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Abstract: We revisit the discussion on reasoning about games in dynamic-epistemic logic and present a language for describing
reasoning in possibly infinite games from the perspective of the players. We argue that even though a plethora of sophisticated logics
of strategic reasoning in games are available, it is still worthwhile to consider the game structures themselves from the perspective
of logic. In the process, we provide complete axiom systems for these games satisfying characteristic properties from the game-
theoretic literature. Decidability of the satisfiability problem is also taken up to consider the existence of games following certain
rules that can be expressed in the logical language.

1 Introduction
Dynamic games (Osborne and Rubinstein, 1994) provide us with faithful models of interactive multi-agent systems
(Wooldridge, 2009), and as such, investigating such game structures falls under the purview of AI, computer sci-
ence, logic and other related areas, in addition to their in-depth investigations in game theory. These games have
rich transition structures and form a fertile research field from a logician’s view point, especially for modal logicians.
Reasoning about n-player extensive-form games with perfect and imperfect information form a major sub-area which
provides us with natural models for dynamic-epistemic languages. In particular, a combination of propositional dy-
namic logic (Harel et al., 2000) and epistemic logic (Fagin et al., 1995) provides a suitable framework to reason about
these games from the players’ local action perspectives (e.g. see (van Benthem, 2001)). These frameworks are also
suitable to model reasoning in games from the viewpoint of the players playing the game.

Current literature abounds with various logics of games and strategies. Their reasoning prowess proceeds on several
levels: players’ long-term powers in games in general (Pauly and Parikh, 2003), players’ powers in parallel games (van
Benthem et al., 2008; Ghosh et al., 2010), and coalitional abilities of players in short-term games (Pauly, 2001) as well
as in games of unbounded duration (Alur et al., 2002). With regard to explicit reasoning about strategies, bringing
strategic reasoning to the fore, numerous logics have also been developed (e.g., see (Chatterjee et al., 2007; Walther
et al., 2007; Ramanujam and Simon, 2008; Brihaye et al., 2009), to name a few). More recently, many of these log-
ics have been extended with different knowledge operators representing individual, general, distributed, and common
knowledge to describe information available to the players (e.g., see (Ågotnes and Alechina, 2012; Belardinelli, 2014;
Berthon et al., 2017)). With respect to extensive-form games of perfect and imperfect information, reasoning about
long term players’ powers, short term action abilities of players, structural as well higher level game equivalences have
been taken up by van Benthem (2001, 2002). The current work proceeds in this direction with the aim of bringing in
more game-theoretic intricacies in the logical development.

The main aspect that we look into is that of information available to players. If we consider any game-theoretic lit-
erature defining extensive-form games (e.g. (Osborne and Rubinstein, 1994)), we come across the following concept:
For any player i, an equivalence relation, ∼i, say, is defined among the nodes of player i to model the concept of
indistinguishability for player i. For two game nodes t and t′, say, of player i, the interpretation of t ∼i t

′ is that they
are indistinguishable to player i. In other words, as per the knowledge of player i, she could be making a decision
either at node t or at node t′. Any such equivalence class is called an information set for player i. It is also assumed
that if any action of player i is available at one node of an information set then it is also available at every node in
that information set. Such indistinguishability of nodes for players is generally modelled in logic by an S5 knowledge
operator (Fagin et al., 1995) for each player i, which is defined for all nodes of a game, not just the player i nodes. So,
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a natural question is: How can one construct a reasonable extension of the definition of the equivalence relation∼i for
player i from the set of nodes of player i to the set of all nodes of the game so that modelling by a knowledge operator
can be facilitated? This has generally been taken care of by assuming some arbitrary equivalences over the set of all
nodes of a game (van Benthem, 2001) or some arbitrary property of the knowledge operator (Bonanno, 2003, 2004a).
A notable exception is the work done by Bonanno and Battigalli (1997), which acknowledges the fact that the language
of extensive-form games as available in the game-theoretic literature is not rich enough to deal with many natural and
meaningful statements that one can make about such games. A natural extension of these information sets satisfying
certain properties is defined over the set of all nodes in Von Neumann games (Kuhn, 1953) and the existence of such
extensions is proved corresponding to these games. A converse result is proved by Bonanno (2004b), who shows that
the games on which these extensions can be defined are exactly the Von Neumann games.

The main goal of this work is to bring a general notion of such extensions under the purview of logic and to investigate
various related properties of these gameswhich have been studied over the years. We first provide a sound and complete
axiomatization of the general game structures where these extensions are defined in a faithful manner corresponding
to the information sets of the players. We also discuss the expressive power of our language. Then we provide a sound
and complete axiom system for games with perfect recall, more specifically, memory recall and action recall. We note
here that Bonanno (2003, 2004a) has provided syntactic characterizations of these properties andWitzel (2011a,b) has
provided a detailed study of perfect recall semantics in the framework of epistemic temporal logics (Fagin et al., 1995;
Parikh and Ramanujam, 2003). Our claim is that the axiomatizations that we provide here, distinctive for dynamic
games of complete information, bring the logical systems closer to their game-theoretic counterparts, and thus pave
the way for further studies on strategic reasoning in these dynamic games focusing on the underlying local structures.
Such structures often lead to composition of partial strategies for players while playing the game, especially when the
end is not known and future plays cannot be predicted. This work provides certain possibilities for studying these
partial strategies in a logic framework, depending on the local structure of the games. We also show decidability of the
satisfiability problem, which provides us with possibilities of checking on the existence of different rule structures for
designing games of this nature.

Before proceeding any further, we would like to mention that dynamic games of complete information, which are the
main focus of study in this work, have already been studied extensively in the framework of epistemic temporal log-
ics (Fagin et al., 1995) and that of dynamic-epistemic logics (van Benthem, 2001, 2002; van Benthem et al., 2011). In
fact, many of the results that we prove here have already been discussed and proved in the respective frameworks. The
novelty of this paper lies in two points. The first one is that the question about reasonable extensions of information
sets that we ask above has not yet been considered in these frameworks. The second point is that the language we use
to describe these games and the corresponding axiom systems are tailor-made for such structures, facilitating the study
of local strategic reasoning in these games.

In the remaining part of the paper, Section 2 provides the preliminary definitions of the game structures that we use
in our study. Section 3 describes the logical syntax, discusses the expressivity of the language, provide a sound and
complete axiomatization for the general extensive-form game structures, and show decidability of the satisfiability
problem. Section 4 deals with extensive-form games with perfect recall and provide sound and complete axiomatiza-
tions for these structures. We round up our work in Section 5 with some discussion about future work.

2 Preliminaries
We start with defining our imperfect information gamemodels based on game trees, where at most one player is allowed
to move at a game position – these game positions are represented by nodes of the tree and the moves are represented
by the labelled edges. Let N denote the finite set of players; we use i to range over this set. Let Σ be a finite set of
action symbols representing moves of players; we let a, b range over Σ.

2.1 Game trees
Let T(Σ) = (S,⇒, s0) be a Σ-labelled tree (edge-labelled tree) rooted at s0 on the set of vertices S and let ⇒ :

(S ×Σ) → S be a partial function specifying the edges of the tree. Thus for any a ∈ Σ, a labelled edge a⇒ is a partial
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function from S to S. The tree T(Σ) is said to be finite if S is a finite set. For a node s ∈ S, let
→
s= {s′ ∈ S | s a⇒s′

for some a ∈ Σ} and let moves(s) = {a ∈ Σ | ∃s′ ∈ S with s a⇒s′}. An action “a” is said to be enabled at a node s if
a ∈ moves(s). A node s is called a leaf node (or terminal node) if

→
s= ∅. Let frontier denote the set of all leaf nodes.

For the rest of the paper we fix Σ to be the finite set Σ = {a1, . . . , am}, we use T to denote the tree T(Σ).

An extensive-form game tree is a tuple T = (S,⇒, s0, λ̂) where T = (S,⇒, s0) is a tree. The set S denotes the
set of game positions with s0 being the initial game position. The edge function ⇒ specifies the moves enabled at
a game position and the turn function λ̂ : S \ frontier → N associates each non-leaf game position with a player.
An extensive form game tree T is said to be finite if the underlying tree structure (S,⇒, s0) is finite. For i ∈ N , let
Si = {s | λ̂(s) = i}.
A play in the game T starts by placing a token on s0 and proceeds as follows: at any stage if the token is at a position
s and λ̂(s) = i, then player i picks an action which is enabled for her at s, and the token is moved to s′ where s a⇒s′.
Formally, a play in T is a finite path ρ : s0a1s1 · · · aksk or an infinite path ρ : s0a1s1 · · · in the underlying tree T such
that for all j > 0, sj−1

aj⇒sj .

2.2 Imperfect information
An extensive-form game with imperfect information is given by the tuple TI = (T, {∼T

i }i∈N ), where T is an extensive
form game tree as defined above, and for each i ∈ N , ∼T

i is an equivalence relation over Si. For each s ∈ Si, let
[s]∼T

i
= {s′ : s ∼T

i s
′}, the equivalence class of s. Each such equivalence class is called an information set for player

i. Thus, in game theory (Osborne and Rubinstein, 1994), information sets for a player i are defined over Si, the set of
all player i-nodes. To express such game structures in modal logics, we need to define these information sets for each
player over the set of all nodes, S.

While giving syntactic characterizations of game-theoretic properties of imperfect information games, a standard as-
sumption is that ‘player i knows everything at the nodes where they are not making any move’ (e.g., see (Bonanno,
2003, 2004a)), which is somewhat non-intuitive. Going with the spirit of the work done in (Bonanno and Battigalli,
1997; Bonanno, 2004b), we define an extensive-form game with extended information to be the tuple T̂I = (TI , {≈T

i

}i∈N ), where TI is defined as above, and ≈T
i is an equivalence relation over S in TI extending ∼T

i and satisfying the
following condition: For all s ∈ Si, [s]≈T

i
= [s]∼T

i
, where [s]≈T

i
denotes the equivalence class of s under the relation

≈T
i . These extensive-form games with extended information are the game structures in the models that we use in the

subsequent sections.

2.3 Von Neumann games
We now define Von Neumann games (Kuhn, 1953, 1997) which play a significant role in the later part of the technical
discussion in the current paper. They are very similar to the synchronous structures studied in the interpreted systems
literature (e.g. see (Fagin et al., 1995)).

Let TI = (T, {∼T
i }i∈N ) denote an extensive-form game with imperfect information, where T = (S,⇒, s0, λ̂). For

every node s ∈ S, let l(s) denote the number of predecessors of s, that is, the length of the path from the root s0 to s.
An extensive-form game is said to be Von Neumann if, whenever s and s′ are decision nodes of player i that belong to
the same information set of player i, the number of predecessors of s is equal to the number of predecessors of s′: For
all i ∈ N , for all s, s′ ∈ S, if s ∼T

i s
′ then l(s) = l(s′).

3 A logic for extensive-form games
We now present a language to describe the extensive-form game trees with extended information defined above, fol-
lowed by a complete axiom system for these game structures.
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3.1 Syntax and semantics
Given a countable set of atomic propositions P, a finite set of action symbols Σ, a finite set of players N , formulas α
of the language L are defined as follows:

α := p | ¬α | α1 ∨ α2 | ⟨a⟩α | ⟨a⟩α | ♢-α | ♢α | Kiα,

where p ∈ P, a ∈ Σ, i ∈ N , a denotes the converse of the action a, Ki denotes the knowledge modality of player i,
and ♢- and ♢ denote the past and future modalities, respectively.

Our main aim for considering this syntax is to have a parsimonious language to describe players’ reasoning while
playing the games. The action and knowledge modalities are the minimal requirements for such purposes. We have
past modalities to talk about the history of the game at the current node, an essential ingredient of an extensive-form
game. The only operator that does not really fit our mentioned aim of parsimony in the syntax is the future modality,
but we need that for a technical purpose, to ensure completeness of the proposed logic.

The derived connectives ∧ and ⊃ are defined as usual. Let □-α = ¬♢-¬α, □α = ¬♢¬α, ⟨N⟩α =
∨

a∈Σ ⟨a⟩α,
[N ]α = ¬⟨N⟩¬α, ⟨P ⟩α =

∨
a∈Σ

⟨a⟩α, and [P ] = ¬⟨P ⟩¬α. Let [a]α = ¬⟨a⟩¬α, [a]α = ¬⟨a⟩¬α and Liα = ¬Ki¬α.

We use some special atoms: turni for each i ∈ N , define root := ¬⟨P ⟩⊤, leaf := ¬⟨N⟩⊤.
Models of the logic are of the formM = (T, {∼T

i }i∈N , {≈T
i }i∈N , V ) (extensive-form game with extended information

with valuations), where T = (S,⇒, s0, λ̂) is an extensive form game tree, for each i ∈ N and ∼T
i is an equivalence

relation on Si ⊆ S (the set of all player i nodes), that is, (T, {∼T
i }i∈N ) gives an extensive-form game tree with

imperfect information. For each i ∈ N , ≈T
i is an equivalence relation extending ∼T

i to the set of all nodes satisfying
the condition mentioned in Section 2.2, and we thus have an extensive-form game with extended information. Here,
V : S → 2P is a valuation function, satisfying the following condition corresponding to the decision nodes of the
game:

- For all s ∈ S and i ∈ N , turni ∈ V (s) iff λ̂(s) = i.

The truth of a formula α ∈ L in a modelM and position s (denotedM, s |= α) is defined by induction on the structure
of α, as usual. For s, s′ ∈ S, let ρs

′

s denote the path from s to s′, sa0⇒s1 · · ·
am−1⇒ sm = s′. In particular, for any s ∈ S,

there exists a path from the root s0 to s, which we denote by ρss0 . Another way to describe these paths is to consider
the reflexive, transitive closure⇒∗ of the move relation⇒.

- M, s |= p iff p ∈ V (s).
- M, s |= ¬α iffM, s ̸|= α.
- M, s |= α1 ∨ α2 iffM, s |= α1 orM, s |= α2.
- M, s |= ⟨a⟩α iff there exists s′ such that s a⇒s′ andM, s′ |= α.
- M, s |= ⟨a⟩α iffm > 0, a = am−1 in ρss0 andM, sm−1 |= α.
- M, s |= ♢-α iff there exists sj , 0 ≤ j ≤ m, in ρss0 such thatM, sj |= α.
- M, s |= ♢α iff there exists s′ such that s⇒∗s′ andM, s′ |= α.
- M, s |= Kiα iff for all s′ such that s ≈T

i s
′,M, s′ |= α.

A formula α is said to be satisfiable if there exists a modelM and a state s in the model such thatM, s |= α. A formula
α is said to be true in a modelM , denoted byM |= α, if for all states s inM , M, s |= α. A formula α is said to be
valid if for all modelsM ,M |= α.
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3.2 Reasoning in games
We have defined the syntax and semantics of our logic. The next questions that come up are: What kind of reasoning of
players can we express with the language under consideration? To what extent can we express strategizing of players
in extensive form games? Can we integrate knowledge of players and their strategies in a meaningful way? We answer
these questions by providing suitable exemplifications regarding what we can express with the syntax described above.

Let us first give a few specific examples on what the knowledge modality brings in terms of describing information
available to the players.

- Any player knows whenever she is playing: turni ⊃Kiturni
- Every player knows whoever is playing:

∧
i

(turni ⊃ (
∧
j

Kjturni))

In terms of knowledge and history of the game, players can get some access to the opponents’ earlier moves.

- If player i knows that her current node is reached by an a move then she knows that player j must have played
in the past and move b was enabled: (turni ∧Ki⟨a⟩⊤) ⊃ (Ki♢- (turnj ∧ ⟨b⟩⊤))

In terms of knowledge and future of the game, players can ensure certain objectives while playing the game.

- If player i knows p at the current node then whenever she is playing she can move to a node where action a is
unavailable: Kip ⊃ □(turni ⊃ ⟨N⟩[a]⊥)

Strategic response can also be modelled in this logic.

- If player i knows that player j has been playing b in the history of the game, then player i can play a at the current
node: (turni ∧Ki□- (turnj ⊃ ⟨b⟩⊤)) ⊃ ⟨a⟩⊤

Thus, the logical framework is rich enough to deal with strategic reasoning of players at the local level incorporating
information available to the players.We now provide a complete axiomatization of the proposed logic. For the sake of
simplicity, we assume that all actions are available to all the players at their decision nodes. In terms of applications in
designing games, these axioms would provide a safety-check regarding the properties that any game structure should
satisfy.

3.3 Completeness and decidability
The axiom system that we propose below is different from the one provided in (van Benthem, 2001) which also dealt
with games in dynamic-epistemic logic – an obvious reason is the underlying language, but more importantly, the main
difference lies in the fact that we consider trees with extended information sets, instead of arbitrary structures with move
relations (graph edges) and knowledge relations (equivalences). Our main focus here is to construct a system where we
can describe game-theoretic intricacies in a more detailed manner, dwelling upon the facts that the underlying structure
is that of a tree and that each extended information set is a specific extension (cf. Section 2.2) of the usual information
sets.

Axioms

(A0) (a) All substitutional instances of the tautologies of classical propositional logic.
(b) leaf ≡ ¬(

∨
i

turni).

(c) turni ≡ ¬(leaf ∨ (
∨
j ̸=i

turnj)).

(A1) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2).
(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2).
(c) Ki(α1 ⊃ α2) ⊃ (Kiα1 ⊃ Kiα2).
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(A2) (a) ⟨a⟩α ⊃ [a]α.
(b) ⟨a⟩α ⊃ [a]α.
(c) ⟨a⟩⊤ ⊃ ¬⟨b⟩⊤ for all b ̸= a.

(A3) (a) α ⊃ [a]⟨a⟩α.
(b) α ⊃ [a]⟨a⟩α.

(A4) (a) ♢- root.
(b) □-α ≡ (α ∧ [P ]□-α).
(c) □α ≡ (α ∧ [N ]□α).

(A5) (a) Kiα ⊃ α.
(b) Kiα ⊃ KiKiα.
(c) ¬Kiα ⊃ Ki¬Kiα.

(A6) (a) turni ⊃ Kiturni.
(b) Liα ⊃ ♢-♢α

Inference rules

(MP) α, α ⊃ β (GF) α (GP) α (GK) α
β [a]α [a]α Kiα

(Past) α ⊃ [P ]α (Future) α ⊃ [N ]α
α ⊃ □-α α ⊃ □α

The axioms (A0) and (A1) need no explanation. Axioms (A2) take care of the determinacy of the actions. Axioms (A3)
provide the converse properties. Axiom (A4)(a) takes care of the root node. Axioms (A4)(b) and (c) and rules (Past)
and (Future) take care of the past and future formulas and allow induction. Axioms (A5) ensure equivalence of the
knowledge relation. The special axioms (A6) are needed for our particular game structure. The system is a modified
version of the one provided in (Ramanujam and Simon, 2008) which focuses on structures in strategies in perfect
information games. A detailed survey of such frameworks for perfect information games can be found in (Ghosh and
Ramanujam, 2012). We incorporated necessary changes to deal with reasoning in general extensive-form games.

Theorem 1 The axioms (A0) - (A6) and the rules (MP), (GF), (GP), (GK), (Past), (Future) provide a sound and
complete axiomatization of L.

Remark: It follows that the axioms and rules given above provide a sound and complete axiomatization of general
dynamic games of complete information. This is because of the fact that any extensive-form game with extended in-
formation is also a dynamic game of complete information.

By the satisfiability problem for L we mean to consider the following question: Given a formula α in the language of
L, is α satisfiable? The following theorem shows that for L, this question can be solved finitarily. The proof equips
us with an algorithm to decide whether a formula depicting a certain property or a rule can actually be implemented in
a game.

Theorem 2 The satisfiability problem for L is decidable in non-deterministic double exponential time.

We finish this section acknowledging the fact that neither the completeness nor the decidability result comes as a
surprise, given the corresponding results for epistemic temporal logics modelling interpreted systems, which can model
these game trees along with many other systems (cf. Fagin et al. (1995)). The novelty lies in the language we use to
model these games, and hence in the axiom system, which we believe to be closer in spirit to the games they model,
and in the proof techniques, influenced by the language under consideration.
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4 Perfect recall: Knowledge memory and action recall
Perfect recall is a natural assumption of game theorists when it comes to the study of extensive-form games in general.
This concept was introduced by Kuhn (1953). His interpretation of the concept is as follows: “each player is allowed
by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves”.
The following definition of perfect recall (PR) was provided by Selten (1975), which says that if a node y of player i
is reached by an a move of player i from another node t of player i, then any node belonging to the information set of
y can be reached by some node belonging to the information set of t following an a move of player i:

(PR): For every player i ∈ N , and for all nodes t, y, y′ ∈ Si and x ∈ S and for every action a, if t a⇒x,
x⇒∗y and y ∼T

i y
′ then there exist nodes t′ ∈ Si, and x′ ∈ S such that t ∼T

i t
′, t′ a⇒x′ and x′⇒∗y′.

Various syntactic representations of perfect recall are present in the literature (e.g., see (van Benthem, 2001; Bonanno,
2003, 2004a)). What we provide here is a sound and complete axiom system for extensive-form games with extended
information together with the property of perfect recall. Even though we consider games with extended information
the notion of pefect recall for a player i is defined in terms of player i nodes, and not in terms of all the nodes (cf.
Section 4.1). The main reason is that we wanted to have axioms corresponding to the property of perfect recall as it is
defined in game theory.

Taking Kuhn’s interpretation of the concept of perfect recall into account, as Bonanno (2004a) points out, one can
consider two independent components, that of knowledge memory (KM) and action recall (AR), which constitute the
concept. For more details on these two concepts, see (Bonanno, 2004a) – we provide the relevant definitions here.

(KM): For every player i ∈ N and for all nodes s, t, t′ ∈ Si, if s⇒∗t and t ∼T
i t

′, then there exists a node
s′ ∈ Si such that s ∼T

i s
′, and s′⇒∗t′.

(AR): For every player i ∈ N , for all actions a ∈ Σ and for all nodes s, t, t′ ∈ Si and x ∈ S, if s a⇒x,
x⇒∗t and t ∼T

i t
′, then there exist nodes s′ ∈ Si and x′ ∈ S such that s′ a⇒x′, and x′⇒∗t′.1

Note the subtle differences between (PR) and the concepts defined by (KM) and (AR). As the names suggest, (KM)
deals with the information sets in the past and (AR) deals with the actions in the past. The syntactic characterizations
given in (Bonanno, 2004a) provide us with the ideas of the following axioms, which we show to be sound and complete
with respect to the corresponding game structures under consideration :

(AKM): ♢(turni ∧ Liα) ⊃ Li♢α.
(AAR): ⟨a⟩turni ⊃ □Ki(⟨a⟩turni ∨ ♢- ⟨a⟩turni).

Proposition 3 The complete axiom system for L together with (AKM) provide a complete axiom system for extensive-
form games with extended information satisfying knowledge memory.

Proposition 4 The complete axiom system for L together with (AAR) provide a complete axiom system for extensive
form games with extended information satisfying action recall.

Corollary 5 The complete axiom system for L together with (AKM) and (AAR) provide a complete axiom system for
extensive-form games with extended information satisfying perfect recall.

Remark: It follows that the axioms and rules given above provide a sound and complete axiomatization of general dy-
namic games of complete information with perfect recall. This is because of the fact that any extensive-form game with
extended information satisfying perfect recall is also a dynamic game of complete information satisfying perfect recall.

We note that the concept of knowledge memory (termed as perfect recall in (Fagin et al., 1995)) has also been studied
extensively in the epistemic temporal logic literature for both synchronous as well as general systems providing axioms

1This definition is a weaker version of the one provided in Bonanno (2004a) in the sense that it does not require a player to remember how often
she has performed a particular action, but in presence of the condition (KM), the proof of Corollary 5 goes through.
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for the same (van der Meyden, 1994; Fagin et al., 1995). Here, we combine knowledge memory with action recall, to
get the notion of perfect recall as it is known in the game-theoretic literature.

Even though we are considering games with extended information, the notion of perfect recall for a player i is defined
with respect to the usual information sets in the game, that is, the nodes that are considered to define knowledgememory
and action recall for player i are the nodes for player i only. But what about the corresponding concepts when all nodes
of a game are taken under consideration? We take up this issue in the following section.

4.1 Von Neumann games: Broadening focus vis-à-vis restricting structures
We now consider extending the notion of perfect recall in games with extended information to all nodes of the game.
This issue comes up in (Bonanno and Battigalli, 1997), where it is proved that Von Neumann games (cf. Section 2.3) of
perfect recall can be extended to games with extended information satisfying the corresponding conditions of knowl-
edge memory (also known as the condition of players do not forget in (Bonanno and Battigalli, 1997)) and action recall
(also known as the condition of players remember what choices they have made in (Bonanno and Battigalli, 1997))
with respect to all the nodes. Let us first formally define these concepts, which we term as memory of past knowledge
(PKM) (Bonanno, 2004b), and past action recall (PAR).

(PKM): For all players i ∈ N and all nodes s, t, t′ ∈ S, if s⇒∗t and t ≈T
i t

′, then there exists a node
s′ ∈ S such that s ≈T

i s
′, and s′⇒∗t′.

(PAR): For every player i ∈ N , for all actions a ∈ Σ and for all nodes s, t, t′, x ∈ S, if s a⇒x, x⇒∗t and
t ≈T

i t
′, then there exist nodes s′ ∈ S and x′ ∈ S such that s′ a⇒x′, and x′⇒∗t′.

The only change in the definitions of (PKM) and (PAR) from those of (KM) and (AR), respectively, is that we have
removed all mentions of Si and replaced them by S, as the situation warrants. A significant result in this direction,
proved by Bonanno (2004b), gives us that if an extensive-form game with extended information satisfies the condition
(PKM), then it has to be a Von Neumann game. Thus, broadening our focus of perfect recall to all nodes of a game
basically restricts our class of games under consideration. Nonetheless, let us now provide a sound and complete
axiomatization for this restricted class of games satisfying (PKM) and (PAR). To facilitate our axiomatization, we
consider an equivalent condition of (PKM), namely, local memory of past knowledge (LPKM), defined as follows:

(LPKM): For all players i ∈ N and all nodes s, t, t′ ∈ S if s⇒t and t ≈T
i t

′ then there exists a node s′ ∈ S
such that s ≈T

i s
′, and s′⇒t′.

Proposition 6 In extensive-form games with extended information, PKM holds iff LPKM holds.

To give a complete axiomatization of von Neumann games with the conditions of past knowledge memory and past
action recall, we consider the following axioms.

(ARootK): root ⊃ Kiroot
(ALPKM): ⟨P ⟩Kiα ⊃ Ki⟨P ⟩α.
(APAR): ♢- ⟨a⟩⊤ ⊃ Ki♢- ⟨a⟩⊤.

Theorem 7 The complete axiom system for L together with (ARootK), (ALPKM) and (APAR) provide a complete axiom
system for Von Neumann games with extended information satisfying past knowledge memory and past action recall.

We note here that the above axiom system will not give us a sound and complete axiom system for von Neumann
games satisfying perfect recall. Axioms like (ALPKM) or (APAR) may not be even sound in these games. It matters how
the extended information sets are defined and what properties they satisfy, as the axioms are not specific to player i
nodes, in contrast to the perfect recall axioms proposed in the case of general games. We expect that once we have a
complete axiomatization for VonNeumann games, adding (AKM) and (AAR) to the axiom systemwill give us a complete
axiomatization for Von Neumann games satisfying perfect recall. These are open problems that we would like to tackle
in the future.
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5 Conclusion
As the title suggests, we have revisited the realm of dynamic games of complete information with the well-known
tools from the framework of the dynamic-epistemic logics at hand. We have provided some completeness results and
a decidability result as a precursor to the study of strategic reasoning from the viewpoint of players playing the games.
From the players’ perspectives, it is very important to be able to reason about the history of the game to come up some
plan about future moves, as they do not know how the future of the game will take shape, what their opponents’ moves
will be, and similar other issues regarding the game. Since we are reasoning in games, we have not included common
knowledge operator in the syntax, but we believe that by adding such an operator, the logic would still be complete
and decidable in the case of general dynamic games.

With respect to the expressivity of this logic, the dynamic games discussed here can be considered as special cases of
concurrent games defined in (Belardinelli, 2014; Berthon et al., 2017), but the syntax there consists of temporal and
first order operators, in contrast to the dynamic operators we have here. In (Ågotnes and Alechina, 2012), players’
long term powers are considered rather than individual moves. Our approach here is similar to the approach taken
by Ramanujam and Simon (2008), but they consider perfect information games only.

Given these game models, a natural question to ask is that what will be a suitable notion of equivalence in these games.
Is it the simple knowledge-level and action-level bisimulation for these games, or can we look into some coarser path-
level equivalence? It would be interesting to have a systemic study of the fragments of the proposed language that
capture the different reasonable notions of game equivalences that one can come up with. The principles of equiv-
alence between these games as suggested by the transformations in (Thompson, 1952) and subsequent works in this
direction do not take into consideration the framing effects of the games (Osborne and Rubinstein, 1994), and to the
best of our knowledge, a proper notion of equivalence considering these effects is not yet available in the literature. A
notion of game equivalence based on the structural details of these games will provide an answer to the problem.
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A Proof of Theorem 1
The proof of soundness is quite straightforward and hence we do not go into the details. To show completeness, we
prove that every consistent formula is satisfiable. Let α0 be a consistent formula, and let M denote the set of all
maximal consistent sets (MCS). We use m,m′ to range over MCSs. Since α0 is consistent, there exists an MCS m0

such that α0 ∈ m0.
We now construct an extensive-form game tree model with extended information for α0. We consider M as the

set of states in such a model. We first define a binary relation on MCSs as follows: m ≃i m
′ iff {Liα|α ∈ m′} ⊆ m.

By axioms (A5), we have that the relation ≃i is an equivalence relation for each i ∈ N . We also define a transition
relation on MCSs as follows: m a−→ m′ iff {⟨a⟩α|α ∈ m′} ⊆ m. Our first task will be to find a root in the model.
To this end, we will now work with sets of subformulas of α0. For a formula α, let CL(α) denote the closure of
α under subformulas. In addition to the usual downward closure and closure under negation, we also require that
leaf,♢- root ∈ CL(α). Let AT(α0) denote the set of all maximal consistent subsets of CL(α0), referred to as atoms.
Because each t ∈ AT(α0) is a finite set of formulas, we can denote the conjunction of all formulas in t by t̂. For a
nonempty subsetX ⊆ AT(α0), we denote by X̃ the disjunction of all t̂, t ∈ X . Define a transition relation on AT(α0)

as follows: t a→ATt
′ iff t̂ ∧ ⟨a⟩t̂′ is consistent. Call an atom t a root atom if there does not exist any atom t′ such that

t′
a−→ t for any a. Note that t0 = m0 ∩ CL(α0) ∈ AT(α0). We now prove the existence of a root atom in the atom

graph followed by other useful properties of the atom graph.

Lemma 8 There exist t1, . . . , tk ∈ AT(α0) and a1, . . . ak ∈ Σ (k ≥ 0) such that tk
ak→ATtk−1 . . .

a1→ATt0, where tk is a
root atom.

Proof: Consider the least set R containing t0 and closed under the following condition: if t1 ∈ R and for some a ∈ Σ
there exists t2 such that t2

a→ATt1, then t2 ∈ R. Now, if there exists an atom t′ ∈ R such that t′ is a root atom, then
we are done. Suppose not, then we have ⊢ R̃ ⊃ ¬root. But then we can show that ⊢ R̃ ⊃ [P ]R̃. By rule Past we get
⊢ R̃ ⊃ □-¬root. But then t0 ∈ R and hence ⊢ t̂0 ⊃ R̃ and therefore we get ⊢ t̂0 ⊃ □-¬root. Since ¬♢- root ∈ CL(α0),
we can deduce that ¬♢- root ∈ t0. Also, one can show that if ⊢ t̂ ⊃ α, then t̂∧α is consistent. From axiom (A4(a)) and
the fact that ♢- root ∈ CL(α), we have ♢- root ∈ t0, contradicting the consistency of t0. □

Lemma 9 For any two atoms t1 and t2, the following statements are equivalent.

1. t̂1 ∧ ⟨a⟩t̂2 is consistent.

2. ⟨a⟩t̂1 ∧ t̂2 is consistent.

Proof: First, let t̂1∧⟨a⟩t̂2 be consistent. Then we have that [a]⟨a⟩t̂1∧⟨a⟩t̂2 is consistent [by axiom (A3(a))], implying
that ⟨a⟩(⟨a⟩t̂1 ∧ t̂2) is consistent, implying that ⊬ [a]¬(⟨a⟩t̂1 ∧ t̂2). Therefore, ⊬ ¬(⟨a⟩t̂1 ∧ t̂2) [by rule (GF)], and
hence ⟨a⟩t̂1 ∧ t̂2 is consistent.

Conversely, let ⟨a⟩t̂1 ∧ t̂2 be consistent. Then ⟨a⟩t̂1 ∧ [a]⟨a⟩t̂2 is consistent [by axiom (A3(b))], implying that
⟨a⟩(t̂1 ∧ ⟨a⟩t̂2) is consistent, implying that ⊬ [a]¬(t̂1 ∧ ⟨a⟩t̂2), implying that ⊬ ¬(t̂1 ∧ ⟨a⟩t̂2) [by rule (GP)], implying
that t̂1 ∧ ⟨a⟩t̂2 is consistent. □
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Lemma 10 Consider the path tk
ak→ATtk−1 . . .

a1→ATt0 where tk is a root atom,

1. For all j ∈ {0, . . . , k − 1}, if [a]α ∈ tj and tj+1
a→ATtj then α ∈ tj+1.

2. For all j ∈ {0, . . . , k − 1}, if ⟨a⟩α ∈ tj and tj+1
b→ATtj then b = a and α ∈ tj+1.

3. For all j ∈ {0, . . . , k − 1}, if ♢-α ∈ tj then there exists i : j ≤ i ≤ k such that α ∈ ti.

Proof: (1) Since tj+1
a→ATtj , we have t̂j+1 ∧ ⟨a⟩t̂j is consistent. Since tj+1 and tj are atoms, this is equivalent to

saying that t̂j ∧ ⟨a⟩t̂j+1 is consistent (by Lemma 9), which implies [a]α ∧ ⟨a⟩t̂j+1 is consistent (by omitting some
conjuncts). Therefore ⟨a⟩(α ∧ t̂j+1) is consistent. Using (GP), we get that α ∧ t̂j+1 is consistent and since tj+1 is an
atom, we have α ∈ tj+1.
(2) Suppose tj+1

b→ATtj , we first show that b = a. Suppose this is not true, since tj+1
b→ATtj , we have t̂j ∧ ⟨b⟩t̂j+1

is consistent. And therefore t̂j ∧ ⟨b⟩⊤ is consistent. From axiom (A2(c)), t̂j ∧ [a]⊥ is consistent. If ⟨a⟩α ∈ tj , then
we get that ⟨a⟩α ∧ [a]⊥ is consistent. Therefore ⟨a⟩(α ∧ ⊥) is consistent. From (GP) we have α ∧ ⊥ is consistent,
contradicting the consistency of α (ensured by the fact that ⟨a⟩α ∈ tj is consistent).

To show that α ∈ tj+1 observe that ⟨a⟩α ∈ tj implies [a]α ∈ tj (by axiom (A2(b)) and closure condition). By the
previous argument, we get α ∈ tj+1.
(3) Suppose ♢-α ∈ tj and tj+1

a→ATtj . If α ∈ tj , then we are done. Else, by axiom (A4(b)) and the previous argument,
we have ⟨a⟩♢-α ∈ tj . From (2), we have ♢-α ∈ tj+1. Continuing in this manner, we either get an i where α ∈ ti (in
which case we are done) or we get ♢-α ∈ tk. Since tk is the root atom, we have that t̂k ∧ ¬⟨P ⟩⊤ is consistent. Since
♢-α ∈ tk, we get that t̂k ∧ (α ∨ ⟨P ⟩α) is consistent. Thus we have that t̂k ∧ α is consistent and therefore α ∈ tk. □

Canonical model construction: We are now ready to define the modelM as follows. From Lemma 8 and Lemma 10
it follows that there exist MCSsm1, . . . ,mk ∈ M and a1, . . . ak ∈ Σ (k ≥ 0) such thatmk

ak→mmk−1 . . .
a1→mm0, where

mj∩CL(α0) = tj . Now this path defines a (finite) tree T0 = (S0,⇒0, s0, λ̂) rooted at s0, where S0 = {s0, s1, . . . , sk}
and for all j ∈ {0, · · · , k}, sj is labelled by the MCS mk−j . The relation⇒0 is defined in the obvious manner. From
now on, we will simply say α ∈ s where s is the tree node, to mean that α ∈ m where m is the MCS associated with
node s. The turn function for the non-terminal nodes (that is, for the nodes not containing the propositional atom leaf)
is defined as expected: λ̂(sj) = i if turni ∈ sj , else λ̂(sj) = ı.

As inductive hypothesis, assume that we have a tree Tk = (Sk,⇒k, s0, λ̂k). Pick a node s ∈ Sk such that ⟨a⟩⊤ ∈ s

but there is no s′ ∈ Sk such that s
a⇒s′. Now, if m is the MCS associated with node s, there exists an MCS m′ such

that m a→mm
′. Pick a new node s′ /∈ Sk and define Tk+1 = (Sk+1,⇒k+1, s0, λ̂k) where Sk+1 = Sk ∪ {s′} and

⇒k+1 = ⇒k ∪ {(s, a, s′)}, where m′ is the MCS associated with s′. One can show that every node in Tk+1 has
witnesses for past formulas as well. The turn function is extended as defined earlier for the newly added nodes.

Now consider T = (S,⇒, s0, λ̂) defined by: S =
∪
k≥0

Sk and ⇒ =
∪
k≥0

⇒k. Let ⇒∗ denote the reflexive and

transitive closure of the ⇒ relation. For each i ∈ N , let us take the relation ≈T
i on S to be the restriction of ≃i

on S. Then ≈T
i forms an equivalence relation on S. We now need to ensure that the extensive-form game tree T

constructed in this way has witnesses for past and future formulas as well as knowledge formulas. Define the model
M = (T, {∼T

i }i∈N , {≈T
i }i∈N , V ) where for each i ∈ N , ∼T

i is the restriction of ≈T
i to Si, the set of all player i nodes

in T and V (s) = w∩P , w is the MCS associated with s. Most of the conditions in the following lemma can be shown
using standard modal logic and dynamic logic techniques. The only exception is the condition for Liα (10), which
uses the axiom (A6)(b). We give a proof below.

Lemma 11 For any s ∈ S, we have the following properties.

1. If [a]α ∈ s and s a⇒s′, then α ∈ s′.

2. If ⟨a⟩α ∈ s, then there exists s′ such that s a⇒s′ and
α ∈ s′.

3. If □α ∈ s and s⇒∗s′, then α ∈ s′.

4. If ♢α ∈ s, then there exists s′ such that s⇒∗s′ and
α ∈ s′.
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5. If [a]α ∈ s and s′ a⇒s, then α ∈ s′.

6. If ⟨a⟩α ∈ s, then there exists s′ such that s′ a⇒s and
α ∈ s′.

7. If □-α ∈ s and s′⇒∗s, then α ∈ s′.

8. If ♢-α ∈ s, then there exists s′ such that s′⇒∗s and
α ∈ s′.

9. If Kiα ∈ s and s′ ≈T
i s, then α ∈ s′.

10. If Liα ∈ s, then there exists s′ such that s′ ≈T
i s and

α ∈ s′.

Proof: We now give a proof for 10, leaving the other properties to the reader. Suppose that Liα ∈ s and m be the
maximal consistent set associated with s. Then by a standard modal logic argument we have that there exists m′ such
that m′ ≃i m and α ∈ m′. But this does not guarantee that m′ is associated with any member s′ of S. We now prove
that this m′ is indeed a member of the canonical model constructed. Then by the definition of ≈T

i we will have that
m′ ≈T

i m, which will give us the result. In the following, we will denote this m′ by s′. We have s ≃i s
′. To show that

s′ is a member of the canonical tree model we need to find an MCS t such that t⇒∗s and t⇒∗s′. This will guarantee
that s′ will be a member of the tree because of the following reason: If there is some t such that t⇒∗s, then t will be
a member of the tree containing s (by axiom (A2(b)). Now, since t⇒∗s′, s′ will be also be a member of the same tree
(by axiom (A2(a)). We now prove the existence of such a node t.

Let w = {♢α : α ∈ s} ∪ {□- β : □- β ∈ s′}. We need to show that w is consistent. Suppose not. Then there exists
w0 = {♢α1, . . . ,♢αm}∪{□- β1, . . . ,□- βn}, where {♢α1, . . . ,♢αm} ⊆ {♢α : α ∈ s}, and {□- β1, . . . ,□- βn} ⊆ {□- β :
□- β ∈ s′}, and w0 is inconsistent. Let α = ∧αi, and β = ∧βj . Since w0 is inconsistent, we have ⊢ ♢α ⊃ ¬□- β.
Then, ⊢ ♢-♢α ⊃ ♢-¬□- β. Hence, by Axiom (A6)(b), ⊢ Liα ⊃ ♢-¬□- β. Now, because α ∈ s, and s ≃i s

′, we also have
Liα ∈ s′. So, ♢-¬□- β ∈ s′, which implies ¬□-□- β ∈ s′, contradicting the consistency of s′. Thus, w is a consistent set
of formulas, which can be extended to an MCS, giving our required t satisfying the conditions t⇒∗s and t⇒∗s′, by
construction. □

Lemma 12 For all α ∈ L, for all s ∈ S, α ∈ s iffM, s |= ψ.

Proof: This follows from Lemma 11 using an inductive argument. □

We are now ready to prove the following theorem which asserts that the axiom system is complete.

Proposition 13 For any formula α0, if α0 is consistent then α0 is satisfiable.

Proof: Suppose α0 is a consistent formula, then {α0} can be extended to a maximal consistent set m0. By the con-
struction of the modelM = (T, {∼T

i }i∈N , {≈T
i }i∈N , V ), there exists a node s in T such that s is labelled with m0. By

Lemma 12,M, s |= α0 and therefore α0 is satisfiable. □

B Proof of Theorem 2
To address the satisfiability problem we define the following preliminary concepts and notations.

Definition 1 Let α ∈ L be a formula,

1. ECL(α) ::= CL(α) ∪ E is the extended subformula closure of α where
CL(α) is the standard downward closure and negation closure of α and
E ::= {turni | i ∈ N} ∪ {⟨a⟩⊤, ⟨a⟩⊤ | a ∈ Σ} ∪ {root, leaf}.

2. Any subset t ⊆ ECL(α) is said to be an atom if there is some maximal consistent setm such that t = ECL(ϕ)∩m.
Let AT(α) ::= {t ⊆ ECL(α) | t is an atom }.
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3. A ⊆ AT(α) is said to be an “i-admissible atom set of α” if

- If there is some t ∈ A such that turni ∈ t then for all t′ ∈ A, turni ∈ t′.
- If there is some t ∈ A andKiψ ∈ t then for all t′ ∈ A ψ ∈ t′.
- For all t ∈ A and for all Liψ ∈ t there is some t′ ∈ A such that ψ ∈ t′.

Let ASi(α) = {A ⊆ AT(α) | A is an i-admissible atom set of α} and
AS(α) =

∪
i(ASi).

4. An atom graph of α is given by G(α) = (V,E, π, (Bi)i∈N ) where

- V is a finite set of nodes.
- The map π : V → AT(α) associates every node of the graph to some atom such that there exists a unique
“root vertex” r ∈ V such that root ∈ π(r) and for all v ̸= r we have root ̸∈ π(v). Also there is some
w ∈ V such that α ∈ π(w).

- E ⊆ (V ×Σ×V ) is the labelled directed edge set. For every vertex v ∈ V define Suc(v) = {u | for some
a ∈ Σ, (v, a, u) ∈ E} and Pred(v) = {u′ | for some a ∈ Σ, (u′, a, v) ∈ E}. Also let In(v) = {a | for
some u ∈ V, (u, a, v) ∈ E} andOut(v) = {a | for some u′ ∈ V, (v, a, u′) ∈ E}. E satisfies the following
conditions:
– Pred(r) = ∅ and all v ∈ V are reachable from r.
– For all v ̸= r, In(v) is singleton.
– If (u, a, v) ∈ E then {ψ | [a]ψ ∈ π(u)} ∪ {□ψ,ψ | □ψ ∈ π(u)} ⊆ π(v) and {ψ | [a]ψ ∈
π(v)} ∪ {□-ψ,ψ | □-ψ ∈ π(u)} ⊆ π(v) .

- For all i ∈ N, Bi = {Bi
0,Bi

1, · · · ,Bi
in
} is a partition over V such that for every j ≤ in the set π(Bi

j) =

{π(v) | v ∈ Bi
j} is an i-admissible atom set.

- For all v ∈ V and for all i ∈ N let V i = {v | turni ∈ π(v)}. Now define Bi(v) = Bi
j such that v ∈ Bi

j .
We have the condition that for all i ∈ N the set {Bi(v) | v ∈ V i} forms a partition over V i.

5. Given an atom graph, G(α) = (V,E, π, (Bi)i∈N ), any v ∈ V is said to be saturated if the following holds:

- If ⟨a⟩ψ ∈ π(v) then there is some u such that u a−→ v and ψ ∈ π(u).

- If ⟨a⟩ψ ∈ π(v) then there is some u ∈ V such that v a−→ u and ψ ∈ π(u).

- If ♢-ψ ∈ π(v) then for all paths r a0−→ v1
a1−→ · · · vl = v ∈ Pv there is some j ≤ l such that ψ ∈ π(vj).

- If ♢ψ ∈ π(v) then there is some path v b0−→ v1
b1−→ · · · bk−→ vk such that ψ ∈ π(vk).

G(α) is saturated if all v ∈ V are saturated.

Definition 2 Let T̂I = (TI , {≈T
i }i∈N ) be an extensive-form game with extended information, where TI = (T, {∼T

i

}i∈N ) is an extensive-form game with imperfect information with T = (S,⇒, s0, λ̂). For every i ∈ N , let Parti ::=
{Si

1, S
i
2, · · · } be the partition induced by∼T

i over Si. and we have an induced partition {Si
j | i ∈ N and Si

j ∈ Parti}
over S. Consider a modelM = (T, {∼T

i }i∈N , {≈T
i }i∈N , V ). Let α be a formula such that for some w ∈ S, we have

M,w |= α. Define the following:

1. For every s ∈ S, the set atom(s) = ECL(α) ∩ {ψ | M, s |= ψ} denotes the set of formulas that are true at s
restricted to ECL(α).

2. For every i ∈ N and for every Si
j ∈ Parti, the set bag(Si

j) = {atom(s) | s ∈ Si
j} denotes the set of all atoms

corresponding to the information set Si
j .

3. For all i ∈ N , and Si
j , S

i
k ∈ Parti, define Si

j ≂i S
i
k if bag(Si

j) = bag(Si
k).
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4. For all i ∈ N and s ∈ S define bagi(s) = Si
j such that s ∈ Si

j .

5. For all s, t ∈ S define s ≂ t if atom(s) = atom(t) and for all i ∈ N, bagi(s) = bagi(t).

Note that for all i ∈ N, ≂i is an equivalence relation over Parti. Also, since bag(Si
j) ⊆ ECL(ϕ), the equivalence

relation ≂i partitions Parti into at most 2(O(|α|) sets. Similarly, ≂ is an equivalence relation over S and the size of
the partition is bounded by 2(O|α|).

Proposition 14 Any formula α ∈ L, α is satisfiable iff there is a saturated atom graph G(α).

Proof: (⇐). Let G(α) = (V,E, π, (Bi)i∈N ) be a saturated atom graph of α with root r ∈ V . Define the unravelling
of G(α) starting from r given by G(α) = (W,R) where W is the set of all finite paths in G starting from r and
v̄u

a−→ v̄uu′ ∈ R if u a−→ u′.

Define the tree model T̂I = (TI , {≈T
i }i∈N ) where TI = (T, {∼T

i }i∈N ) with T = (W,R, r, λ̂) as follows:

- For all v̄u ∈W , λ̂(v̄u) = i iff turni ∈ π(u).

- For all ūu′, v̄v′ ∈ W , ūu′ ≈i v̄v
′ if there is some j ≤ in such that {u′, v′} ⊆ Bi

j . Two tree nodes are
indistinguishable for player i if the last nodes of the corresponding paths belong to the same partition with
respect to Bi (cf. Definition 1.4).

- For all ūu′, v̄v′ ∈ W i, the set of all paths ending with player i nodes, as given by λ̂ defined above, ūu′ ∼T
i v̄v

′

if Bi(u′) = Bi(v′).

Note that the last condition in Definition 1.4 ensures that ∼T
i is a restriction of ≈i over W i. Hence TI is well

defined. Now define the model corresponding to T̂I given by M = (T̂I , V ) where for all v̄u ∈ W,p ∈ V (v̄u) iff
p ∈ π(u). We have the truth lemma.

Claim. For all v̄u ∈W and for all ψ ∈ ECL(ϕ), ψ ∈ π(u) iffM, v̄u |= ψ.
The proof is by induction on the structure of ψ. The base case of propositions follows from the definition of V .

The ¬ψ and ψ1 ∧ ψ2 cases are routine.
The case of ⟨a⟩ψ, ⟨a⟩ψ,♢ψ and ♢-ψ follows from the fact thatG(α) is saturated. We verify it for ♢-ψ case. Suppose

♢-ψ ∈ π(u). Let v̄u = v1v2 · · · vn. Now this is a path from r(= v1) to u(= vn) and since G(α) is saturated, there is
some vi such that ψ ∈ π(vi) and by induction hypothesisM, (v1 · · · vi) |= ψ.

IfM, v̄u |= ♢-ψ, letM, (v1 · · · vi) |= ψ. Then by induction hypothesis, ψ ∈ π(vi). This means there is at least one
path from r to u such that there is some vi on that path where ψ ∈ vi. Now suppose ♢-ψ ̸∈ π(u) then since π(u) is
an atom we have □-¬ψ ∈ π(u) and since G(α) is an atom graph, for all ancestors v of u we have ¬ψ ∈ π(v) which
contradicts to the observation.

For Lkψ case, suppose Lkψ ∈ π(u). Let u ∈ Bk
j . Then, since Bk

j is a k-admissible atom, there is some w ∈ Bk
j

such thatψ ∈ π(w). Since all nodes are reachable from r, let rw1 · · ·wnw be some path from r tow. Thus, by definition
of ≈k we have (rw1 · · ·wnw) ≈k v̄u and by induction hypothesisM, (rw1 · · ·wnw) |= ψ. HenceM, v̄u |= Lkψ.

Suppose M, v̄u |= Lkψ. Then there is some v̄′u′ ≈k v̄u such that M, v̄′u′ |= ψ and by induction hypothesis
ψ ∈ π(u′). By construction, it has to be the case thatBk(u) = Bk(u′). Now supposeLkψ ̸∈ π(u) thenKk¬ψ ∈ π(u)
and since Bk(u) is k-admissible atom we have ¬ψ ∈ π(u′) which is a contradiction.

(⇒). LetM = (T, {∼T
i }i∈N , {≈T

i }i∈N , V ) be a model with T = (S,⇒, s0, λ̂) such that for some w ∈ S we have
M,w |= α.

We have defined s ≂ t in Definition 2.4 which has a bounded index. Let [s] = {t | s ≂ t}. Define the atom graph
G(α) = (W,E, π, (Bi)i∈N ) where

• W = {[s] | s ∈ S}.

• [s]
a−→ [t] ∈ E if there is some s1 ∈ [s] and t1 ∈ [t] such that s1

a−→ t1 ∈ ⇒.

• For all [s] ∈W , define π([s]) = atom(s).
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• Define Bi to be the partition induced by the relation ≜i overW where,
[s] ≜i [t] if bagi(s) = bagi(t).

Note that π is well defined, since for all s1, s2 ∈ [s] we have atom(s1) = atom(s2). Similarly≜i is well defined,
since for all s1, s2 ∈ [s] we have bagi(s1) = bagi(s2).

First we verify that G(α) is an atom graph. ClearlyW is finite and π : W → AT(α) is well defined. Since there
is a unique r(= s0) ∈ S such that root ∈ atom(r), we have [r] ∈ W . Further for all t ̸= r we haveM, t ̸|= root and
hence root ̸∈ π([t]). Also sinceM,w |= α we have a [w] ∈W such that α ∈ π([w]).

Now we verify all the conditions of E. Since [r] = {r} we have Pred([r]) = ∅. Also, for any [s] ∈ W , let
r

a0−→ t1 · · · tn
an−−→ s be the path in the tree from the root to s. Then, by construction, [r] a0−→ [t1] · · · [tn]

an−−→ [s] is a
path in G(α) and hence all nodes are reachable from [r].

Suppose In([s]) ≥ 2. Then there exist t1, t2 ∈ S and s1, s2 ∈ [s] such that t1
a−→ s1 ∈ ⇒ and t2

b−→ s2 ∈ ⇒
for some a ̸= b. This means ⟨a⟩⊤ ∈ atom(s1) and ⟨b⟩⊤ ∈ atom(s2). But, atom(s1) = atom(s2), which implies
{⟨a⟩⊤, ⟨b⟩⊤} ⊂ atom(s1), a contradiction to the consistency of atom(s1).

Suppose [s] a−→ [t] then there is some s1 ∈ [s] and t1 ∈ [t] such that s1
a−→ t1. Now it is easy to see that {ψ | [a]ψ ∈

π([s1])} ∪ {□ψ,ψ | □ψ ∈ π([s1])} ⊆ π([t1]) and {ψ | [a]ψ ∈ π([t1])} ∪ {□-ψ,ψ | □-ψ ∈ π[t1]} ⊆ π([s1]).
Finally we need to check the conditions for Bi. Let Bi

k ∈ Bi. We need to prove that {π([s]) | [s] ∈ Bi
k} is an

i-admissible atom set. Suppose for some [s] ∈ Bi
k, we have turni ∈ π([s]) = atom(s). Hence λ̂(s) = i which

implies thatM, s |= turni which means s ∈ Si. Now for all [t] ∈ W , if [s] ≜i [t] then bagi(s) = bagi(t). Thus there
is some s′ ∈ bagi(t) such that atom(s′) = atom(s) which implies M, s′ |= turni. Now since ≈i extends ∼T

i and
s′ ∼T

i t, we have turni ∈ atom(s′) iffM, t |= turni iff turni ∈ atom([t]). Thus, if turni ∈ π([s]) and [s] ≜i [t], then
turni ∈ π([t]).

To show that the set {Bi([s]) | [s] ∈ W i} is a partition over W i it is enough observe that ≜k is an equivalence
relation overW i.

Finally to see that the graph is saturated we verify the condition for ⟨a⟩ψ and the rest are similar. Suppose ⟨a⟩ψ ∈
π([s]). Then,M, s |= ⟨a⟩ψ. Then there exists some node t such that t a−→ s ∈ ⇒ andM, t |= ψ. So, ψ ∈ π([t]) and
[t]

a−→ [s]. This completes the proof.
□

Corollary 15 Satisfiability problem for L is in non-deterministic double exponential time.

Proof: Suppose α is satisfiable. Then, by Proposition 14, there is a saturated atom graph whose size is at most double
exponential in the length of α. Thus a non-deterministic algorithm can guess the graph and check that it is indeed
saturated. □

C Proof of Proposition 3
The soundness argument is straightfrward. The completeness proof follows from Theorem 1 and the following. We
show that our canonical model satisfies the (KM) condition. Let i ∈ N , and nodes s, t, t′ ∈ Si be such that s⇒∗t and
t ∼T

i t
′. Let w = {♢α : α ∈ t′} ∪ {β : Kiβ ∈ s}. We want to prove that w is consistent. Suppose not. Then there

exists w0 = {♢α1, . . . ,♢αm} ∪ {β1, . . . , βn}, where {♢α1, . . . ,♢αm} ⊆ {♢α : α ∈ t′}, and {β1, . . . , βn} ⊆ {β :
Kiβ ∈ s}, and w0 is inconsistent. Let α = ∧αi, and β = ∧βj . Since w0 is inconsistent, we have ⊢ ♢α ⊃ ¬β. Then
⊢ Li♢α ⊃ Li¬β. Then by axiom (AKM), ⊢ ♢(turni ∧ Liα) ⊃ Li¬β. Now, α ∈ t′, implying that Liα ∈ t′, implying
that Liα ∈ t, because t ∼T

i t
′, implying that turni ∧ Liα ∈ t. So, ♢(turni ∧ Liα) ∈ s as s⇒∗t.Then Li¬β ∈ s,

implying ¬Kiβ ∈ s, contradicting the consistency of s. Thus, w is a consistent set of formulas which can be extended
to an mcs giving our required s′ satisfying the conditions s ∼T

i s
′, and s′⇒∗t′, by construction.
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D Proof of Proposition 4
The proof follows from Theorem 1 and the corresponding characterization result given in Proposition 8 of Bonanno
(2004a).

E Proof of Corollary 5
The proof follows from Propositions 3, 4 and Proposition 9 of Bonanno (2004a).

F Proof of Proposition 6
Let us first assume that PKM holds. Let i ∈ N and s, t, t′ ∈ S such that s⇒t and t ≈T

i t
′. Then, by PKM, we have that

there exists a node s′ ∈ S such that s ≈T
i s

′, and s′⇒∗t′. Now, due to a result from (Bonanno, 2004b) we can assume
that the game is von Neumann. Hence, l(s′) = l(s) = l(t)− 1 = l(t′)− 1. Thus s′⇒t′.

Conversely, let us assume that LPKM holds. Let i ∈ N and s, t, t′ ∈ S such that s⇒∗t and t ≈T
i t

′. We need
to find s′ ∈ S such that s ≈T

i s′, and s′⇒∗t′. If s = t, then s′ = t′. If not, there exists a1, . . . , am, such that
s
a0⇒s1 · · ·

am−1⇒ sm = t. Since t ≈T
i t′ and sm−1⇒t, there exists s′m−1 such that sm−1 ≈T

i s′m−1, and s′m−1⇒t′.
Proceeding in a similar way, we finally get an s′ such that s ≈T

i s
′, and s′⇒∗t′.

G Proof of Theorem 7
The soundness proofs are straightforward. The completeness proof follows from Theorem 1 and the following. We
first show that our canonical model satisfies the (LPKM) condition. Let s, t, t′ ∈ S be such that s⇒t and t ≈T

i t
′.

Let w = {α : [P ]α ∈ t′} ∪ {β : Kiβ ∈ s}. We want to prove that w is consistent. Suppose not. Then there
exists w0 = {α1, . . . , αm} ∪ {β1, . . . , βn}, where {α1, . . . , αm} ⊆ {α : [P ]α ∈ t′}, and {β1, . . . , βn} ⊆ {β :
Kiβ ∈ s}, where w0 is inconsistent. Let α = ∧αi, and β = ∧βj . Since w0 is inconsistent, we have ⊢ β ⊃ ¬α.
Then ⊢ Ki⟨P ⟩β ⊃ Ki⟨P ⟩¬α. Then, by axiom (ALPKM) ⊢ ⟨P ⟩Kiβ ⊃ Ki⟨P ⟩¬α. Now, Kiβ ∈ s, implying that
⟨P ⟩Kiβ ∈ t, because s⇒t. So, Ki⟨P ⟩¬α ∈ t, implying that ⟨P ⟩¬α ∈ t′, a contradiction to the fact that [P ]α ∈ t′,
t′ being consistent. Thus, w is a consistent set of formulas which can be extended to an mcs giving our required s′
satisfying the conditions s ≈T

i s
′ (by construction), and s′⇒t′, which follows from (ARootK) and the derived theorem

(⟨P ⟩α ∧ ⟨a⟩⊤) ⊃ ⟨a⟩α.
We now show that the canonical model satisfies (APAR). Let i ∈ N , a ∈ Σ and s s, t, t′, x ∈ S, such that s a⇒x,

x⇒∗t and t ≈T
i t

′. Suppose for all s′ ∈ S and x′ ∈ S if s′ a⇒x′, then x′ ̸ ⇒∗t′. Now, ⟨a⟩⊤ holds at x, and thus ♢- ⟨a⟩⊤
holds at t. By (APAR),Ki♢- ⟨a⟩⊤ holds at t. Then ♢- ⟨a⟩⊤ holds at t′. Then there exists x′⇒∗t′ such that ⟨a⟩⊤ holds at
x′, contradicting our assumption. This completes the proof.
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