let T = (S,⇒,s0,X) where S =
⋃

k≥0 Sk, ⇒
=

⋃
k≥0 ⇒k, and X : S → 2Γ̃ is given as follows:

(γ1,γ2) ∈ X(s) iff enabledγ1 ,enabledγ2 ∈ w, where w
is the mcs associated with s. It follows that X i(s) =
{γi : enabledγi ∈ w}. We define the model M = (T,V )

where V (s) = w∩P, where w is the mcs associated
with s. The following lemma proves some important
properties which are used in the later proofs.

Lemma 4.4. For every s ∈ S, we have:

(i) if [γ1,γ2]α ∈ s and s
(γ1,γ2)
===⇒ s′, then α ∈ s′;

(ii) if 〈γ1,γ2〉α∈ s, then there exists s′ s.t. s
(γ1,γ2)
===⇒

s′ and α ∈ s′;

(iii) if [γ1,γ2]α ∈ s and s′
(γ1,γ2)
===⇒ s, then α ∈ s′;

(iv) if 〈γ1,γ2〉α ∈ s, then there exists s′ such that

s′
(γ1,γ2)
===⇒ s and α ∈ s′;
(v) if �α ∈ s and s′⇒∗ s, then α ∈ s′;
(vi) if 3−α∈ s, then there exists s′ such that s′⇒∗ s

and α ∈ s′.

The following result takes care of boolean formulas.

Proposition 4.5. For all φ ∈Φ, for all s ∈ S, φ ∈ s iff
ρs,s � φ.

The following lemmas and propositions take care of
the strategy constructs.

Lemma 4.6. For all i, for all σi ∈ Strat i(P), for all
γ′′ ∈ Γi, for all s ∈ S, σi :i γ′′ ∈ s iff γ′′ ∈ σi(s).

Lemma 4.7. For all t ∈ AT , σ ↪→i φ /∈ t implies that

there exists a path ρ
tk
t : t = t1

(γ1
1,γ

2
1)−−−→ t2 . . .

(γ1
k−1,γ

2
k−1)−−−−−−→ tk

which conforms to σ such that one of the following
holds:

(i) φ /∈ tk
(ii) moves(tk)i∩σ(tk) = /0

Proposition 4.8. For all s ∈ S, σ ↪→i φ ∈ s iff M,s �
σ ↪→i φ.

Finally, with all the required lemmas and propositions
in hand, we can prove the following:

Theorem 4.9. For all α ∈ Θ, for all s ∈ S, α ∈ s iff
M,s � α.

Consequently, the logic SL is weakly complete. The
completeness proof suggests the following automata
theoretic decision procedure. For every strategy spec-
ification we can construct an advice automaton with
output, and given a formula φ, we can construct a tree
automaton whose states are the consistent subsets of
subformulas of φ. These two automata are run in par-
allel. Since the number of strategy specifications is



linear in the size of φ, the size of the tree automa-
ton is doubly exponential in the size of φ. Emptiness
checking for the automaton is polynomial, thus yield-
ing us a decision procedure that runs in double expo-
nential time. This is a modification of the procedure
presented in (Ramanujam and Simon, 2008b).

5 Future work

In this work we present a sound and complete ax-
iomatization of a Strategy Logic, SL which is used to
model strategic reasoning in dynamic games with si-
multaneous moves, in particular, in infinite repeated
normal form games. It would be interesting to see
the precise connection with the framework developed
in (Ramanujam and Simon, 2008b), in particular,
whether the strategy logic for turn-based games can
be embedded in the logic proposed here. Dually, we
could also consider the game tree as obtained by com-
position from a collection of “small” game trees con-
stituting subgames and strategies as complete plans
on them to ensure local outcomes. We may investi-
gate such ideas in dynamic games with simultaneous
moves, based on the work in (Ramanujam and Simon,
2008a; Ghosh, 2008).
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