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Abstract: Deliberation often leads to changes in preferences and beliefs of an agent, influenced by the opinions of
others, depending on how reliable these agents are according to the agent under consideration. Sometimes,
it also leads to changes in the opposite direction, that is, reliability over agents gets updated depending on
their preferences and/or beliefs. There are various formal studies of preference and belief change based on
reliability and/or trust, but not the other way around − this work contributes to the formal study of the latter
aspect, that is, on reliability change based on agent preferences. In process, some policies of preference
change based on agent reliabilities are also discussed. A two-dimensional hybrid language is proposed to
describe such processes, and axiomatisations and decidability are discussed.

1 INTRODUCTION

Deliberation forms an important component in
any decision-making process. It is basically a conver-
sation through which individuals provide their opin-
ions regarding certain issues, give preferences among
possible choices, justify these preferences. This pro-
cess may lead to changes in their opinions, because
they are influenced by one another. A factor that
sometimes plays a big role in enforcing such changes,
is the amount of reliability the agents have on one
another’s opinions. Such reliabilities may change as
well through this process of deliberation, e.g. on hear-
ing someone else’s preferences about a certain issue,
one can start or stop relying on that person’s opin-
ion. One may tend to unfriend certain friends hearing
about their preferences regarding certain issues (e.g.
Helen De Cruz’s recent remarks in her article ‘Being
Friends with a Brexiter?’ in the Philosophers On se-
ries of the Daily Nous blog1).

Formal studies on preferences (cf. (Arrow et al.,
2002; Endriss, 2011)) and trust (cf. (Liau, 2003; De-
molombe, 2004; Herzig et al., 2010)) abound in the
literature on logic in artificial intelligence. Recently,
there has been work on relating the notions of be-
lief and trust, e.g. about agents changing their be-
liefs based on another agent’s announcement depend-
ing on how trustworthy that agent is about the issue

1http://dailynous.com/2016/06/28/
philosophers-on-brexit/#DeCruz

in question (e.g. see (Lorini et al., 2014)). And,
also on relating preference and reliability, e.g. about
agents changing their preferences based on another
agent’s preferences, on whom he or she relies the
most (Ghosh and Velázquez-Quesada, 2015a; Ghosh
and Velázquez-Quesada, 2015b). A pertinent issue
that arises in this context is: an agent’s assessment of
another individual’s reliability might change as well.
How would one model that? This work precisely pro-
vides a way to answer this question. We focus on re-
liability changes based on (public) announcement of
individual preferences and we provide formal frame-
works to describe such changes. In process, we also
provide some policies of preference change as well.
Note that the notion of reliability considered here is
not topic-based (in contrast to the notion of trust de-
scribed in (Lorini et al., 2014)) but deals with only
comparative judgements about agents (cf. Section 2
for details). The following provides an apt example
of the situations we would like to model:

Our Running Example: Consider three flat-
mates Isabella, John and Ken discussing about
redecorating their house and they were won-
dering whether to put a print of Monet’s pic-
ture on the left wall or on the right wall of the
living room. Isabella and Ken prefer to put it
on the right wall, while John wants to put it on
the left. Isabella has more faith in John’s taste
than on hers and Ken’s, and John has more
faith in Isabella’s taste than on his’ and Ken’s.



Ken has full faith in his own taste. As long
as Isabella’s and John’s preferences are differ-
ent and each think that the other’s taste is bet-
ter (by taking their preferences into consider-
ation), the three flatmates would never reach
an agreement. But it so happens that on hear-
ing about John’s and Ken’s choices, Isabella
starts relying more on Ken, whereas even af-
ter hearing about Isabella’s and Ken’s choices
John’s reliability attribution to Isabella does
not change.
To model such situations we introduce a two-

dimensional hybrid logic framework extending the
basic logic proposed in (Ghosh and Velázquez-
Quesada, 2015a; Ghosh and Velázquez-Quesada,
2015b) in the line of those developed in (Gargov et al.,
1987; Sano, 2010; Seligman et al., 2013). We add
dynamic operators to model preference and reliabil-
ity changes. The main novelty of this work is that
reliability changing policies based on agent prefer-
ences are introduced and studied formally, which has
not been dealt with before. In addition, reliabilities
are modelled (more naturally) as total pre-orders (in-
stead of total orders (Ghosh and Velázquez-Quesada,
2015a; Ghosh and Velázquez-Quesada, 2015b)), and
preference changing policies are modified accord-
ingly. The proposed logic is expressive enough to deal
with both these kinds of changes.

2 TWO-DIMENSIONAL HYBRID
LOGIC

Let us first motivate our assumptions on prefer-
ence and reliability orders that we make below in the
lines of (Ghosh and Velázquez-Quesada, 2015a). As
mentioned earlier, we are modelling situations akin to
joint deliberation where agents announce their prefer-
ences. Each agent can change her preferences upon
getting information about the other agents’ prefer-
ences, influenced by her reliability over agents (in-
cluding herself, so she might consider herself as more
reliable than some agents but also as less reliable than
some others). Agents can also change their opinions
regarding how reliable they think the other agents are
in comparison to themselves, influenced by the an-
nounced preferences of those agents.

The agents’ preferences are represented by binary
relations (as in (Arrow et al., 2002; Grüne-Yanoff
and Hansson, 2009) and further references therein),
which is typically assumed to be reflexive and tran-
sitive. This paper also follows this ordinary assump-
tion, and so, we note that this assumption do allow the
possibility of incomparable worlds.

The notion of reliability is related to that of trust,
a well-studied concept (e.g., (Falcone et al., 2008)),
with several proposals for its formal representation,
e.g. an attitude of an agent who believes that an-
other agent has a given property (Falcone and Castel-
franchi, 2001). One also says that “an agent i trusts
agent j’s judgement about φ” (called “trust on cred-
ibility” in (Demolombe, 2001)). Trust can also be
defined in terms of other attitudes, such as knowl-
edge, beliefs, intentions and goals (e.g., (Demolombe,
2001; Herzig et al., 2010)), or as a semantic primi-
tive, typically by means of a neighbourhood function
(Liau, 2003). Some others (e.g., (Lorini et al., 2014))
deal with graded trust.

Reliability as discussed here is closer to the notion
of trust in (Holliday, 2010), where it is understood as
an ordering among sets of sources of information (cf.
the discussion in (Goldman, 2001)). Such a notion
of reliability does not yield any absolute judgements
(“i relies on j’s judgement [about φ]”), but only com-
parative ones (“for i, agent j′ is at least as reliable as
agent j”). For the purposes of this work, similar to
(Ghosh and Velázquez-Quesada, 2015a), such com-
parative judgements suffice.

In contrast to (Ghosh and Velázquez-Quesada,
2015a), our reliability relation is assumed to be a re-
flexive, transitive and total relation. Reflexivity and
transitivity are, more often than not, natural require-
ments for an ordering and totality disallows incompa-
rability, as before. The changes in reliability for an
agent depend on the information assimilated (similar
to approaches like (Rodenhäuser, 2014)), in particu-
lar, about the other agents’ preferences.
The focus of this work is joint deliberation, so let A
be a finite non-empty set of agents (|A| = n ≥ 2).
Definition 1. A PR (preference/reliability) frame F
is a tuple (W, {≤i,≼i}i∈A) where (1) W is a finite non-
empty set of worlds; (2) ≤i ⊆ W ×W is a preorder
(i.e., a reflexive and transitive relation), agent i’s pref-
erence relation among worlds in W (u ≤i v is read as
“world v is at least as preferable as world u for agent
i”); (3) ≼i ⊆ A×A is a total pre-order (i.e., a connected
pre-order), agent i’s reliability relation among agents
in A ( j ≼i k is read as “agent k is at least as reliable
as agent j for agent i”). Let mr(i) denote the set of all
maximally reliable agents for i.

We define u <i v (“u is less preferred than v for
agent i”) as u ≤i v and v ≰i u, and u ≃i v (“u and v
are equally preferred for agent i”) as u ≤i v and v ≤i u.
Moreover, j ≺i k (“ j is less reliable than k for agent
i”) is defined as j ≼i k and k $i j, and j ≈i k (“ j and k
are equally reliable for agent i”) as j ≼i k and k ≼i j.
Example 1. Recall the example in Section 1. Put A
= {i, j,k}, where i, j, and k represent Isabella, John,



and Ken, respectively. By denoting with wx the world
where ‘Monet’s picture is at wall x’ (x = l,r), the ex-
ample’s situation can be represented by a PR frame
Fexp = ({wl,wr}, {≤y,≼y}y∈A) in which the preference
orders are given by: wl <i wr, wr < j wl and wl <k wr,
and the reliability orders are given by: i ≈i k ≺i j,
j ≈ j k ≺ j i and j ≈k i ≺k k.

In (Ghosh and Velázquez-Quesada, 2015a),
Ghosh and Velázquez-Quesada propose a language
to talk about the preference changes and their ef-
fects. Following the semantic idea of (Seligman et al.,
2013), we extend their syntax for the static language
into a two-dimensional syntax with the help of de-
pendent product of two hybrid logics (Sano, 2010).
Let P be a countable infinite set of propositional vari-
ables, N1 = {a,b,c, . . . } be a countable infinite set of
world-nominals (syntactic names for worlds) and let
N2 = { i, j,k, . . . } be a countable infinite set of agent-
nominals (syntactic names for agents).

Definition 2 (Language HL). Formulas φ,ψ, . . .
(read φ as “the current agent satisfies the property φ
in the current state” or indexically as “I am φ in the
current state”) and relational expressions (or program
terms) π,ρ, . . . of the languageHL are given by

φ,ψ ::= p |a | i |¬φ |φ∨ψ |@iφ |@aφ | ⟨π⟩φ,
π,ρ ::=1W | ≤ | ≥ |1A | ⊑k | ⊒k | −α |

π∪ρ |π∩ρ | (π, j)⊓i (ρ,k) |?(φ,ψ),

where p ∈ P, a ∈ N1, i, j,k ∈ N2, α ∈ {1W ,≤,≥} ∪
{1A,⊑k,⊒k |k ∈ N2 }. Propositional constants (⊤,⊥),
other Boolean connectives (∧,→,↔) and the dual
modal universal operators [π] are defined as usual,
e.g. [π]φ := ¬⟨π⟩¬φ. Moreover, we define ⟨<⟩φ as
⟨≤ ∩− ≥⟩φ and ⟨⊏k⟩φ as ⟨⊑k ∩− ⊒k⟩φ, respectively.
Finally, ?φ is defined as the program term ?(φ,φ).

We note that @aφ is read as “the current agent sat-
isfies φ in the world named by a”and @iφ as “agent
i satisfies φ in the current world.” The set of rela-
tional expressions contains the constants 1W ,1A (the
global relations, whose corresponding operators mean
“for all states” and “for all agents”, respectively), the
preference and reliability relations (≤, ⊑k), their re-
spective converse relations (≥, ⊒k; cf. (Burgess, 1984;
Goldblatt, 1992)), all the complements of the atomic
relations, and an additional construct of the forms
(π, j)⊓i (π′,k) (needed for defining distributed prefer-
ence later in Section 3, explained below) and ?(φ,ψ)
(a generalization of the test operator in (Harel et al.,
2000), also explained below), and it is closed under
union and intersection operations over relations.

The formulas are interpreted in terms of world-
agent pairs below, and we may read [≤]φ as “in all
states which the current agent considers as least as

good as the current state, the current agent satisfies
φ”. Moreover, we may read ⟨⊑k⟩φ as “there is a more
or equally reliable agent j than the current agent such
that j satisfies φ, from agent k’s perspective.” For ex-
ample, @i⟨⊑k⟩j can be read as “agent j is more or
equally reliable than agent i from agent k’s perspec-
tive.” ⟨⊒k⟩φ is read as “there is a less or equally reli-
able agent j than the current agent such that j satisfies
φ, from agent k’s perspective.”

We note that the program construction ?(φ,ψ)
(check if the first element of a given pair of states sat-
isfies φ and if the second does ψ) is a generalization
of the test operator in the standard (regular) proposi-
tional dynamic logic (Harel et al., 2000). So ?φ :=
?(φ,φ) enables us to check if both elements of a given
pair satisfies φ. Moreover, the program construction
(π, j) ⊓i (π′,k) enables us to define, as agent i’s re-
lation between states, the distributed preference be-
tween agents j and k, i.e., the intersection of j’s pref-
erence and k’s preference. Together with the other
program constructions, it is useful for providing the
axiom system for the preference and reliability chang-
ing operations to be introduced in Section 3. The fol-
lowing two definitions establish what a model is and
how formulas ofHL are interpreted over them.

Definition 3 (PR model). A PR model is a tuple M =
(F,V) where F = (W, {≤i,≼i }i∈A) is a PR-frame and V
is a valuation function from P∪N1 ∪N2 to P(W ×A)
assigning a subset of the form {w } × A to a world-
nominal a ∈ N1 and a subset of the form W × { i } to
an agent-nominal i ∈ N2. Throughout the paper, we
denote the unique element in the first coordinate of
V(a) = {w } × A and the second coordinate of V(i) =
W ×{a } by a and i, respectively.

Definition 4 (Truth definition). Given a PR-model M,
a satisfaction relation M, (w, i) ⊩ φ , and relations Rπ ⊆
(W ×A)2 are defined by simultaneous induction by:

M, (w, i) ⊩ p iff (w, i) ∈ V(p),

M, (w, i) ⊩ a iff w = a,

M, (w, i) ⊩ i iff i = i,

M, (w, i) ⊩ ¬φ iff M, (w, i) ⊮ φ,

M, (w, i) ⊩ φ∨ψ iff M, (w, i) ⊩ φ or M, (w, i) ⊩ ψ,

M, (w, i) ⊩@aφ iff M, (a, i) ⊩ φ,

M, (w, i) ⊩@iφ iff M, (w, i) ⊩ φ,

M, (w, i) ⊩ ⟨π⟩ψ iff For some (v, j) ∈W ×A,

(w, i)Rπ(v, j) and M, (v, j) ⊩ ψ,

(w, i)R1W (v, j) iff w,v ∈W and i = j,

(w, i)R≤(v, j) iff w ≤i v and i = j,

(w, i)R≥(v, j) iff v ≤i w and i = j,



(w, i)R−α(v, j) iff ((w, i), (v, i)) < Rα and i = j

(α ∈ {1W ,≤,≥}),
(w, i)R1A (v, j) iff w = v and i, j ∈ A,

(w, i)R⊑k (v, j) iff w = v and i ≼k j,

(w, i)R⊒k (v, j) iff w = v and j ≼k i,

(w, i)R−β(v, j) iff w = v and ((w, i), (w, j)) < Rβ

(β ∈ {1A,⊑k,⊒k |k ∈ N2 }),
(w, i)Rπ∪ρ(v, j) iff (w, i)Rπ(v, j) or (w, i)Rρ(v, j),

(w, i)Rπ∩ρ(v, j) iff (w, i)Rπ(v, j) and (w, i)Rρ(v, j),

(w, i)R(π,j)⊓i(ρ,k)(v, j) iff i = j = i and (w, j)Rπ(v, j)

and (w,k)Rρ(v,k)

(w, i)R?(φ,ψ)(v, j) iff M, (w, i) ⊩ φ and M, (v, j) ⊩ ψ.

We say that φ is valid in a PR-model M (written:
M ⊩ φ) if M, (w, i) ⊩ φ for all pairs (w, i) in M.

The logicHL is so expressive that we can formal-
ize the notion of belief as well as our preference and
reliability dynamics introduced in the later sections.
For example, following the idea found in (Boutilier,
1994), we can define the conditional belief opera-
tor B(ψ,φ) (read “under the condition that the cur-
rent agent satisfies ψ, the current agent believes that
she satisfies φ” or “the current agent desires (or has a
goal) that she satisfies φ under the condition that she
satisfies ψ”) by

Bψφ := [1W ]((ψ∧φ)→ ⟨≤⟩(ψ∧φ∧ [≤](ψ→ φ))).

Then the unconditional belief operator Bφ is defined
as B(⊤,φ), which read as “the current agent believes
that she satisfies φ” or “in the most preferred states for
the current agent, she satisfies φ.” We can also define
the conditional reliability operator Rk(ψ,φ) (read “the
most reliable ψ-agents for agent k satisfy φ.”) by

Rk(ψ,φ) := [1A](ψ→ ⟨⊑k⟩(ψ∧ [⊑k](ψ→ φ))),

where we can simplify the clause because of connect-
edness as noted in (Boutilier, 1994). The uncondi-
tional version Rkφ of Rk(ψ,φ) is defined as Rk(⊤,φ)
which read as “the most reliable agents for agent k
satisfy φ.” We may also define the “diamond”-version
of Rkφ as ¬Rk¬φ to denote ⟨Rk⟩φ. Then ⟨Rk⟩j means
that agent j is one of the most reliable agents for k.

Example 2. Let us represent “the current agent
likes to put Monet’s picture on wall x” by a state-
nominal ax in the setting of Example 1. On the
PR-frame Fexp of Example 1, we define V(ax) =
{ (wx, i), (wx, j), (wx,k) } where x = l or r. We use i,
j, k as syntactic names (i.e., agent nominals) for i, j
and k, where we interpret, e.g., i = i in terms of our
valuation function V . Define Mexp := (Fexp,V). For

example, the preference wl <i wr can be formalized
as a formula @i@al⟨<⟩ar, which is valid on Mexp.
We can formalize Isabella’s reliability of i ≈i k ≺i j as
@i⟨⊑i⟩k∧@k⟨⊑i⟩i∧@k⟨⊏i⟩j, which is valid on Mexp.
Moreover, @iBax formalizes “Isabella believes that
she likes to put Monet’s picture on wall x” and, when
x = r, @iBar is valid on Mexp. Similarly, @jBal and
@kBar are also valid in Mexp. We can see that, from
Isabella’s perspective, Ken is one of the most reliable
agents who believes that ar. This can be formalized
as Ri(Bar,k).

The static axiom systems HPR and HPR(m,n) are
given as in Table 1, where uniform substitution means
a substitution that uniformly replaces propositional
variables by formulas and nominals from Ni by nom-
inals from Ni (i = 1 or 2).

Theorem 1 (Soundness and completeness). φ is valid
in all (possibly infinite) PR-models iff φ is derivable
in HPR. Moreover, φ is valid in all PR-models with
fixed m worlds and fixed n agents iff φ is derivable in
HPR(m,n). Therefore, HPR(m,n) is decidable.

We note that the, as far as the authors know, decid-
ability is still unknown for HPR, even the fragment
of HPR without program constructions (cf. (Sano,
2010)). So related computational properties of such
fragment has not been yet well-studied (for purely
bimodal logic fragment with a slightly different se-
mantics, the reader is referred to (Marx and Mikulás,
2001)).

3 PREFERENCE DYNAMICS

Intuitively, a public announcement of the agents’
individual preferences might induce an agent i to ad-
just her own preferences according to what has been
announced and the reliability ordering she assigns
to the set of agents.2 For example, an agent might
adopt the preferences of the set of agents on whom
she relies the most, or might use the strict prefer-
ences of her most reliable agents for ‘breaking ties’
among her equally-preferred zones. In (Ghosh and
Velázquez-Quesada, 2015a) the authors introduced
the general lexicographic upgrade operation, which
creates a preference ordering following a priority list
of orderings. We generalize those operations in the
following, where we consider the reliability orderings
to be pre-orders, rather than being total orders (that is,
also anti-symmetric and connected) as they are in the

2Note that this work, in line with its predecessor, (Ghosh
and Velázquez-Quesada, 2015a), also does not focus on the
formal representation of such announcement, but rather on
the formal representation of its effects.



Table 1: Axiomatizations HPR and HPR(m,n)

Bi-Hybrid Logical Axioms of HPR

All classical tautologies (Dualπ) ⟨π⟩p↔¬[π]¬p

(Kπ) [π](p→ q)→ ([π]p→ [π]q)

Let n ∈ Ni and (n,m) ∈ N2
i (i = 1,2) below in this group

(K@) @n(p→ q)→ (@n p→@nq)

(SelfDual@) ¬@n p↔@n¬p (Ref) @nn

(Intro) n∧ p→@n p (Agree) @n@m p→@m p

(Back) ⟨π⟩@a@i p→@a@i p

Inference Rules of HPR

Modus Ponens, Uniform Substitutions,

Necessitation Rules for [π], @i and @a

(Name) From n→ φ infer φ,

where n ∈ N1∪N2 is fresh in φ

(BGπ) From @a@i⟨π⟩(b∧ j)→@b@jφ infer @a@i[π]φ,

where b and j are fresh in @a@j[π]φ

Interaction Axioms of HPR

(Com@) @i@a p↔@a@i p

(Red@1) a↔@ia (Red@2) i↔@ai

(Dcom⟨W⟩@2) @i⟨α⟩p↔@i⟨α⟩@i p (α ∈ {1W ,≤,≥})
(Com⟨A⟩@1) @a⟨β⟩p↔ ⟨β⟩@a p (β ∈ {1A,⊑k,⊒k })

Axioms for Atomic Programs of HPR

(UW ) @a⟨1W ⟩b (Cnv≤) @a⟨≤⟩b↔@b⟨≥⟩a
(UA) @i⟨1A⟩j (Cnv⊑) @i⟨⊑k⟩j↔@j⟨⊒k⟩i
(Eq⊑) @ij→ ([⊑i]p↔ [⊑j]p)

Axioms for Compounded Programs of HPR

(∪) ⟨π∪ρ⟩p↔ ⟨π⟩p∨⟨ρ⟩p
(?) ⟨?(φ,ψ)⟩p↔ φ∧⟨1A⟩⟨1W ⟩(ψ∧ p)

(∩) @a@i⟨π∩ρ⟩(b∧ j)↔@a@i(⟨π⟩(b∧ j)∧⟨ρ⟩(b∧ j))

(−W ) @a⟨−α⟩b↔@a¬⟨α⟩b (α ∈ {1W ,≤,≥})
(−A) @i⟨−β⟩j↔@i¬⟨β⟩j (β ∈ {1A,⊑k,⊒k })
(⊓i) @a@k⟨(π, j)⊓i (π′, j′)⟩(b∧k′)

↔@i(k∧k′)∧@a@j⟨π⟩(b∧ j)∧@a@j′ ⟨π′⟩(b∧ j′))

Axioms for PR-frames of HPR

(4≤) @a⟨≤⟩b∧@b⟨≤⟩c→@a⟨≤⟩c
(4⊑) @j⟨⊑i⟩k∧@k⟨⊑i⟩l→@j⟨⊑i⟩l
(Ref≤) @a⟨≤⟩a (Cmp⊑) @j⟨⊑i⟩k∨@k⟨⊑i⟩j

Additional Axioms and Rules for HPR(m,n)

(|W | ≤ m)
∨

0≤k,l≤m @ak al (|A| ≤ n)
∨

0≤k,l≤n @ik il
(|W | ≥ m) From

(∧
1≤k,l≤m¬@ak al

)→ ψ infer ψ,

where aks are fresh in ψ

(|A| ≥ n) From
(∧

1≤k,l≤n¬@ik il
)
→ ψ infer ψ,

where iks are fresh in ψ.

earlier work, which was quite an artificial assumption
on agents’ reliabilities. Agent i’s preference ordering
after an announcement, ≤′i , can be defined in terms
of the just announced preferences (the agents’ prefer-
ences before the announcement, ≤1, . . . ,≤n) and how
much i relied on each agent (i’s reliability before the
announcement, ≼i): ≤′i := f (≤1, . . . ,≤n,≼i) for some
function f . Here are some such functions inspired by
(van Benthem, 2007; Ghosh and Velázquez-Quesada,
2015a).

Definition 5. Given a set X ⊆ A of agents, u <X v if
u <k v holds for all agents k ∈ X. Moreover, u ≍X v
is used to mean u <X v or v <X u and dom(≍X) :=
{u ∈ A|u ≍X v for some v ∈ A }.
Note that dom(≍X) allows us to specify the connected
components by the relation ≍X . Recall that mr(i) de-
notes the set of all maximally reliable agents for i.

Definition 6 (Conservative Upgrade). Agent i takes
the strict preference ordering of her most reliable
agents, and leaves the rest undecided (equipreferable).
More precisely, the upgraded ordering ≤′i is defined
by: u ≤′i v iff (u <mr(i) v or u = v) or (u,v < dom(≍X)).

Definition 7 (Radical Upgrade). Agent i takes the
strict preference ordering of her most reliable agents,
and in the remaining disjoint zones she uses her old
ordering. More precisely, the upgraded ordering ≤′i
is defined by: u ≤′i v iff (u <mr(i) v or u = v) or (u,v <
dom(≍X) and u ≤i v).

Note that both the conservative and radical upgrades
preserve preorders (and thus upgraded models belong
to our class of semantic models).

3.1 Expressing the preference dynamics

To formalize preference dynamics from the previous
section, we add the following dynamic operators to
the static syntax HL. First of all, we regard all the
agents involved in our two preference upgrade above
as agent nominals (syntactic names of agents) and so
let us denote agent i’s syntactic name as i of boldface
and the set of all syntactic names in mr(i) as mr(i).
HL{pu } is defined to be an expansion ofHL with all
operators ⟨pui

R⟩, where i be an agent-nominal and R
is a list of sets of agent-nominals defined as R =mr(i)
(conservative upgrade) or R = (mr(i); { i }) (radical up-
grade).

Definition 8 (Operators). A formula Req(R), repre-
senting requirements for the list R is defined as the
conjunction

∧
j,k∈mr(i)¬@jk (mutual disjointness of

agents involved in mr(i)) and
∧

j∈mr(i)⟨Ri⟩j (mr(i) is
the set of maximally reliable agents for i). Given a



PR-model M = (W, {≤i,≼i}i∈A,V), define:

M, (w, j) ⊩ ⟨pui
R⟩φ iff M, (w, j) ⊩ Req(R)

and pui
R(M), (w, j) ⊩ φ,

where pui
R(M) is the same model as M except ≤i is

replaced by ≤R where R = mr(i) or R = (mr(i); { i })
and corresponding ≤R’s are given by Definitions 6 and
7, respectively.

For an axiom system for the modality ⟨pui
R⟩, we

will provide recursion axioms: valid formulas and
validity-preserving rules indicating how to translate a
formula with the new modality into a provably equiv-
alent one without them. In this case, the modalities
can take the form of any relational expression. So
we provide a ‘matching’ relational expression in the
original model M by defining relational transformers
similar to those in (Ghosh and Velázquez-Quesada,
2015a; Ghosh and Velázquez-Quesada, 2015b), in
spirit of the program transformers of (van Benthem
et al., 2006).

Before going into the notion of relational trans-
former, we have two observations. Firstly, when π :=
?j∩ ≤, we note that (w, i)Rπ(v,k) is equivalent to the
conjunction of i = k = j and w ≤j v. Similarly, when
we put π′ := ?¬j∩ ≤, we remark that (w, i)Rπ′ (v,k) is
equivalent to the conjunction of w ≤i v and i = k and
i , j. Secondly, to reflect the relation <X in Definition
5, we need our program construction (π, j)⊓i (ρ,k) to
taking the intersection of (strict) preference relations
of the possibly different agents than i. These observa-
tions allow us to capture the idea behind Definitions 6
and 7 syntactically in the following definition.
Definition 9 (Relational transformer). Let us
introduce the following abbreviations for re-
lational expressions: We define <mr(i) :=⊓

i { (≤ ∩− ≥, j) | j ∈mr(i) }. Then >mr(i) is similarly
defined and ≍mr(i) is defined to be <mr(i) ∪ >mr(i).
Moreover, a formula d(≍mr(i)) is defined as ⟨≍mr(i)⟩⊤.

A relational transformer Tui
R is a function from re-

lational expressions to relational expressions defined
as follows. When R = mr(i) (conservative upgrade),

Tui
R(α) := α (α ∈ {1A,1W ,⊑k,⊑k |k ∈ N2 }),

Tui
R(≤) :=

(
?i∩ (<mr(i) ∪1A∪?¬d(≍mr(i))

)
∪ (?¬i∩ ≤)

Tui
R(≤) :=

(
?i∩ (>mr(i) ∪1A∪?¬d(≍mr(i))

)
∪ (?¬i∩ ≥)

Tui
R(π∪ρ) := Tui

R(π)∪Tui
R(ρ),

Tui
R(π∩ρ) := Tui

R(π)∩Tui
R(ρ),

Tui
R(?(φ,ψ)) :=?(⟨pui

R⟩φ, ⟨pui
R⟩ψ).

Tui
R((π,k)⊓j (ρ, l)) := ((Tui

R(π),k)⊓j (Tui
R(ρ), l))

Tui
R(−β) := −Tui

R(β),

where β ∈ {1W ,≤,≥} ∪ {1A,⊑k,⊒k |k ∈ N2 }. When
R = (mr(i); { i }), we replace the occurrence of
“?¬d(≍mr(i))” in Tui

R(≤) or Tui
R(≥) with

“?¬d(≍mr(i))⟩⊤∩ ≤′′ or “?¬d(≍mr(i))∩ ≤,′′

respectively.

Theorem 2. The axioms and rules below together
with those of HPR (or, those of HPR(m,n)) provide
sound and complete axiom systems for HL{pu } with
respect to possibly infinite PR models (or, PR models
with m worlds and n agents, respectively).

⟨pui
R⟩p↔ Req(R)∧ p,

⟨pui
R⟩(φ∨ψ)↔ ⟨pui

R⟩φ∨⟨pui
R⟩ψ,

⟨pui
R⟩¬φ↔ Req(R)∧¬⟨pui

R⟩φ
⟨pui
R⟩j↔ Req(R)∧ j, ⟨pui

R⟩a↔ Req(R)∧a,

⟨pui
R⟩@jφ↔ Req(R)∧@j⟨pui

R⟩φ,
⟨pui
R⟩@aφ↔ Req(R)∧@a⟨pui

R⟩φ
⟨pui
R⟩⟨π⟩φ↔ Req(R)∧⟨Tui

R(π)⟩⟨pui
R⟩φ,

From φ→ ψ, we may infer ⟨pui
R⟩φ→ ⟨pui

R⟩ψ.

Proof. Soundness of the new axioms are straightfor-
ward. Completeness follows from the completeness
of the static system HPR (cf. Chapter 7 of (van Dit-
marsch et al., 2008), for an extensive explanation of
this technique). □

Example 3. In our running example of Section 1,
each agent is regarded to employ conservative up-
grades to change his or her preference. Let us write
the corresponding upgrade operators of { i, j,k } by
⟨pui
Ri
⟩ and ⟨puj

R j
⟩, ⟨puk

Rk
⟩, respectively. Then, three

flatmates did not reach an agreement after conserva-
tive upgrades of all agents, i.e.,

@iBar ∧@jBal∧@kBar∧
⟨pui
Ri
⟩⟨puj

R j
⟩⟨puk

Rk
⟩(@iBal∧@jBar ∧@kBar).

is valid in Mexp, because upgraded preferences are
given by wr <

′
i wl, wl <

′
j wr and wl <

′
k wr.

4 RELIABILITY DYNAMICS

A public announcement of the agents’ individ-
ual preferences may change the agents’ reliability at-
tributions as well: for example, an agent may con-
sider more reliable those agents whose preferences
coincide (or, for some reason, differ) from her own.
In such cases, agent i’s new reliability ordering, ≼′i ,



can be given in terms of the agents’ current prefer-
ences, ≤1, . . . ,≤n, and i’s current reliability ordering,
≼i. Thus, ≤′i := g(≤1, . . . ,≤n,≼i) for some function g.
We now provide formal definitions of some such pos-
sibilities.

4.1 Reliability change operations

The notion of “matching preference orders” will form
the basis for the reliability dynamics. The idea is that
two preference orderings match each other to a certain
extent if the orderings are identical on some subset of
the state space. A full match indicates that the order-
ings coincide on the whole domain; a partial match
indicates that they coincide up to some proper subset
of the domain.
Definition 10 (Matching preferences). Let F be a PR
frame given by F = (W, {≤i,≼i}i∈A) and let i ∈ A be
an agent. If ≤i is identical with ≤ j on W′ ⊆ W, then
W′ is said to be a set of match for i and j (notation:
≤i ∼W′ ≤ j).
• Preference orders ≤i and ≤ j are said to fully match

each other iff ≤i ∼W ≤ j.3 FullMat(i) denotes the
set of agents in A \ {i} having full match with i.
• Preference orders ≤i and ≤ j have zero match with

each other iff there is no W′ ⊆ W with |W′| ≥ 2
such that ≤i ∼W′ ≤ j.4 ZeroMat(i) denotes the set
of agents in A \ {i} having zero match with i.
With these definitions, we can define some opera-

tions for reliability change.
Definition 11 (Full, Zero matching upgrade). Agent
i puts those agents that have full/zero match with
her own preference ordering above those that do not,
keeping her old reliability ordering within each of the
two zones. More precisely, if ≼i is agent i’s current
reliability ordering, then her new reliability ordering
≼′i is defined by:

j ≼′i k iff
(
j,k ∈ V and j ≼i k

)
or
(
k ∈ V and j < V

)
or
(
j,k < V and j ≼i k

)
.

Here V = FullMat(i)∪{i},ZeroMat(i), respectively.
Once again, we can consider more generalized defi-
nitions for upgrade policies as well, but we just stick
to simple definitions to give the main idea. Note that
both the full matching and zero matching upgrades
preserve total preorders (and thus upgraded models
belong to our class of semantic models).

3Note how, by the finiteness of W (the reflexivity of the
preference relations), there is always a maximal X ⊆W such
that ≤i ∼X ≤ j for every agent i, j.

4For the same reason, there is always a minimal X ⊆W
such that ≤i ∼X ≤ j for every agent i, j.

4.2 Expressing the reliablity dynamics

To describe reliability dynamics from the previous
section, the following dynamic operators are added
to the static syntax ofHL. HL{ rc } is defined to be an
expansion of HL with all operators ⟨rci

E⟩, where i is
an agent-nominal and E a pair ofHL-formulas of the
form @aχ (recall: a is a world-nominal). An underly-
ing semantic intuition for ⟨rci

E⟩ is: Given a PR-model
M, the pair E = (@a1χ1,@a2χ2) can be regarded as a
partition (i.e., an equivalence relation on agents) in the
sense that (

{
i ∈ A |M, (i,ak) ⊩ χk

}
)1≤k≤2 forms a parti-

tion of A, and the reliability ordering ≼i of the original
PR model M is rewritten into the updated reliability
ordering ≼′i as in Definition 11 of the Section 4.1.

Definition 12 (Operators). Given any pair E =
(φ1,φ2) of formulas of the form @aχ, a formula
Eq(E) is defined as the conjunction of [1A](φ1 ∨
φ2) (exhaustiveness for agents) and ¬⟨1A⟩(φ1 ∧ φ2)
(pairwise disjointness for agents). Given a pair E
= (@a1χ1,@a2χ2) and a PR-model M = (W, {≤i,≼i
}i∈A,V), define:

M, (w, j) ⊩ ⟨rci
E⟩φ iff M, (w, j) ⊩ Eq(E)

and rci
E(M), (w, j) ⊩ φ,

where rci
E(M) is the same model as M except ≼i is

replaced by ≼′i of Definition 11.

Definition 13 (Relational transformer). Let E =
(φ1,φ2) be a pair. A relational transformer Tri

E is a
function from relational expressions to relational ex-
pressions defined as follows.

Tri
E(α) := α (α ∈ {1A,1W ,≤,≥}),

Tri
E(⊑i) := (⊑i ∩(?φ1∪?φ2))∪ (1A∩?(φ1,φ2)),

Tri
E(⊒i) := (⊒i ∩(?φ1∪?φ2)∪ (1A∩?(φ1,φ2)),

Tri
E(⊑k) := (?@ik∩Tri

E(⊑i))∪ (?¬@ik∩ ⊑k) (k , i),

Tri
E(⊒k) := (?@ik∩Tri

E(⊒i))∪ (?¬@ik∩ ⊒k) (k , i),

Tri
E(π∪ρ) := Tri

E(π)∪Tri
E(ρ),

Tri
E(π∩ρ) := Tri

E(π)∩Tri
E(ρ),

Tri
E(?(φ,ψ)) :=?(⟨rci

E⟩φ, ⟨rc
i
E⟩ψ).

Tri
E((π,k)⊓j (ρ,k)) := (Tri

E(π),k)⊓j (Tri
E(ρ),k),

Tri
E(−α) := −Tri

E(α),

where α ∈ {1W ,≤,≥}∪ {1A,⊑k,⊒k |k ∈ N2 }).
When k, i, i.e., k and i are syntactically distinct agent
nominals, the reader may wonder why we should have
generalized test operators “?@ik” and “?¬@ik” in the
definitions Tri

E(⊑k) and Tri
E(⊑k). This is because the



same agent might have two distinct (syntactic) names.
Based on a similar strategy for Theorem 2, we can
now prove the following theorem.

Theorem 3. The axioms and rules below together
with those of HPR (or, those of HPR(m,n)) provide
sound and complete axiom systems for HL{ rc } with
respect to possibly infinite PR models (or, PR models
with m worlds and n agents, respectively).

⟨rci
E⟩p↔ Eq(E)∧ p, ⟨rci

E⟩(φ∨ψ)↔ ⟨rci
E⟩φ∨⟨rc

i
E⟩ψ,

⟨rci
E⟩¬φ↔ Eq(E)∧¬⟨rci

E⟩φ
⟨rci
E⟩j↔ Eq(E)∧ j, ⟨rci

E⟩a↔ Eq(E)∧a,

⟨rci
E⟩@jφ↔ Eq(E)∧@j⟨rci

E⟩φ,
⟨rci
E⟩@aφ↔ Eq(E)∧@a⟨rci

E⟩φ
⟨rci
E⟩⟨π⟩φ↔ Eq(E)∧⟨Tri

E(π)⟩⟨rci
E⟩φ,

From φ→ ψ, we may infer ⟨rci
E⟩φ→ ⟨rc

i
E⟩ψ.

Example 4. After Isabella and John know others’
preferences, we regard, in our running example, that
Isabella uses full-match reliability change ⟨rci

Ei
⟩ and

John employs zero-match reliability change ⟨rcj
E j
⟩.

Unlike Example 3, let us first consider reliability
changes of Isabella and John and then take the con-
servative upgrades of all agents. This process and the
resulting agreements among agents are formalized as

⟨rci
Ei
⟩⟨rcj

E j
⟩⟨pui

Ri
⟩⟨puj

R j
⟩⟨puk

Rk
⟩

(@iBar ∧@jBar ∧@kBar),

which is valid in Mexp, because Isabella’s reliability
is changed into j ≺′i i ≈′i k and John’s reliability does
not change.

We note here that while the main focus of the work
is to model joint deliberation in form of simultaneous
preference and reliability upgrades, the model opera-
tions and modalities of Sections 3.1 and 4.2 deal with
single agent upgrades. This presentation style has
been chosen in order to simplify notation and read-
ability, but the provided definitions can be easily ex-
tended in order to match our goals. In particular, the
model operations of Definitions 8 and 12 can be ex-
tended to simultaneous upgrades by asking for a list R
of lexicographic lists (with Ri the list for agent i), and
asking for a list E of partition lists (with Ei the list for
agent i), respectively. Then the corresponding modal-
ities, ⟨pui

R⟩ and ⟨rci
E⟩ can still be axiomatised by the

presented system with some simple modifications.

5 CONCLUSION

This work continues the line of study in
(Ghosh and Velázquez-Quesada, 2015a; Ghosh and
Velázquez-Quesada, 2015b) and provides a further in-
terplay between the preferences that the agents have
about the world around and the reliability attributions
they have with respect to one another. We deal with
both preference change based on reliability, and relia-
bility change based on preferences, and propose two-
dimensional dynamic hybrid logics to express such
changes. The main technical results that we have
are sound and complete axiomatizations which lead
to decidability (provided the numbers of agents and
of states are fixed finite numbers) as well. In process,
we also discuss about agent beliefs in such situations,
e.g. relating reliability attributions with the notions
of belief (cf. the running example in the text). The
novel contribution of the work is the study of change
in reliability attribution of agents based on their pref-
erences.

To conclude, let us provide some pointers towards
future work: (1) What other reasonable preference
and reliability upgrade policies can there be and how
to model them? (2) How to investigate the role of
knowledge in such changes, especially if manipula-
tion comes into play? (3) What would be the char-
acterizing conditions for reaching consensus in such
deliberative processes? We endeavor to provide an-
swers to such questions in future. 5
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