
Automatically translating logical strategy formulas into cognitive models
Jakob Dirk Top (scholar@jakobdirktop.nl)
Institute of Artificial Intelligence, Nijenborgh 9,

Groningen, 9747 AG, the Netherlands

Rineke Verbrugge (l.c.verbrugge@rug.nl)
Institute of Artificial Intelligence, Nijenborgh 9,

Groningen, 9747 AG, the Netherlands

Sujata Ghosh (sujata@isichennai.res.in)
Indian Statistical Institute, 110 Nelson Manickam Road,

Aminjikarai, Chennai 600029, India

Abstract

Whereas game theorists and logicians use formal methods
to investigate strategic behaviour, cognitive scientists use
cognitive models of the human mind to predict and simulate
human behaviour. In this paper, we hope to bring these fields
together by creating a translation system which, starting from
a strategy represented in formal logic, automatically generates
a computational model in the PRIMs cognitive architecture.
We run such models to generate response times and decisions
made in centipede-like games, a subset of dynamic perfect-
information games. Our system is a proof-of-concept for
generating cognitive models from formal logic, and presents a
new method of otherwise laborious model creation.

Keywords: formal logics, PRIMs, strategic reasoning,
automated model generation

Introduction
Centipede-like games
In this paper, we model participants’ reasoning in a turn-
taking game called Marble Drop (Figure 1). Participants
played this game in an experiment against a computer op-
ponent (Ghosh, Heifetz, Verbrugge, & De Weerd, 2017). Be-
cause the structure of the game is reminiscent of a centipede
(its body extends from top left to bottom right of Figure 1
along the trapdoors and it has five feet corresponding to the
bins containing the marbles that are the players’ payoffs),
such games are dubbed ‘centipede-like games’.1

Game theory prescribes that players who are commonly
known to be rational use the backward induction (BI) strat-
egy: one should ignore previous information, and work
backwards from the end of the game tree to reach a deci-
sion (Perea, 2012). For example, in the ‘orange’ player’s
last turn in Game 1 (Fig. 1), he has to decide between go-
ing to the left or to the right, for payoffs of 4 or 3 orange
marbles, respectively. Using BI, because 4 is more than 3,
he chooses to go left, delivering the outcome pair (1,4): 1 for
the blue player, 4 for the orange player. One can then con-
tinue backwards to compare the left and right choices in the
blue player’s second turn: going right gives (1,4) while go-
ing left gives (3,1); because 3 is more than 1, the blue player

1The games in this paper do not comply with the conditions on
payoffs of Rosenthal’s original centipede game (Rosenthal, 1981).

would choose to open the left blue trapdoor. One then contin-
ues to reason backwards to compare the actions in the orange
player’s first turn, where the outcome is (1,2) when playing
left and (3,1) by playing right. One assumes that, 2 being
more than 1, the orange player chooses to open the left or-
ange trapdoor. Finally, one compares the actions in the blue
player’s first turn, where going left leads to (4,1) and going
right leads to (1, 2). Because 4 is more than 1, the blue player
will choose to open the left trapdoor to obtain 4 points. Note
that playing rationally by backward induction does not nec-
essarily lead to the outcome with the highest sum of play-
ers’ payoffs – that would have been achieved by both play-
ers choosing to open their right trapdoors at all four decision
points and ending up with a combined payoff of 6+3.

Cognitive models
We can investigate human behaviour in centipede-like games
by constructing computational cognitive models of the mind
and comparing their behaviour to human behaviour. We as-
sume full understanding of the game’s rules for both the
human players and cognitive models, and investigate their
gameplay and the strategies they may be using. We create
these models in the PRIMs cognitive architecture (Taatgen,
2013). We recall a few key aspects of PRIMs models. Models
in PRIMs have a working memory, used as a mental scratch-
pad, and a declarative memory, used for long-term storage
of information. Visual information is presented to a PRIMs
model hierarchically; the model uses focus actions to move
its visual attention through layers of the hierarchy. Models
in PRIMs operate by sequentially firing primitive elements,
which move or compare information present in the model or
in the visual input it receives. The process of production com-
pilation compiles primitive elements that are often fired in the
same sequence into a single production, causing a speed-up
when performing the same task multiple times.

Formal logic
In (Ghosh & Verbrugge, online first), a formal logic is pro-
posed which formalizes strategic behaviour as demonstrated
by human participants in centipede-like games. A formula
describing a strategy, a strategy formula, consists of a set of

Figure 1: Top: Marble Drop game. Players (assigned blue
and orange) control the marble’s course by opening the left
or right trapdoor of their color once the purple marble arrives
there. When it ends up in a certain bin, each player earns the
marbles of their color. This example payoff structure corre-
sponds to Game 1 of (Ghosh et al., 2017), see bottom figure.
In the payoff pairs, the left payoff is C’s and the right is P’s.

conditions and an action. If the conditions hold, the action
should be played. We use a myopic strategy as an example: a
player using the myopic strategy only looks at his own pay-
offs at the current and next ending location. Consider a play
of Game 1 starting at player C’s first turn. Using the myopic
strategy, player C looks at his own payoff should he play a,
which is 4, and compares it to his own payoff should he play
b and should player P play c, which is 1. The former is larger
so player C should play a using the myopic strategy. This
case is captured by strategy formula K 1

C as follows:
[(〈a+〉(uC = 4)∧〈b+〉〈c+〉(uC = 1)∧ (1 6 4)∧ root) 7→ a]C

Here, K 1
C is the name of the formula, with the game num-

ber in superscript and the player in subscript. The formula
itself is followed by its corresponding player in superscript.
The formula consists of conditions, separated by conjunction
symbols (∧), as well as an action, in this case a. The condi-
tions and action are separated by a mapping arrow (7→). The
first condition, 〈a+〉(uC = 4), specifies that after edge a is tra-
versed (〈a+〉) from the currently active node (in this case the
first node, marked red in Figure 1), player C’s payoff should
be 4 (uC = 4). The second condition, 〈b+〉〈c+〉(uC = 1),
specifies that after edges b and c have been traversed, player
C’s payoff should be 1. The third condition, (16 4), indicates
a comparison between these two payoffs. The last condition,
root, specifies that the currently active node should be the
root of the game tree, which ensures that moving across an

edge using an operator such as 〈a+〉 is possible at this loca-
tion. If all of these conditions hold, then player C plays a.

Research goals
In this paper we propose a system which creates a PRIMs
model from a strategy in the formal logic we just described,
capable of playing centipede-like games. Our encompass-
ing goal is to help understand human behaviour in dynamic
perfect-information games. Our place in this continuing body
of research can be found in Figure 2. Here, human be-

Figure 2: The red arrow in this diagram indicates our place
in research, as we aim to automate the creation of cognitive
models from formal strategies.

haviour is found at the top of the diagram, as all research
involved aims to understand human behaviour. By observ-
ing human behaviour, game theorists formalize strategies as
possibly used by human participants. These formal strate-
gies can be used by cognitive scientists to manually construct
cognitive models. These models automatically generate data,
such as response times. The blue arrow signifies the classic
approach of creating cognitive models by hand based on ob-
served human behaviour. The behaviour of such a model can
be verified by constructing a behavioural experiment, which
gives us data about human behaviour, closing the circle. In
the diagram, dashed lines are automated processes. The red
dashed line indicates our current research, which automates
the creation of cognitive models from formal strategies.

The primary goal of this research is to create a sys-
tem which automatically generates a fully functioning model
in the PRIMs cognitive architecture, capable of playing
centipede-like games, from a strategy represented in the for-
mal logic from (Ghosh & Verbrugge, online first). To achieve
this goal, we solve several subgoals: first, we create a model
in the PRIMs cognitive architecture, capable of playing these
games, by hand. We need this model to verify our translation
system. Next, we discuss the differences between the formal
logic and cognitive models, which is essential to translate one
of them into the other. In the next section we describe our so-
lutions and our translation system.

Methods
Verification model
First, we create a cognitive model in the PRIMs cognitive
architecture by hand, which uses the myopic strategy as dis-
cussed in the introduction. This model plays as player P. We
refer to it as the myopic model. We only look at the model’s
first move, in games that either start with player P, or in games
where player C has already played action b. We use Game

1 in Figure 1 to demonstrate how this model operates. A
model’s visual attention always starts at the root of the tree,
which is the red dot in the image. The myopic model first
moves its visual attention to the first ending location that may
be reached. In Game 1, it moves its visual attention across
edges b and c. The model then stores its own payoff at this
location, the value 2, in its first slot of working memory. The
model proceeds to move its visual attention across edges c,
d, and e to look at the next ending location. Now the model
stores its own payoff at this second location, the value 1, in its
second slot of working memory. Lastly, the model retrieves a
chunk from declarative memory to compare the values 2 and
1 which it has stored in working memory. The model suc-
ceeds in retrieving a chunk specifying that 2 is larger than 1
and, based on this information, ends the game by playing c.
This myopic model is generic - it can use the myopic strat-
egy in any centipede-like game. According to the own-payoff
strategy, a player should only look at their own payoffs in a
game tree, and try to move towards that payoff. For example,
in Game 1 in Figure 1, player C should play b and f in an at-
tempt to reach the payoff of 6 at the rightmost node, which is
the game’s highest payoff. The own-payoff model behaves in
a manner similar to the myopic model. However, it will also
move its visual attention to and make comparisons between
its own payoffs further along the game tree. If it discovers a
payoff higher than its first payoff, it will move right. If it has
compared all payoffs to the first one, and the first one is the
largest payoff, it will move down.

Translation system
As mentioned, our new translation system automatically gen-
erates a model in the PRIMs cognitive architecture from a
formal strategy and its corresponding game. To do so, we
first need to represent centipede-like games and formal strate-
gies in our system. For the games, we use the same tree-like
structure as seen in Figure 1. Centipede-like games consist
of nodes and edges. Nodes can be leaf nodes (ending loca-
tions) and non-leaf nodes (player turns). For leaf nodes, both
players’ payoffs are specified. For non-leaf nodes, the player
who has a turn at the node is specified. Edges specify the two
nodes they connect. All finite centipede-like games can be
stored in this manner. Formal strategies consist of a player,
an action, and a list of conditions. Each of these conditions
consists of a list of zero or more operators (such as 〈a+〉), and
a proposition (such as (uC = 4)). We have already seen most
of these propositions and operators in the formula K 1

C.
We now give truth definitions of the relevant logic formu-

las used in our translation system. The truth of a formula ψ

at a node s is defined inductively as follows (see also Ghosh
and Verbrugge (online first)). Here, M = (T,{−→x

i },V) is
a model consisting of a game tree T , a binary relation on
the nodes of the tree corresponding to each node x and each
player i (denoted by {−→x

i }), and a map V assigning to a state
s the set V (s) of all true propositions in s.

1. M,s |= p iff p ∈V (s) for atomic formulas p.

2. M,s |= 〈a+〉ψ iff there exists an s′ such that s a⇒ s′ and
M,s′ |= ψ.

3. M,s |= 〈a−〉ψ iff there exists an s′ such that s′ a⇒ s and
M,s′ |= ψ.

4. M,s |= B
(i,x)
h

ψ iff the underlying game tree TM is the same
as the one for h and for all s′ such that s−→x

i s′,M,s′ |= ψ.

In layman’s terms: formulas in the logic are interpreted at
the currently active decision node, or the current turn, except
when they are preceded by an operator 〈a+〉. Such an oper-
ator indicates that the remainder of the statement should be
interpreted at the location obtained by following edge a. The
proposition root is true if the node it refers to is the root of the
tree, or the first turn of the game. The proposition (ui = qi)
is true if player i’s payoff is equal to qi at the node it refers
to. The proposition (r 6 q) is not interpreted at a specific
position, and is true if r is equal to or smaller than q. The
proposition turni, not found in the formula K 1

C, is true if it is
player i’s turn at the node it refers to. Finally, we have formu-
las such as Bn1,C

g1 〈b+〉c. This one means ‘player C, in Game
1, at the first node, believes that after playing b, c will be
played.’ It consists of a belief operator Bn1,C

g1 , which accounts
for the phrase ‘player C, in Game 1, at the first node, believes
that’. The operator 〈b+〉 accounts for ‘after playing b’, and c
accounts for ‘c will be played’.

Individual components In the present paragraph, we
give for each novel component in the logic of Ghosh and
Verbrugge (online first) the corresponding behaviour of a
PRIMs model generated using this component.
〈a+〉 and 〈a−〉: Operators such as 〈a+〉 and 〈a−〉 indicate that
a proposition should be evaluated at a location different from
the current location, and specify which location. A model
translated from a formula containing these operators uses fo-
cus actions to move its visual attention to the specified loca-
tion. Focus actions take time to complete similar to human
gazing, causing these operators to increase the model’s reac-
tion time.
root: When a strategy formula contains the proposition root,
the PRIMs model will visually inspect the specified node to
determine whether it is the root of the tree.
turni: When a strategy formula contains a proposition turni,
where i is C or P, the PRIMs model will read the player name
from the specified node in the game tree, and compare it to i.
(ui = qi): The proposition (ui = qi) states that player i’s
payoff is equal to qi at a certain location. The PRIMs model
will compare qi to a value in its visual input. Because this
value may be required for future comparisons, it is also
stored in an empty slot of working memory.
(r 6 q): A proposition (r 6 q) is a comparison between two
values in the game tree. A PRIMs model cannot instantly
access each value in a visual display: it has to remember
them by placing them in working or declarative memory
before it can compare them. A proposition (ui = qi) causes

such a value to be stored in working memory. A proposition
(r 6 q) then sends two of these values from working memory
to declarative memory, to try and remember which one is
bigger. When a model is created, its declarative memory
is filled with facts about single-digit comparisons, such as
(0 6 3) and (2 6 2).
B
(i,x)
h

and a: The operator B(i,x)
h

and proposition a are used
to construct beliefs about the opponent’s strategy. In a belief
operator, i is one of the players C or P. The symbol x is the
decision node, or turn, where the belief is held. For the four
turns in Game 1 (Figure 1) we use n1, n2, n3 and n4, respec-
tively. Lastly, h is the game the belief applies to. In Game
1, h is g1. The symbols a through h refer to the actions that
can be played in the games, represented as propositions. An
example belief is expressed in the following formula:

B
(C,n1)
g1 〈b+〉〈d+〉e (1)

This formula means ‘In Game 1, at node 1, player C believes
that after playing of b and d, e will be played’. To verify such
a belief, a model employs a strategy similar to the ones used
by models in (Stevens et al., 2018). When a model is created,
it contains several player-specific strategies in its declarative
memory. When a model verifies a belief, it sends a partial
sequence of actions to declarative memory, corresponding to
the assumptions of the belief, in an attempt to retrieve a full
sequence of actions, which is a strategy. Using Equation 1
as an example, the assumptions of the belief are that b is
played. Therefore the model sends the sequence b to declar-
ative memory. The sequences b-e and b-f could be retrieved,
depending on the strategies present in declarative memory.
However, only b-e verifies B(C,n1)

g1 〈b+〉〈d+〉e. All others fal-
sify it.

Problems We encountered two problems in the formal
logic in the previous section. First, a comparison (r 6 q) does
not specify which payoffs are being compared, only which
two natural numbers (including zero) are being compared. A
game containing identical payoffs at different nodes poses a
problem for a translation system. Although humans can in-
tuitively determine which comparison would ‘make sense’, a
translation system cannot. Because of this, we use a modified
version of the formal logic where each payoff is marked, and
each comparison refers to two specific payoffs. This allows a
translation system to know precisely which two payoffs it has
to pull from working memory to perform a comparison.

Secondly, a belief such as B(C,n1)
g1 〈b+〉c only specifies what

should be believed, not how this belief should be obtained.
We use a method similar to (Stevens et al., 2018), where the
model begins with strategy chunks in its declarative mem-
ory, and verifies a belief by comparing the current game state
to these strategy chunks. We have strategy chunks for three
strategies: (i) the extensive-form rationalizable (EFR) strat-
egy, which we use because the actions it prescribes corre-
spond more closely than backward induction to the human
data of Ghosh, Heifetz, and Verbrugge (2015), (ii) the back-
ward induction (BI) strategy, which we use because it reaches

a Nash equilibrium and is often put forward as the game-
theoretical solution to games similar to our own (see explana-
tion in Introduction), and (iii) the own-payoff strategy, which
is used in previous research on centipede-like games, such as
(Ghosh et al., 2017).

According to the EFR strategy, one should consider previ-
ous information (Perea, 2012). For example, if player C plays
b in Game 1, then player P could rationalize this decision by
believing that C has skipped the 4 points obtained by playing
a, because C believes that he can get the 6 points at the far
right (the only payoff higher than 4). To get these 6 points,
player C has to play f as well, which P can use in his decision
to play c or d.

Let us explain the model behaviour for a complete strategy
formula, namely K 1

C. This formula, as well as the formulas
used in previous research using this particular logic, takes the
form of a Horn clause, such as a∧b∧c∧d→ p. Given a strat-
egy formula, a PRIMs model tries to verify each proposition
in the conjunction sequentially, using the behaviour earlier
described for each proposition. If it encounters a proposi-
tion it cannot verify, it ‘jumps out of’ this verification process
and doesn’t play the action prescribed by the formula (what it
does we describe in the next section). If the model has veri-
fied all the propositions in the conjunction, it plays the action
prescribed by the strategy formula.

One problem remains. Conjunctions in formal logic are
unordered. Models in PRIMs, however, solve problems se-
quentially. Therefore we need to order the conjunctions in
formal logic, so the corresponding PRIMs model has an or-
der to verify them in. Fortunately, each proposition has to be
verified at a specific location. For example, 〈a+〉(uC = 4),
in Game 1 found in Figure 1, has to be verified at the end-
ing location reached by playing a. Eye-tracking data from
Meijering, Van Rijn, Taatgen, and Verbrugge (2012) tells us
that human participants tend to look through a game tree by
following the edges along the shortest path. Therefore we
compute the shortest path through the game tree. Our PRIMs
models verify propositions as they occur along this path.

Exhaustive strategy formulas In the previous sections we
described how a PRIMs model, generated by our translation
system, behaves based on a strategy formula. One strategy
formula is not always sufficient to describe a strategy. Strate-
gies such as BI and EFR can have multiple solutions if there
are payoff ties: in Game 4 in Figure 3, the last two payoffs
for P, obtained by playing g and h, are tied, allowing for two
options when performing the BI procedure. When using EFR
in Game 4, player C playing b instead of a can be interpreted
as C going for any of two payoffs higher than the 2 he skipped
by playing b. Thus, one has to list all solutions for the spec-
ified strategy. Therefore, our translation system allows for a
strategy to consist of a list of strategy formulas. The PRIMs
model generated from this list tries to verify each formula in
it, using the behaviour described in the previous sections, un-
til it finds one it can verify, and play the action prescribed by
the formula it verified. There is no need to specify what the

Figure 3: Games 1′ and 4 from (Ghosh et al., 2017). Game 1′ is on the left, Game 4 is on the right.

model has to do when it cannot verify any of the formulas:
the list is exhaustive, so at least one of them holds.2

Experiments
Verification experiment In our verification experiment we
compare our handmade with our automatically generated
models, based on six different games, three of which can be
found in Figure 1 and Figure 3. We have four models: hand-
made myopic and own-payoff models, and automatically gen-
erated myopic and own-payoff models, which are generated
from the myopic and own-payoff strategy formulas for Game
1′. The formula for the myopic strategy is as follows:

My1′
P : [(〈c+〉(uP = 2)∧〈d+〉〈e+〉(uP = 1)∧(16 2)∧root) 7→ c]P

These models only play Game 1′ (Figure 3), in the role of
player P against computer opponents C playing prespecified
moves. We use the same methods as the models in (Ghosh &
Verbrugge, online first): we run each model 50 times, where
it plays 50 games, to simulate 50 virtual participants who play
50 games each. We record reaction times and decisions.

Differences In our handmade models we have implemented
the procedural knowledge required to play the myopic and
own-payoff strategies, as described at the beginning of the
‘Methods’ section. Our automatically generated models, in
contrast, play by sequentially verifying propositions in a list
and play a certain action if all of them hold, according to
a logical formula. Our handmade models are general for
any centipede-like game, whereas our automatically gener-
ated models are specific for one game. Due to their general-
ity, our handmade models have to look at more properties of
the game tree, because no assumptions can be made. For ex-
ample, for the myopic strategy, when reading the first payoff
value from the game tree, for the handmade model, its current
goal is ‘finding a value in the game tree’, its visual attention
has to be directed at a leaf node, two slots of working mem-
ory have to be empty, one to store the first value, and another
has to remain empty for a next value. For the automatically
generated model, the game is assumed to be known, as well
as the sequence of actions the model has to fire. Therefore,
when reading the first payoff value from the game tree, for the
automatically generated model, its current goal is ‘finding the

2The strategy specification language described in (Ghosh & Ver-
brugge, online first) provides two possible ways of combining strat-
egy specifications, namely, n1+n2 (n1 or n2) and n1 ·n2 (n1 and n2).
While the former corresponds to the exhaustive list of strategies, the
latter operator is yet to be modelled.

first value in the game tree’, its working memory states that
this is the second action performed in this goal, and within its
visual input the payoff value the model is currently looking at
should be ‘two’ (in order to verify 〈c+〉(uP = 2)).

In short, our handmade models are implementations of a
strategy, whereas our automatically generated models per-
form a sequence of actions corresponding to a logical for-
mula, based on this strategy. We compare them to verify our
translation system and to investigate the differences.3

Exploratory experiment In our second experiment we ex-
plore the abilities of our translation system by looking at
novel automatically generated models. These models play
two games: Game 1 (see Figure 1), and Game 4 (see Fig-
ure 3). For both games, we automatically generate two mod-
els: one that uses backward induction, and one that uses
extensive-form rationalizability. These four models are gen-
erated from the BI and EFR strategy formulas for Game 1
and Game 4. These strategy formulas not only contain pay-
offs and comparisons, like the myopic and own-payoff strat-
egy formulas, but also contain beliefs. We use these games
because both the BI and EFR solutions differ between these
games, which should give different results. Because some
of these strategies have multiple solutions in some of these
games, exhaustive strategy formulas are required to describe
these strategies, whereas we did not use exhaustive strategy
formulas in the previous experiment.

Results
Verification experiment In terms of behaviour, myopic
models always play down, and own-payoff models always
play right. This corresponds to the strategies these models
were generated from. The reaction times for our four mod-
els can be found in Figure 4. It indicates that the myopic
models are faster than the own-payoff models, and the gener-
ated models are faster than the handmade models. Compar-
ing the handmade and automatically generated models, the
proportional difference in mean reaction times between the
myopic and own-payoff models is similar. The proportion
myopic/own-payoff is 0.56 for the handmade models, and
0.55 for the generated models.

3We did not create, by hand, myopic and own-payoff models
that play by verifying a strategy formula, for two reasons: firstly,
our translation system never fails at generating a cognitive model,
and secondly, given a strategy formula, the behaviour of a generated
model is fully known to us - writing the same model by hand would
be akin to ‘copying’ the output of our translation system.

Figure 4: Reaction times of handmade and system-generated
myopic and own-payoff models at first decision in Game 1′.

Exploratory experiment The reaction times for our BI and
EFR models can be found in Figure 5. Our exhaustive mod-

Figure 5: Reaction times for our automatically generated BI
and EFR models, when making their first decision. Here, ‘1
BI’ is the reaction time for the BI model in Game 1, etc.

els are a lot slower than our myopic and own-payoff mod-
els. Furthermore, reaction times in Game 1 are faster than
reaction times in Game 4. It seems that reaction times are
a function of the number of formulas required to create the
exhaustive strategy formula: for both BI and EFR, in Game
1, only one formula is needed. In Game 4, BI requires two
formulas, and EFR requires four formulas. To test this, we
perform a simple linear regression using number of formu-
las to predict reaction times. A significant regression equa-
tion is found (F(1,189) = 432.6, p < 2.2 ·10−16), with an R2

of 0.696. Predicted reaction time in milliseconds is equal to
10401+50453·(number of formulas).

Discussion
The results in the previous sections show the feasibility of
our system as a proof-of-concept. For all turn-taking games
with at most binary choices, our system generates cognitive
models from strategy formulas, without human intervention.
This can greatly speed up research, because cognitive models
are often created by hand. These models can be run to obtain
reaction times, as shown in our results, as well as other data,
such as decisions, gazing behaviour, and neural activity. Our
verification experiment shows that between the handmade
and generated models, the proportion of reaction times be-
tween the myopic and own-payoff strategies are highly sim-

ilar, and the actions they play are the same. We believe this
is due to the similarity in their decision-making processes.
For example: in both myopic models the model looks at two
payoffs in the game tree, stores them in memory, and com-
pares them to make its decision. The difference in reaction
times could be due to the following reason: the automati-
cally generated models are specific models for their respec-
tive games, whereas the handmade models are general mod-
els. Therefore, the handmade models have to perform extra
tests to verify whether certain operations are possible in the
current game, and to remember what they have already done.
These extra steps cannot be removed: the model cannot func-
tion without them. However, the generated models are gener-
ated from a strategy formula designed for a particular game,
so they can simply perform a sequence of actions. This corre-
sponds to the number of primitive elements required by these
models. For example, the automatically generated myopic
model uses 39 primitive elements, and the handmade myopic
model uses 46 primitive elements.

Nonetheless, our exploratory experiments show that our
system can provide predictions such as ‘human response
times in centipede-like games are a function of the number of
game-theoretical solutions in a game’, which can be experi-
mentally tested. In the future we plan to extend the automatic
translation method to perfect-information games with more-
than-binary decision points. Similar translation methods of
linking formal logic directly to cognitive modeling and be-
havioural experiments may be constructed for wider classes
of tasks, such as planning and communication protocols.

References
Ghosh, S., Heifetz, A., & Verbrugge, R. (2015). Do play-

ers reason by forward induction in dynamic perfect infor-
mation games? In R. Ramanujam (Ed.), Proc. 15th conf.
theor. aspects rationality and knowledge (pp. 121–130).

Ghosh, S., Heifetz, A., Verbrugge, R., & De Weerd, H.
(2017). What drives people’s choices in turn-taking games,
if not game-theoretic rationality? In J. Lang (Ed.), Proc.
16th conf. theor. aspects rationality and knowledge (pp.
265–284).

Ghosh, S., & Verbrugge, R. (online first). Studying strate-
gies and types of players: Experiments, logics and cogni-
tive models. Synthese, 2018.

Meijering, B., Van Rijn, H., Taatgen, N. A., & Verbrugge, R.
(2012). What eye movements can tell about theory of mind
in a strategic game. PLoS ONE, 7(9), e45961.

Perea, A. (2012). Epistemic game theory. Cambridge UP.
Rosenthal, R. (1981). Games of perfect information, preda-

tory pricing and the chain-store paradox. Journal of Eco-
nomic Theory, 25(1), 92–100.

Stevens, C. A., Daamen, J., Gaudrain, E., Renkema, T., Top,
J. D., Cnossen, F., et al. (2018). Using cognitive agents to
train negotiation skills. Frontiers in Psychology, 9.

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439–471.

