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Abstract. How do people reason about their opponent in turn-taking
games? Often, people do not make the decisions that game theory would
prescribe. We present a logic that can play a key role in understanding
how people make their decisions, by delineating all plausible reasoning
strategies in a systematic manner. This in turn makes it possible to
construct a corresponding set of computational models in a cognitive
architecture. These models can be run and fitted to the participants’
data in terms of decisions, response times, and answers to questions. We
validate these claims on the basis of an earlier game-theoretic experiment
about the turn-taking game “Marble Drop with Surprising Opponent”,
in which the opponent often starts with a seemingly irrational move.
We explore two ways of segregating the participants into reasonable
“player types”. The first way is based on latent class analysis, which
divides the players into three classes according to their first decisions in
the game: Random players, Learners, and Expected players, who make
decisions consistent with forward induction. The second way is based
on participants’ answers to a question about their opponent, classified
according to levels of theory of mind: zero-order, first-order and second-
order. It turns out that increasing levels of decisions and theory of mind
both correspond to increasing success as measured by monetary awards
and increasing decision times.
Next, we use the logical language to express di↵erent kinds of strategies
that people apply when reasoning about their opponent and making de-
cisions in turn-taking games, as well as the ‘reasoning types’ reflected
in their behavior. Then, we translate the logical formulas into computa-
tional cognitive models in the PRIMs architecture. Finally, we run two
of the resulting models, corresponding to the strategy of only being in-
terested in one’s own payo↵ and to the myopic strategy, in which one
can only look ahead to a limited number of nodes. It turns out that
the participant data fit to the own-payo↵ strategy, not the myopic one.
The article closes the circle from experiments via logic and cognitive
modelling back to predictions about new experiments.

1 Introduction

Turn-taking games are ubiquitous in our daily life—from debates and delibera-
tions to negotiations, and from competition between firms to coalition formation.
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How suitable are idealized formal models of social reasoning processes with re-
spect to the nuances of the real world? In particular, do these formal models
represent human strategic reasoning satisfactorily or should we instead concen-
trate on empirical studies and models based on those empirical data? Such ques-
tions have been raised by researchers in game theory, logic and cognitive science
(cf. [17,9,60,34,31]).

Game theorists define a strategy of a player as a partial function from the set
of histories (sequences of events) at each stage of the game to the set of actions of
the player when it is supposed to make a move [46]. Agents devise their strategies
so as to force maximal gain in the game. In cognitive science, the term strategy is
used much more broadly than in game theory. A well-known example is formed
by George Polya’s problem solving strategies (understanding the problem, devel-
oping a plan for a solution, carrying out the plan, and looking back to see what
can be learned) [51]. Many cognitive scientists construct theories about human
reasoning strategies [35,32], based on which they construct computational cogni-
tive models. These models can be validated by comparing the model’s predicted
outcomes to results from experiments with human subjects [2].

In [23], together with Meijering, we aimed to bridge the gap between logical
and cognitive treatments of strategic reasoning in the turn-taking game “Mar-
ble Drop with Rational Opponent”. We proposed to combine empirical studies,
formal modeling and cognitive modeling to study human strategic reasoning:
“rather than thinking about logic and cognitive modeling as completely sepa-
rate ways of modeling, we consider them to be complementary and investigate
how they can aid one another to bring about a more meaningful model of real-life
scenarios”. In the current article, we aim to apply this combination of methods
to the questions to what extent people use backward induction or forward induc-
tion in a turn-taking game in which the opponent does not always make rational
decisions, which we call “Marble Drop with Surprising Opponent”, and to what
extent they can be di↵erentiated according to reasoning types. Let us give some
background first in order to explain our aims more precisely.

Backward and forward induction reasoning In game theory, turn-taking
games (or dynamic games) are represented by game trees referred to as extensive-
form games. Backward Induction (BI) is the textbook approach for solving
extensive-form games with perfect information. In generic games without pay-
o↵ ties, BI yields the unique subgame perfect equilibrium. The assumptions
underpinning BI are that all players commonly believe in everybody’s future
rationality, no matter how irrational players’ past behavior has already proven.
Informally, backward induction only considers the opponent’s future choices and
beliefs, and ignores the opponent’s past choices (“let bygones be bygones”).
See [46,49] for more details.

In Forward Induction (FI) reasoning, on the other hand, a player takes into
account an opponent’s past moves and tries to rationalize the past behavior in
order to assess that opponent’s future moves. Thus, when a player is about to
play in a subgame which has been reached due to some strategy of the opponent
that is not consistent with common knowledge of rationality for each of the
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players, and also his past behavior, the player may still rationalize the opponent’s
past behavior. So how does the player do that? She attributes her opponent
a strategy which is optimal against a possible suboptimal strategy of hers, or
attributes to him a strategy which is optimal against some rational strategy of
hers, which is only optimal against a suboptimal strategy of his and so on. If the
player pursues this kind of rationalizing reasoning to the highest extent possible
[7] and reacts accordingly, she ends up choosing what is called an Extensive-Form

Rationalizable (EFR) strategy [48] (see also [49,47,22,50]). Thus extensive-form
rationalizable strategies are based on forward induction reasoning, and in the
following we use the terms extensive-form rationalizable (EFR) and forward
induction (FI) synonymously.

Although EFR strategies may be distinct from BI strategies, still, in perfect
information games in which both players have a strict ranking among the pay-
o↵s at all the game-tree leaves following each of their decision nodes (that is,
games without relevant pay-o↵ ties), it has been shown that there is a unique
EFR outcome, which coincides with the unique BI outcome [8,18,19,49,30]. There
have been extensive debates among game theorists and logicians about the merits
of backward induction.

Experimental studies on dynamic perfect information games A reason
for taking EFR as our predictive concept rather than the more popular BI con-
cept is the fact that experimental economists and psychologists have shown that
human subjects do not always follow the backward induction strategy in large
centipede games [55,17,39,44]. Centipede games, introduced by Rosenthal [55],
are two-player turn-taking games of perfect information. The payo↵s are ar-
ranged in such a way that at each decision point, if a player does not ‘go down’
to take the first possible exit and the opponent takes the next possible exit,
the player receives less than if she had taken the first possible exit; Game 1 in
Figure 3 is an example of a relatively small centipede game. Instead of immedi-
ately taking the ‘down’ option, people often show partial cooperation, moving
right for several moves before eventually choosing ‘down’. Indeed, if a player
has reason to believe that the opponent will not exit on the next step, this is
a rational decision [55]. For example, Nagel and Tang [44] suggest that people
sometimes have reason to believe that their opponent could be an altruist who
usually cooperates by moving to the right and McKelvey and Palfrey [39] suggest
that players may believe that there is some possibility that their opponent has
payo↵s di↵erent from the ones the experimenter tries to induce by the design of
the game. A more recent explanation is that the opponent may have made an
error or cannot apply backward induction for the number of steps required [33];
see the paragraph on orders of theory of mind on the next page.

A number of experiments have been done with smaller centipede-like perfect-
information games, where the opponent was a rational computer player, and this
fact was told to the participants. In some of these experiments, it seemed that
people were not able to reason su�ciently deeply about their opponent’s strat-
egy [29]. Later, Meijering and colleagues introduced the game “Marble Drop
with Rational Opponent”, based on a centipede-like game tree with three deci-
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sion points (first the participant decides, then the computer, then the partici-
pant) with a visualization that is intuitive for participants because it resembles
a children’s toy: a marble drops down a device and its course is influenced by
the players’ choices of trapdoors to open. Meijering et al. [41,42] showed that
both this new visualization as well as several other interventions –namely, step-
wise training and questions that prompted participants’ reasoning about the
opponent– can help the experimental subjects to reason about the rational com-
puter player when they play small centipede-like games. It turned out that with
the appropriate interventions, at the end of the experiment after playing more
that 40 games, participants made backward induction decisions in more than
90% of games.

Recently, based on an eye-tracking study and complexity considerations, it
turned out that even when the participants produced the correct ‘backward
induction answer’ in the “Marble Drop with Rational Opponent” games, they
may have used a di↵erent internal reasoning strategy to achieve it [43,12].

Theory of mind Theory of mind (ToM) is the ability to attribute beliefs,
desires, and intentions to other people, in order to explain, predict and influ-
ence their behavior. Even though ToM has been widely studied in the cognitive
sciences, relatively little research has concentrated on people’s reasoning about
their opponents in turn-taking games. We speak of zero-order reasoning in ToM
when a person reasons about world facts, as in “Anwesha wrote a novel under
pseudonym”. In first-order ToM reasoning, a person attributes a simple belief,
desire, or intention to someone else, for example in “Khyati knows that Anwesha
wrote a novel under pseudonym”. Finally, in second-order ToM reasoning, people
attribute to other people mental states about mental states, as in “Khyati knows
that Soumya thinks that Anwesha did not write a novel under pseudonym”.

One way of studying the cognitive basis of theory of mind in a controlled
experimental setting is the use of turn-taking games. By investigating the under-
lying strategies used during these games, one can shed light upon the underlying
cognitive processes involved—including ToM reasoning. In recent times, higher-
order theory of mind has been the central focus of a lot of research papers that
are based on experiments with games (see, for example [17]). Higher-order theory
of mind reasoning also became an attractive topic for logical analysis [15].

Typologies of players To the best of our knowledge, studies on the typology
of players according to their cognitive strategies in turn-taking games are very
scarce. Often it is di�cult to gauge from the participants’ decisions only, which
reasoning patterns (often called ‘cognitive strategies’) they may actually have
been using. Raijmakers et al. [52] have used statistical methods such as latent
class analysis to divide children into classes according to the cognitive strategies
they may have used in a dynamic game similar to Marble Drop.

In the literature on behavioral game theory, there is a natural tendency to an-
alyze mostly the choices made by players at di↵erent turns of the game, thereby
ignoring the data on how much time they have taken to make that choice, namely,
the response time data. Rubinstein [57] does argue for the importance of response
times and takes that data into account while discussing a typology of players
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in di↵erent games. Also, he discusses typologies that are beyond the traditional
psychometric typologies originating from ‘type theory’ and ‘trait theory’ [6].
Rubinstein views the analysis from a game-theoretic point of view.

In the current article, instead of defining typologies on the basis of game-
theoretic approaches, we use latent class analysis [26] as well as an analysis of
participants’ answers in terms of orders of theory of mind, from zero-order to
second-order. Furthermore, we investigate the interplay between the outcomes
of the latent class analysis and the theory of mind-based analysis.

The study of such typologies of players may help to explain the di↵erences
between people’s cognitive attitudes when reasoning strategically and to better
understand people’s possible behaviors in interactive situations, which in turn
may be used for modeling purposes in, for example, economics, artificial intelli-
gence, and linguistics.

Aims of this article Marr [38] has influentially argued that any task com-
puted by a cognitive system must be analyzed at the following three levels of
explanation (in order of decreasing abstraction):

the computational level: identification of the goal and of the information-
processing task as an input - output function;

the algorithmic and representational level: specification of an algorithm
which computes the function;

the implementation level: physical or neural implementation of the algo-
rithm.

In recent years, as part of a revival of interest in Marr’s levels in cognitive
science, Willems [61] has argued for more attention for the why of cognition,
“what is the goal for the organism at the present moment”. He claims that
research in cognitive neuroscience has often been stimulus-driven or capacity-
driven, overlooking the organism’s goal, which is properly investigated at the
computational level. We agree with the importance of the computational level,
but are also interested in the how of cognition, investigated at the algorithmic
level. We think that both logic and computational cognitive modeling can play
a fruitful role at both these levels and at the interface between them.

According to Isaac et al. [31], logic can be of use at each of Marr’s three
levels, but in the history of cognitive science, logic has been especially useful at
the computational level. Baggio and colleagues [5] provide some fruitful examples
in which computational level theories based on appropriate logics predict and
explain behavioral data and even EEG data in the cognitive neuroscience of
reasoning and language.

As to computational cognitive modeling, Cooper and Peebles [20] argue that
computational cognitive architectures such as ACT-R through their theoretical
commitments constrain declarative and procedural learning, thereby constrain-
ing both the functions that can be computed (the computational level) and the
way that they can be computed (the algorithmic level).

In the current article, our main aim is to construct an appropriate logic
to describe participants’ possible cognitive reasoning strategies when reasoning
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about a surprising opponent in a turn-taking game and then to find a generic
method to turn these logical descriptions into computational cognitive models
in the recently developed cognitive architecture PRIMS [58].

This aim extends the aim that we had in our paper with Meijering [23]. In the
current article, we extend the language that we introduced there to represent
strategies by a new belief component, so that we can now describe reasoning
about the opponent at a more fine-grained level than was necessary to model
participants reasoning in “Marble Drop with Rational Opponent”. Figure 1,
visually similar to the scheme in [23], presents how the details of our approach
are laid out in the current paper.

Experimentation

//
Formal modeling

//
Cognitive modelingii

Fig. 1. A schematic diagram of the approach: The experiments discussed in Section 3
inform our logical model of reasoning strategies in “Marble Drop with Surprising Op-
ponent” in Section 2. This logical model in turn helps to construct computational cog-
nitive models of reasoning strategies in the cognitive architecture PRIMs in a generic
way, as presented in Section 5; subsequently, two instantiations of the resulting models
are validated against the experimental results. Finally, as described in Section 5, sim-
ulations with computational cognitive models often lead to new experiments in order
to test the models’ predictions.

This extension to the logic was needed to make reasonable models of par-
ticipants’ reasoning in the more complex turn-taking game “Marble Drop with
Surprising Opponent”. Together with Heifetz, we conducted a game-theoretic
experiment that involves a participant’s expectations about the opponent’s rea-
soning strategies, that may in turn depend on expectations about the partici-
pant’s reasoning. The resulting article [22] deals with the following question: In
the dynamic game of perfect information “Marble Drop with Surprising Oppo-
nent”, are people generally inclined to do forward induction reasoning (i.e. show
EFR behavior)? The main new elements of this article with respect to [23,22]
are as follows:

– In comparison to the logical language introduced in [23], we have now in-
cluded the possibility to represent agents’ beliefs about their opponents’
moves and beliefs. We conjecture that the new language is more succinct
than the one proposed in [23] in describing strategic reasoning (see Section
4.1 for a discussion), which in turn may lead to more e�cient computational
cognitive modelling, for example, if there is a straightforward generic transla-
tion from the logical syntax to the computational representations. An initial
presentation of the language was given in our LORI paper [21], which is now
extended with worked-out examples of formalized reasoning strategies.

– Instead of the generic trends in participants’ choices (“do they generally
show EFR behavior or not?”) studied in [22], we now turn our attention to
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di↵erences between players: can they be characterized in meaningful ways?
We introduce two typologies, one based on latent-class analysis and one
based on orders of explicit theory of mind in participants’ verbal comments
regarding the reasoning about the opponent which they applied to make their
decisions. An initial analysis of such typologies was given in the conference
contribution [28], which is now extended with a comparison between the
outcomes of the two analyses.

– In comparison to the computational cognitive models of [23,21] which were
based on the cognitive architecture ACT-R, we now base our generic trans-
lations from strategic logic formulas to computational cognitive models on
the new architecture PRIMs [58].

– Unlike in any of our previous work, we have now implemented two PRIMs
models resulting from two logical formulations of possible reasoning strate-
gies in “Marble Drop with Surprising Opponent”, and have made predictions
based on the simulations about the data of our previous experiment, and then
compared the simulations to the experimental results with respect to deci-
sions and reaction times. Thus, this article closes the circle from experiments
via logic and cognitive modelling back to predictions about the current and
new experiments.

The rest of this article is structured as follows. In Section 2, we extend the lan-
guage introduced in [23] to describe players’ reasoning strategies and types of
players, adding a belief operator to reflect players’ expectations. In Section 3, we
briefly recall Ghosh and colleagues’ recent experiment on forward induction [22]
and suggest two typologies of players, based on strategic and cognitive analy-
sis, respectively. In Section 4, the reasoning strategies and the reasoning types
discussed in Section 3 are described with the logical syntax proposed in Section
2. Finally, in Section 5, we sketch how strategy and belief formulas in this ex-
tended language can be turned into production rules of computational cognitive
models that help to distinguish what is going on in people’s minds when they
play dynamic games of perfect information. Finally, we validate two of the re-
sulting models by running them and comparing results with respect to decision
and reaction time to the participants’ data.

2 A language for types and strategies

The focus of [23] has been to use a logical framework as a bridge between exper-
imental findings and computational cognitive modelling of strategic reasoning in
a simpler Marble Drop setting, in which the computer opponent always made
rational choices: “Marble Drop with Rational Opponent”. Taking o↵ from the
work of [23], we now propose a logical language specifying strategies as well
as reasoning types of players. As mentioned above, our motivation for intro-
ducing this logical framework is to build a pathway from empirical to cognitive
modelling studies.

This framework uses empirical studies to provide insights into cognitive mod-
els of human strategic reasoning as performed during the experiment discussed
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in Section 3. The main idea is to use the logical syntax to express the di↵er-
ent reasoning procedures as performed and conveyed by the participants and
use these formulas to systematically build up reasoning rules of computational
cognitive models of strategic reasoning.

A novel part of the proposed language is that we add an explicit notion
of belief to the language proposed in [23] in order to describe participants’
expectations regarding future moves of the computer. This belief operator is
parametrized by both players and nodes of the game tree so that the possi-
ble expectations of players at each of their nodes can be expressed within the
language itself. The whole point is to explicate the human reasoning process,
therefore the participants’ beliefs and expectations need to come to the fore.
Such expectations form an essential part of the experimental study discussed in
the next section.

In addition to describing strategic reasoning, we also describe di↵erent ty-
pologies of players based on the various factors that might influence human
strategic reasoners, as discussed in the previous section. We will use the same
syntax to describe such types. Before moving on any further, we first define the
concepts necessary for describing the strategies and typologies.

2.1 Describing game trees and strategies in logic

In this subsection, we give reminders of the definitions of extensive form games,
game trees and strategies, following [23]. On the basis of these concepts, we
present our new logical contribution in Section 2.2, where we formalize reasoning
strategies and typologies.

Extensive form games Extensive form games are a natural model for repre-
senting finite games in an explicit manner. In this model, the game is represented
as a finite tree where the nodes of the tree correspond to the game positions and
edges correspond to moves of players. For this logical study, we will focus on
game forms, and not on the games themselves, which come equipped with play-
ers’ payo↵s at the leaf nodes of the games. We present the formal definition
below.

Let N denote the set of players; we use i to range over this set. For the time
being, we restrict our attention to two player games, and we take N “ tC, P u.
We often use the notation i and ı to denote the players, where C “ P and
P “ C. Let ⌃ be a finite set of action symbols representing moves of players; we
let a, b range over ⌃. For a set X and a finite sequence ⇢ “ x1x2 . . . x

m

P X

˚,
let lastp⇢q “ x

m

denote the last element in this sequence.

Game trees Let T “ pS, ñ, s0q be a tree rooted at s0 on the set of vertices
S and let ñ : pS ˆ ⌃q Ñ S be a partial function specifying the edges of the
tree. The tree T is said to be finite if S is a finite set. For a node s P S, let
Ñ
s “ ts1 P S | s

añs

1 for some a P ⌃u. A node s is called a leaf node (or terminal

node) if
Ñ
s “ H.

An extensive form game tree is a pair T “ pT,

p

�q where T “ pS, ñ, s0q is a
tree. The set S denotes the set of game positions with s0 being the initial game
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position. The edge function ñ specifies the moves enabled at a game position
and the turn function p

� : S Ñ N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for
the sake of uniform presentation, we do not distinguish between leaf nodes and
non-leaf nodes as far as player labelling is concerned. An extensive form game
tree T “ pT,

p

�q is said to be finite if T is finite. For i P N , let S

i “ ts | p

�psq “ iu
and let frontierpTq denote the set of all leaf nodes of T .

A play in the game T starts by placing a token on s0 and proceeds as follows:
at any stage, if the token is at a position s and p

�psq “ i, then player i picks an

action which is enabled for her at s, and the token is moved to s

1 where s

añs

1.
Formally a play in T is simply a path ⇢ : s0a0s1 ¨ ¨ ¨ in T such that for all j ° 0,

s

j´1
aj´1ñ s

j

. Let PlayspT q denote the set of all plays in the game tree T .

Strategies A strategy for player i is a function µ

i which specifies a move at every
game position of the player, i.e. µ

i : S

i Ñ ⌃. For i P N , we use the notation µ

i to
denote strategies of player i and ⌧ ı to denote strategies of player ı. By abuse of
notation, we will drop the superscripts when the context is clear and follow the
convention that µ represents strategies of player i and ⌧ represents strategies of
player ı. A strategy µ can also be viewed as a subtree of T where for each node
belonging to player i, there is a unique outgoing edge and for nodes belonging
to player ı, every enabled move is included. Formally we define the strategy tree
as follows: For i P N and a player i’s strategy µ : S

i Ñ ⌃, the strategy tree
T

µ

“ pS
µ

, ñ
µ

, s0,
p

�

µ

q associated with µ is the least subtree of T satisfying the
following property:

– s0 P S

µ

.
– For any node s P S

µ

,

‚ if p

�psq “ i then there exists a unique s

1 P S

µ

and action a such that

s

añ
µ

s

1, where µpsq “ a and s

añs

1.
‚ if p

�psq ‰ i then for all s

1 such that s

añs

1, we have s

añ
µ

s

1.
–

p

�

µ

“ p

�

|{
Sµ .

Let ⌦ipT q denote the set of all strategies for player i in the extensive form
game tree T . A play ⇢ : s0a0s1 ¨ ¨ ¨ is said to be consistent with µ if for all j • 0
we have that s

j

P S

i implies µps
j

q “ a

j

. A strategy profile pµ, ⌧q consists of a
pair of strategies, one for each player.

Partial strategies A partial strategy for player i is a partial function �i which
specifies a move at some (but not necessarily all) game positions of the player,
i.e. �i : S

i á ⌃. Let D
�

i denote the domain of the partial function �

i. For
i P N , we use the notation �

i to denote partial strategies of player i and ⇡

ı to
denote partial strategies of player ı. When the context is clear, we refrain from
using the superscripts. A partial strategy � can also be viewed as a subtree of
T where for some nodes belonging to player i, there is a unique outgoing edge
and for other nodes belonging to player i as well as nodes belonging to player ı,
every enabled move is included.
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A partial strategy can be viewed as a set of total strategies. Given a partial
strategy tree T

�

“ pS
�

, ñ
�

, s0,
p

�

�

q for a partial strategy � for player i, a set of

trees x

T

�

of total strategies can be defined as follows. A tree T “ pS, ñ, s0,
p

�q P
x

T

�

if and only if

– if s P S then for all s

1 PÑ
s , s

1 P S implies s

1 P S

�

– if p

�psq “ i then there exists a unique s

1 P S and action a such that s

añs

1.

Note that x

T

�

is the set of all total strategy trees for player i that are subtrees
of the partial strategy tree T

�

for i. Any total strategy can also be viewed as
a partial strategy, where the corresponding set of total strategies becomes a
singleton set.

Syntax for extensive form game trees Let us now build a syntax for game
trees (cf. [54,24]). We use this syntax to parametrize the belief operators given
below so as to distinguish between belief operators for players at each node of a
finite extensive form game. Let N denote a finite set of players and let ⌃ denote
a finite set of actions. We use i to range over the set N . As earlier, we restrict
our attention to two player games, and we take N “ tC, P u. We use the notation
i and ı to denote the players, where C “ P and P “ C. Let ⌃ be a finite set
of action symbols representing moves of players; we let a, b range over ⌃. Let
Nodes be a finite set. The syntax for specifying finite extensive form game trees
is given by:

GpNodesq ::“ pi, xq | ⌃
amPJ

ppi, xq, a
m

, t

amq
where i P N , x P Nodes, Jpfiniteq Ñ ⌃, and t

am P GpNodesq.
Given h P GpNodesq, we define the tree T

h

generated by h inductively as
follows (see Figure 2.1 for an example):

– h “ pi, xq: T
h

“ pS
h

, ñ
h

,

p

�

h

, s

x

q where S

h

“ ts
x

u, p

�

h

ps
x

q “ i.
– h “ ppi, xq, a1, ta1q`¨ ¨ ¨`ppi, xq, a

k

, t

akq: Inductively we have trees T1, . . .Tk

where for j : 1 § j § k, T

j

“ pS
j

, ñ
j

,

p

�

j

, s

j,0q.
Define T

h

“ pS
h

, ñ
h

,

p

�

h

, s

x

q where
‚ S

h

“ ts
x

u Y S

T1 Y . . . Y S

Tk ;

‚ p

�

h

ps
x

q “ i and for all j, for all s P S

Tj , p

�

h

psq “ p

�

j

psq;
‚ ñ

h

“ î

j:1§j§k

ptps
x

, a

j

, s

j,0qu Y ñ
j

q.
Given h P GpNodesq, let Nodesphq denote the set of distinct pairs pi, xq that
occur in the expression of h.

2.2 Strategy specifications

We have used the syntax of Section 2.1 in our previous article [23] to describe
empirical reasoning of participants involved in a simpler game experiment using
“Marble Drop with Rational Opponent” [42,40]. The main case specifies, for
a player, which conditions she tests before making a move. In what follows,
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1

a

||

b

""

x0

2

c1

⇧⇧

d1

⇡⇡

x1 2

c2

⇧⇧

d2

⇡⇡

x2

y1 y2 y3 y4

Fig. 2. Extensive form game tree. The nodes
are labelled with turns of players and the edges
with the actions. The syntactic representation
of this tree can be given by:
h “ pp1, x0q, a, t1q ` pp1, x0q, b, t2q, where
t1 “ pp2, x1q, c1, p2, y1qq ` pp2, x1q, d1, p2, y2qq;
t2 “ pp2, x2q, c2, p2, y3qq ` pp2, x2q, d2, p2, y4qq.

the pre-condition for a move depends on observables that hold at the current
game position, some belief conditions, as well as some simple finite past-time
conditions and some finite look-ahead that each player can perform in terms of
the structure of the game tree. Both the past-time and future conditions may
involve some strategies that were or could be enforced by the players. These
pre-conditions are given by the syntax defined below.

For any countable set X, let BPF pXq (the boolean, past and future combi-
nations of the members of X) be sets of formulas given by the following syntax:

BPF pXq ::“ x P X |   |  1 _  2 | xa`y | xa´y ,

where a P ⌃, a countable set of actions.
Formulas in BPF pXq can be read as usual in a dynamic logic framework

and are interpreted at game positions. The formula xa`y (respectively, xa´y )
refers to one step in the future (respectively, past). It asserts the existence of an
a edge after (respectively, before) which  holds. Note that future (past) time
assertions up to any bounded depth can be coded by iteration of the correspond-
ing constructs. The ‘time free’ fragment of BPF pXq is formed by the boolean
formulas over X. We denote this fragment by BoolpXq.

For each h P GpNodesq and pi, xq P Nodesphq, we now add a new operator

Bpi,xq
h

to the syntax of BPF pXq to form the set of formulas BPF

b

pXq. The

formula Bpi,xq
h

 can be read as “in the game tree h, player i believes at node x

that  holds”. One might feel that it is not elegant that the belief operator is
parametrized by the nodes of the tree. However, our main aim is not to propose
a logic for the sake of its nice properties, but to have a logical language that can
be used suitably for constructing computational cognitive models corresponding
to participants’ strategic reasoning.

Syntax Let P

i “ tpi

0, p
i

1, . . .u be a countable set of observables for i P N and
P “ î

iPN

P

i. To this set of observables we add two kinds of propositional
variables pu

i

“ q

i

q to denote ‘player i’s utility (or payo↵) is q

i

’ and pr § qq to
denote that ‘the rational number r is less than or equal to the rational number
q’.3 The syntax of strategy specifications is given by:

Strat

ipP iq ::“ r fiÑ asi | ⌘1 ` ⌘2 | ⌘1 ¨ ⌘2,
where  P BPF

b

pP iq. For a detailed explanation see [23]. The basic idea is to
use the above constructs to specify properties of strategies as well as to combine

3 as in [23] and inspired by [13].
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them to describe a play of the game. For instance, the interpretation of a player
i’s specification rp fiÑ asi where p P P

i, is to choose move a at every game
position belonging to player i where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification
⌘1 ` ⌘2 says that the strategy of player i conforms to the specification ⌘1 or ⌘2.
The construct ⌘1 ¨⌘2 says that the strategy conforms to specifications ⌘1 and ⌘2.

Semantics We consider perfect information games with belief structures as
models. The idea is very similar to that of temporal belief revision frames
presented in [13]. Let M “ pT , t›Ñx

i

u, V q with T “ pS, ñ, s0,
p

�, Uq, where

pS, ñ, s0,
p

�q is an extensive form game tree, U : frontierpT qˆN Ñ Q is a utility
function. Here, frontierpT q denotes the set of leaf nodes of the tree T . For each

s

x

P S with p

�ps
x

q “ i, we have a binary relation ›Ñx

i

over S (cf. the connection
between h and T

h

presented above). Finally, V : S Ñ 2P is a valuation function.
The truth value of a formula  P BPF

b

pP q at the state s, denoted M, s |ù  , is
defined as follows:

– M, s |ù p i↵ p P V psq.
– M, s |ù   i↵ M, s �|ù  .
– M, s |ù  1 _  2 i↵ M, s |ù  1 or M, s |ù  2.

– M, s |ù xa`y i↵ there exists an s

1 such that s

añs

1 and M, s

1 |ù  .

– M, s |ù xa´y i↵ there exists an s

1 such that s

1 añs and M, s

1 |ù  .

– M, s |ù Bpi,xq
h

 i↵ the underlying game tree of T
M

is the same as T
h

and for
all s

1 such that s ›Ñx

i

s

1, M, s

1 |ù  .

The truth definitions for the new propositions are as follows:

– M, s |ù pu
i

“ q

i

q i↵ Ups, iq “ q

i

.
– M, s |ù pr § qq i↵ r § q, where r, q are rational numbers.

Strategy specifications are interpreted on strategy trees of T . We also assume
the presence of two special propositions turn1 and turn2 that specify which
player’s turn it is to move, i.e. the valuation function satisfies the property

– for all i P N , turn
i

P V psq i↵ p

�psq “ i.

One more special proposition root is assumed to indicate the root of the game
tree, that is the starting node of the game. The valuation function satisfies the
property

– root P V psq i↵ s “ s0.

We recall that a strategy for player i is a function µ

i which specifies a move at
every game position of the player, i.e. µ

i : S

i Ñ ⌃. A strategy µ can also be
viewed as a subtree of T where for each node belonging to the opponent player
i, there is a unique outgoing edge and for nodes belonging to player ı, every
enabled move is included. A partial strategy for player i is a partial function
�

i which specifies a move at some (but not necessarily all) game positions of
the player, i.e. �i : S

i á ⌃. A partial strategy can be viewed as a set of total
strategies of the player [23].
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The semantics of the strategy specifications are given as follows. Given a
model M and a partial strategy specification ⌘ P Strat

ipP iq, we define a semantic

function v¨w
M

: Strat ipP iq Ñ 2⌦

ipTM q, where each partial strategy specification
is associated with a set of total strategy trees and ⌦

ipT q denotes the set of all
player i strategies in the game tree T .

For any ⌘ P Strat

ipP iq, the semantic function v⌘w
M

is defined inductively:

– vr fiÑ asiw
M

“ ⌥ P 2⌦

ipTM q satisfying: µ P ⌥ i↵ µ satisfies the condition
that, if s P S

µ

is a player i node then M, s |ù  implies out

µ

psq “ a.
– v⌘1 ` ⌘2w

M

“ v⌘1w
M

Y v⌘2w
M

– v⌘1 ¨ ⌘2w
M

“ v⌘1w
M

X v⌘2w
M

Above, out
µ

psq is the unique outgoing edge in µ at s. Recall that s is a player
i node and therefore by definition of a strategy for player i, there is a unique
outgoing edge at s.

Before describing specific strategies found in the empirical study, we would

like to focus on the new operator of belief, Bpi,xq
h

proposed above. Note that this
operator is considered for each node in each game. The idea is that the same
player might have di↵erent beliefs at di↵erent nodes of the game. We had to
introduce the syntax of the extensive form game trees to make this definition
sound, otherwise we would have had to restrict our discussion to single game
trees. The semantics given to the belief operator is entangled in both the syntax
and semantics, which might create problems in finding an appropriate axiom
system. A possible solution would be to introduce some generic classes of games
similar to the idea of generic game boards [10], using the notion of enabled
game trees [24]. This is left for future work, as well as a comparison of the
expressiveness of the current language with those of existing logics of belief and
strategies.

3 Experimental study: do people use forward induction?

We now move on to the empirical part of the work. The experiment on which
we previously reported in [22] was designed to tackle the question whether peo-
ple are inclined to use forward induction (FI {EFR) reasoning when they play
dynamic perfect information games. The main interest was to examine partic-
ipants’ behavior following a deviation from backward induction (BI ) behavior
by their opponent, the computer, right at the beginning of the game. The com-
puter was programmed in such a way that in each game it played according to
a strategy that is the best response with respect to some strategy of the human
participant, and sometimes this meant a deviation from a BI strategy. When the
participant was about to play next, the question was whether they would take
the computer’s previous moves under consideration in assessing its future move
and play accordingly, thereby applying extensive form rationalizability, or they
would just play as if they were playing a new game starting at their present node
without considering the previous move(s), by backward induction reasoning; for
details, see [22].
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Fig. 3. Collection of the main games used in the experiment presented as extensive form
game trees. Vertices represent decision points and are labeled by the player whose turn
it is, where C stands for the computer and P for the participant. Edges are labeled by
the names of actions; thus a stands for the computer going down, thereby ending the
game, while b stands for the computer going to the right and continuing the game. The
ordered pairs at the leaves represent pay-o↵s for the computer (C) and the participant
(P ), respectively; for example, the p3, 1q at the leftmost leaf of game 1 means that if the
game ends there, the computer gains 3 marbles, while the participant gains 1 marble.
In games 1–4, the computer plays first. Because of the typical tree structure of these
games, they are often called “centipede games” in the literature.

As a reminder, the games that were used in the experiment of [22] are given in
Figures 3 and 4. In these two-player games, the players play alternately, therefore
they are called turn-taking (or dynamic) games. Let C denote the computer and
P the participant. In the first four games (Figure 3), the computer plays first,
followed by the participant. The players control two decision nodes each. In the
last two games (Figure 4), which are truncated versions of two of the games of
Figure 3, the participant moves first.

To explain the di↵erence between BI and EFR behavior consider game 1, one
of the experimental games (cf. Figure 3). Here, the unique Backward Induction
(BI) strategies for player C and player P are a; e and c; g, respectively, which
indicate that the game will end at the first node, going down.

In contrast, for forward induction reasoning, the question is how the par-
ticipant would play if her first decision node was reached; in game 1, reaching
the first P -node would already indicate that the opponent C had not opted for
its rational decision, namely to go down immediately. Would the participant’s
(P ’s) decision depend on her opponent’s previous choice? Here, she would have
to choose between continuing the game (by moving to the right, action d) and
opting out (by moving down, action c).
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Fig. 4. Truncated versions of Game 1 and Game 3. The ordered pairs at the leaves
represent pay-o↵s for C and P , respectively. The participant (P ) plays first.

EFR would proceed as follows, starting from the first decision node of P .
Among the two strategies of player C that are compatible with this event, namely
b; e and b; f , only the latter is rational for player C. This is because of the fact
that b; e is dominated by a; e, while b; f is optimal for player C if it believes that
player P will play d; h with a high enough probability. Attributing to player C

the strategy b; f is thus player P ’s best way to rationalize player C’s choice of b,
and in reply, d; g is player P ’s best response to b; f . Thus, the unique Extensive-
Form Rationalizable (EFR, [48]) strategy (an FI strategy) of player P is d; g,
which is distinct from her BI strategy c; g. For a detailed discussion on BI and
EFR strategies in games 2, 3, 4, 11

, 31, see [22]. As a reminder, we repeat the table
of BI and EFR strategies here, with permission.

Games — Strategies BI strategy EFR strategy
Game 1 C: a; e C: a; e

P: c; g P: d; g
Game 2 C: a; e C: a; e

P: c; g P: c; g
Game 3 C: a; e, b; e, a; f, b; f C: a; e, a; f, b; f

P: c; g, d; g, c;h, d;h P: d; g, d;h
Game 4 C: a; e, b; e, a; f, b; f C: a; e, b; e, a; f, b; f

P: c; g, d; g, c;h, d;h P: c; g, d; g, c;h, d;h
Game 11 C: e C: e

P: c; g P: c; g
Game 31 C: e, f C: e, f

P: c; g, d; g, c;h, d;h P: c; g, d; g, c;h, d;h

Table 1. BI and EFR (FI) strategies for the 6 experimental games in Figures 3 and 4.
Notice that for Games 1 and 2, having no pay-o↵ ties, the general result implies that
there is just one unique EFR outcome, coinciding with the BI outcome, namely C

chooses a, exiting the game immediately. Even if there are relevant pay-o↵ ties, the
EFR outcomes constitute a subset of the BI outcomes [18,19,49], but the inclusion may
possibly be strict. This is illustrated by Game 3, which was first described by Chen
and Micali [19]; here, one possible BI outcome is given by C choosing b followed by P

choosing c, which cannot be achieved by EFR.
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3.1 Materials, methods and aggregated results

The experiment of [22] was conducted at the Institute of Artificial Intelligence
at the University of Groningen, the Netherlands. A group of 50 Bachelor’s and
Master’s students from di↵erent disciplines took part. They had little or no
knowledge of game theory, so as to ensure that neither backward induction nor
forward induction was already known to them.4 The participants played finite
perfect-information games that were game-theoretically equivalent to the games
depicted in Figures 3 and 4. However, the presentation was made such that
participants were able to understand the games quickly, see an example of the
graphical interface on the computer screen (cf. Figure 5).

Materials In each game, a marble was about to drop. Both the participant and
the computer determined its path by controlling the trapdoors: The participant
controlled the orange trapdoors, and the computer the blue ones. The partici-
pant’s goal was that the marble should drop into the bin with as many orange
marbles as possible. The computer’s goal was that the marble should drop into
the bin with as many blue marbles as possible. In Figure 5, a practice game that
did not correspond to any of the six games in Figures 3 and 4, if the computer
is rational and uses backward induction, it opens the top right blue trapdoor,
leading to 3 blue marbles (its rational choice for this game).

In the experiment, however, the computer often makes an apparently irra-
tional first choice, operationalized as follows. For each game item, the computer
opponent had been programmed to play according to plans that were best re-
sponses to some plan of the participant. This was told to the participants in
advance. We dub this game “Marble Drop with Surprising Opponent”.

Procedure Each participant first played 14 practice games so that the partici-
pants were familiar with the games before the start of the experiment proper. In
the actual experiment, each participant played 48 games divided into 8 rounds,
each comprised of the 6 di↵erent game structures corresponding to Games 1,
2, 3, 4, 11 and 31 that were described above (see Figures 3 and 4). Di↵erent
graphical representations of the same game were used in di↵erent rounds so as
to prevent recognition. We were especially interested in the decision at the par-
ticipant’s first decision node if that node was reached: did the participant end
the game by choosing c or continue by choosing d?

At some points during the experimental phase, the participants were asked
a multiple-choice question: “When you made your initial choice, what did you
think the computer was about to do next?” (possibilities: most likely e, most
likely f , or neither).

At the end of the experiment, each participant was asked the following ques-
tion: “When you made your choices in these games, what did you think about
the ways the computer would move when it was about to play next?” The par-
ticipants were asked to describe in their own words which plan they thought was

4 The candidate participants were asked about their educational details. Two students
who had followed a course on game theory were excluded.
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The  computer  decides  here.

The  computer  decides  here.

You  decide  here.

You  decide  here.

Fig. 5. Graphical interface for the participants. The computer controls the blue trap-
doors and acquires blue marbles (represented as dark grey in a black and white print)
as pay-o↵s, while the participant controls the orange trapdoors and acquires orange
marbles (light grey in a black and white print) as pay-o↵s.

followed by the computer on its next move after the participant’s initial choice.
We used these answers to classify various strategic reasoning processes applied
by the participants while playing the experimental games. Participants earned
10-15 euros for participation, depending on points earned.

The forward induction hypothesis In [22], to analyse whether participants P

played FI strategies in the games described in Figures 3 and 4, we formulated the
following forward induction hypothesis (cf. Table 3) concerning the participant’s
choice in his first decision node (if reached in games 1, 2, 3, 4, and in all rounds
of games 11 and 31):

Action d will be played more often in game 1 than in game 2 or 11
, and

more often in game 3 than in game 4 or 31
.
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Note that game 2 is similar to game 1 except for the pay-o↵s for C after the
moves a and e, which are interchanged, and game 4 is similar to game 3 except
for the pay-o↵s for C after the moves a and e, which are interchanged. Games 11

and 31 are truncated versions of games 1 and 3, respectively. In games 1 and 3,
d is the only EFR move; in games 11 and 2, d is neither a BI nor an EFR move;
and in games 31 and 4, both c and d are EFR moves.

General results on strategic reasoning in the game It turned out that
in the aggregate, participants were indeed more likely to make decisions in ac-
cordance with their best-rationalization EFR conjecture, i.e., consistent with FI

reasoning [22]. However, there exist alternative explanations for the choices of
most participants, and such alternative explanations also emerge from several of
the participants’ free-text verbal descriptions of their considerations as solicited
from them at the end of the experiment. One likely alternative explanation had
to do with the extent of risk aversion that some participants at their first decision
nodes (which was reached because the computer played b, instead of the out-
side option a) attributed to the computer in the remainder of the game, rather
than reasoning about the sunk outside option that the computer had already
foregone at the beginning of the game. For a detailed study and a discussion of
some alternative explanations of the results, see [22].

In the next subsections, we explore several ways of segregating the participants
into groups to see whether and how they can be divided into reasonable “player
types”. We started with the most obvious ways to divide the participants: We
segregated the participants in terms of gender and discipline (topic of study)
and went on to test the Forward induction hypothesis over the di↵erent groups
formed by segregation.5 The statistical analyses based on gender and discipline
suggest that the results mentioned above about participants’ behavior at their
first decision node are robust. We only found minor variations corresponding
to certain groups (see [21] for a report). Because the results on the hypothesis
turn out to be rather robust, we considered more subtle typologies that emerge
out of the experimental findings, in two ways: (i) by latent class analysis of the
participants based on their choices, c or d, at the first decision node in the game
items corresponding to games 1, 2, 3 and 4 of Figure 3; and (ii) by theory of mind
analysis, as exhibited by the participants in their free-text verbal descriptions of
their considerations about the computer’s moves.

3.2 Latent Class Analysis

Latent class analysis (LCA) is a statistical method that can be applied to classify
binary, discrete or continuous data in a manner that does not assign subjects
to classes absolutely, but with a certain probability of membership for each
class [26]. Latent class analysis can be used to explore how participants can
best be distinguished according to reasoning strategies, in cases where no fixed

5 Because of little variance among participants, we did not segregate by age.
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Fig. 6. Graphical representations of latent class analysis for the set containing the
first three rounds for each game (left) and the set containing the last three rounds for
each game (right). The horizontal axes correspond to the di↵erent instantiations of the
games at the rounds of the game, where gij stands for the jth round of game i of
Figures 3 and 4, while the vertical axes correspond to the probability of playing c.

set of reasoning strategies has been defined in advance. Raijmakers and col-
leagues [52] have profitably applied latent class analysis to analyze children’s
reasoning strategies in turn-taking games.

As mentioned above, for the current experiment, the participants were cat-
egorized into certain classes based on their choices, c or d, at the first decision
node in the game items corresponding to games 1, 2, 3 and 4 of Figure 3. Note
that each participant played 8 rounds of each game, in 2 rounds of which the
computer, playing first, immediately ended the game playing a. So, the partici-
pant only had to reason in 6 rounds of each of the games 1, 2, 3 and 4.

The latent class analysis was performed using the statistical software R,
with 25 estimated parameters and 25 residual degrees of freedom. Since each
participant played in 6 rounds of 4 games, we had 24 data points in total for
each participant. So even if we had wanted to divide the participants into two
classes, we did not have enough parameters to work with, as the total number of
participants was 50. Consequently, we divided the available data points into two
sets of 12 and subsequently performed the analysis. The data for 50 participants
were separated into two sets: the set containing the first three rounds for each
game in which they had to make a decision at the first decision point and the
set containing the last three rounds for each game in which they had to make
a decision at the first decision point.The participants were classified into two
groups based on their behavior in each set of three rounds. Figure 6 shows the
graphs depicting the fraction of their choices of c in each of the relevant rounds
in each of the games: on the left for rounds 1-4 and on the right for rounds 5-8
(g

ij

denotes behavior at the jth round of the ith game).
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The di↵erent predicted groups are denoted by di↵erent colors in Figure 6.
Group 1 behaved in an expected fashion (akin to EFR behavior) in both cases,
compared to the more random behavior of the other group. Considering group
1 for both sets of rounds, 24 common participants were noted down, who were
predicted to behave in an expected fashion in all the rounds. The available data
on the behavior of these 24 participants at their first decision node in the six
games were considered and hypothesis testing was done for these 24 participants
exclusively,6 for the games 1, 2, 3 and 4 of Figure 3. The result for the forward
induction hypothesis was as follows:

– d was played more often in game 3 than in game 4 and more often in game 1 than
in game 2.

For the individual games, the tests revealed the following behaviour. The null
hypothesis was that c and d were chosen equally often at the first decision node,
whereas the alternatives were chosen accordingly:

– Game 1: c was chosen more often than d.
– Game 2: c was chosen more often than d.
– Game 3: d was chosen more often than c.
– Game 4: d was chosen more often than c.

Further groups that resulted from the latent class analysis are as follows:

Group 1: These participants played in an expected fashion in both the initial
three rounds and the later three rounds; there were 24 such players.

Group 2: These participants did not play in an expected fashion in the initial
three rounds but played in an expected fashion in the later three rounds;
there were 9 such players.

Group 3: These participants played in an expected fashion in the initial three
rounds but did not play in an expected fashion in the later three rounds;
there were 7 such players.

Group 4: These participants did not play in an expected fashion in either the
earlier or the later set of three rounds; there were 10 such players.

Statistical Typology On the basis of the above analysis, we propose the fol-
lowing statistically developed typology of players:

Expected: the 24 players who belong to group 1 above;
Learner: the 9 players from group 2 above;
Random: the 17 players from groups 3 and 4 combined.

Interestingly, this classification corresponds neatly with the amount of money
that participants gained in the game by earning points corresponding to the
marbles gained in each game (e10 fixed reward plus e0.04 for each marble
achieved). While overall the total rewards for the 50 participants ranged between
e14.10 and e14.85, the Expected players earned an average of e14.64, which is

6 The results are based on one sample and two sample proportion tests.
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quite a bit more than the Learners’ average earnings of e14.46, which in turn
surpasses the Random players’ average earnings of e14.42.

For further statistical validations of the proposed typology, we tested a num-
ber of hypotheses using standard statistical methods. One such hypothesis is to
check whether the answering time is more in case of expected players than ran-
dom players. The intuition behind this hypothesis is that a person who is playing
in an expected fashion or learning to do so would pay greater attention in choos-
ing a correct option than a person who is playing less sensibly (randomly), cf.
[56,57]. This hypothesis was tested twice using two sample t-test for di↵erence of
means, firstly Expected versus Random and secondly Expected+Learner versus
Random. In both cases, our null hypothesis of equality of means was rejected
at 5% level of significance (p-values 0.02 and 0.04, respectively). Hence, we may
regard that the Expected and Learner players took more time in answering than
the players termed as Random. As a conclusion of the above analysis, we can
regard that the three statistically developed types proposed above are robust at
5% level of significance.

3.3 Theory of Mind Study

At the completion of the game-theoretic experiment, each participant was asked
to answer the following final question:

“When you made your choices in these games, what did you think about
the ways the computer would move when it was about to play next?”

The participant needed to describe in his or her own words, the plan he or she
thought was followed by the computer on its next move after the participant?s
initial choice. Based on their answer, 48 players were classified into three types
according to the order of theory of mind exhibited in their answer to the final
question.7. These were the types:

Zero-order players, who did not mention mental states in their answer; there
were 5 such players.

First-order players, who presented first-order theory of mind in their answer;
there were 27 such players;

Second-order players, who presented second-order theory of mind in their
answer; there were 16 such players.

This classification, as mentioned above, was done by manual scrutiny of each
answer. If an answer referred to behavior only but not to mental states, we
classified it as zero-order. If mental state verbs such as think, decide, expect,
plan, know, believe, intend, and take a risk were attributed to the computer, we
classified the answer as (at least) level 1. If similar mental state verbs about the
participant were embedded into mental state clauses referring to the computer,

7 The two participants who answered “I don’t know” have been excluded from classi-
fication.



22

as in “He thinks that I plan to choose to go left”, we classified the answer as
second-order. We did not find any deeper embeddings, corresponding to third- or
higher-order answers. The set of all participants’ answers will be made available
at http://www.ai.rug.nl/SocialCognition/experiments/. Typical answers
from each group are as follows:

Zero-order answers: “It would repeat its former choice in the same situation.”
First-order answers: “I thought the computer took the option with the high-

est expected value. So if on one side you had a 4 blue + 1 blue marble and
on the other side 2 blue marbles he would take the option 4+1=2.5.”

Second-order answers: “. . . I thought the computer anticipated that I (his
opponent) would go for the bin with the most orange marbles in his decision
to open doors. This could lead to him getting less marbles than ‘expected’
because I would choose a safe option (3 marbles) over a chance between 4
marbles or 1 (depending on the computer’s doors).”

Similar to the case of latent class analysis, the classification by orders of theory of
mind also corresponds to the average rewards that participants from each group
gained in the game by earning points corresponding to the marbles gained in each
game. The Second-order ToM participants earned an average of e14.58, which is
more than the First-order ToM participants’ average earnings of e14.51, which
in turn surpasses the Zero-order participants’ average earnings of e14.46.

For statistical validation of the theory of mind classification into zero-order,
first-order, and second-order participants, we set up di↵erent hypotheses. Intu-
itively, one can expect that the players adopting second-order theory of mind
would take maximum time to make a decision at the first decision node in com-
parison to players adopting first-order theory of mind and that people adopting
zero-order theory of mind would take the least time among all three classes.
This fact was validated statistically by performing di↵erence of means test on
the response time data of the first decision node for the three classes. We tested
the hypotheses at 5% level of significance. Combining the results, we found that
µs ° µf ° µz for first decision time. Here, µs stands for the mean first decision
time of second-order players, µf and µz denotes the first decision times for the
first-order and zero-order players, respectively. Reviewing the results obtained,
we can conclude that the three types of participants based on theory of mind
are statistically valid and robust at 5% level of significance.

3.4 Comparing typologies: latent class analysis and theory of mind

To get a sense of whether and how the two typologies which both have three
classes that intuitively correspond to growing levels of rationality correspond
to each other, we have started from the LCA classes and counted how many
participants were in each of the 9 possible intersections according to the theory
of mind levels of their answers:

Random players (17 players)
No answer: 1 participant;
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Zero-order players: 2 participants;
First-order players: 7 participants;
Second-order players: 7 participants.

Learners (9 players)
Zero-order players: 1 participant;
First-order players: 7 participant;
Second-order players: 1 participant.

Expected players (24 players)
No answer: 1 participant;
Zero-order players: 2 participants;
First-order players: 13 participants;
Second-order players: 8 participants.

Contrary to intuitive expectations, the levels do not match exactly. There is a
clear match at the intermediate levels in the sense that if a player is a Learner
according to LCA, than he/she has a much higher chance to give a first-order
answer than in the general population (7 out of 9 compared to 27 out of 48),
and therefore much lower chances to give a zero-order answer and to give a
second-order answer. It seems that these 7 Learners are doing less than perfect
reasoning at first, but slowly come to understand the game in a better way, even
with their First-order theory of mind reasoning.

Surprisingly, Second-order theory of mind players are divided almost equally
over the Expected players (8) and the Random players (7). It appears that a
slight majority of the Second-order reasoners understand the game properly and
hence play in the Expected way. When looking more closely at the answers
of the Second-order players who are classified as Expected players, four of the
eight mention aversion to risk (that they are, that the opponent is, or that the
opponent thinks they are risk-averse) and three of them mention the opponent
making surprising choices. Among the Second-order Random players, in contrast,
the aspect of risk-aversion is only mentioned by one player and the aspect of
surprise does not occur at all; instead, two of these Second-order Random players
mention risk-seeking attitudes of themselves or the opponent, while three others
mention the (non-)competitive or trusting nature of the opponent.

4 Describing strategies and types of reasoning

We are now ready to describe the reasoning strategies and the reasoning types
discussed in Section 3 with the syntax proposed in Section 2.

4.1 Describing specific strategies in the experimental games

Let us now express some actual reasoning processes that participants displayed
during the experiment. Some participants described how they reasoned in their
answers to the final question. Example 1 of such reasoning: “If the game reaches
my first decision node and if the payo↵s are such that I believe that the computer
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would not play e if its second decision node is reached, then I play d at my
current decision node”. This kind of strategic reasoning can be expressed using
the following formal notions.

Let us assume that actions are part of the observables, that is, ⌃ Ñ P . The
semantics for the actions can be defined appropriately. Let n1, . . . , n4 denote the
four decision nodes of Game 1 of Figure 3, with C playing at n1 and n3, and P

playing at the remaining two nodes n2 and n4. We have four belief operators for
this game, namely two per player. We abbreviate some formulas that describe
the payo↵ structure of the game:

↵ :“ xdyxfyxhyppu
C

“ p

C

q ^ pu
P

“ p

P

qq
(from the current node, a d move followed by an f move followed by an
h move lead to the payo↵ pp

C

, p

P

q )

� :“ xdyxfyxgyppu
C

“ q

C

q ^ pu
P

“ q

P

qq
(from the current node, a d move followed by an f move followed by a g

move lead to the payo↵ pq
C

, q

P

q )

� :“ xdyxeyppu
C

“ r

C

q ^ pu
P

“ r

P

qq
(from the current node, a d move followed by an e move lead to the
payo↵ pr

C

, r

P

q )

� :“ xcyppu
C

“ s

C

q ^ pu
P

“ s

P

qq
(from the current node, a c move leads to the payo↵ ps

C

, s

P

q )

� :“ xb´yxayppu
C

“ t

C

q ^ pu
P

“ t

P

qq
(the current node can be accessed from another node by a b move from
where an a move leads to the payo↵ pt

C

, t

P

q )

Now we can define the conjunction of these five descriptions:

' :“ ↵ ^ � ^ � ^ � ^ �

Let  
i

denote the conjunction of all the order relations of the rational payo↵s
for player i (P tP, Cu) given in Game 1 of Figure 3.
A strategy specification describing the strategic reasoning of Example 1 above
at the node n2 is:

⌘1P : rp'^  

P

^  

C

^ xb´yroot ^ Bn2,P

g1 xdy e ^ Bn2,P

g1 xdyxfygq fiÑ dsP
In words: If the payo↵s of players at the respective nodes are given by ' and  

P

and  
C

are given accordingly, then if player P is at n2 and believes at that node
that after her move d, e will not be played by C, and believes that after her d

move and player C’s f move she will play g, then P will play d at the current
node.

Backward induction reasoning at the same node n2 can be formulated as follows:

⌘2P : rp'^  

P

^  

C

^ xb´yroot ^ Bn2,P

g1 xdye ^ Bn2,P

g1 xdyxfygq fiÑ csP
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In words: If the payo↵s of players at the respective nodes are given by ' and if
 

P

and  
C

are given accordingly, then if player P is at n2 and believes at that
node that after her move d, e will be played by C, and believes that after her d

move and player C’s f move, she will play g, then P will play c at the current
node.

For a comparison to the experiment described in Section 3, we should add here
that for games 1 and 2, about 84% of the players showed similar strategic behav-
ior to what is depicted by the former strategy formula ⌘1

P

corresponding to game
1, whereas for games 3 and 4, even 97% of the players showed such behavior.

The examples above show how strategic reasoning of participants can be
described by a logical formula, which could then be converted to appropriate
reasoning rules to construct computational cognitive models (see Section 5).
Note that our representations have become quite succinct using the newly added
belief operator, compared to the representations in [23], because expressions for
response strategies are not needed anymore. Let us look at an example to have
an idea of the relative succinctness of the extended language.

To model players’ responses in [23], we introduced the formula ı?⇣ in the
syntax of BPF pP iq. The intuitive reading of the formula ı?⇣ is “player ı is
playing according to a partial strategy conforming to the specification ⇣ at the
current stage of the game”, and the semantics is given by:

– M, s |ù ı?⇣ i↵ DT such that T P v⇣w
M

and s P T .

A strategy specification for player P describing her backward reasoning giving
the rational choice corresponding to the game tree 11 given in Figure 4 is:

⌘ : rpC?rpP?r'0 fiÑ gsP ^ '

1q fiÑ esC ^ '

2q fiÑ csP , where:

– '

0 : ↵ ^ � ^ xdyxfyturn
P

^ p1 § 3q ^ � ^ xdyturn
C

^ p0 § 2q ^ root ^
turn

P

^ � ^ p0 § 2q

– '

1 : ↵ ^ � ^ xdyxfyturn
P

^ p1 § 3q ^ � ^ xdyturn
C

^ p0 § 2q

– '

2 : ↵ ^ � ^ xdyxfyturn
P

^ p1 § 3q
In words, ⌘ says:

‘If the utilities and the turns of players at the respective nodes are as
in Game 11 (cf. Figure 4), then player P would play c at the root node,
as player C would have played e at his node (had it been reached), and
player P would have played g at her node (had it been reached).’

The same strategy specification can be expressed in the current specification
language with beliefs as follows:

⌘ : rp↵^�^�^�^p1 § 3q^p0 § 2q^root^Bn1,P

g11 xdye^Bn1,P

g11 Bn2,C

g11 xfygq fiÑ cs

P

.
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Notice that this representation is much more succinct and more easily under-
standable than the corresponding representation ⌘ from [23]. We conjecture that
in general, the new language is more succinct than the one proposed in [23] in
describing strategic reasoning, but we leave this as an intuitive conjecture for
now. A detailed formal study of the current extended framework regarding its
expressive power and axiomatics is left for future work.

4.2 Describing specific types in the experimental games

In this subsection, we show how to formalize several types of strategic reasoning,
both according to the two typologies used in Sections 3.2 and 3.3 and typologies
used in the literature.

Theory of mind types We now show how to express the reasoning of play-
ers who apply di↵erent orders of theory of mind, with the syntax proposed in
Section 2.2. Participants who are not familiar with playing turn-taking games
such as Marble Drop, may start playing the games according to some simple
strategies (cf. [40]). An example of such a simple strategy is to compare the par-
ticipant’s payo↵ in case of going down immediately and stopping the game with
the maximum of all her possible future payo↵s in case the game continues. Such
a participant stops if the payo↵ of going down is larger and continues otherwise.
Note that such a participant does not attribute mental states such as beliefs or
plans to the other agent or herself but merely acts upon some facts, and hence
can be considered to be a zero-order theory of mind player.

Next, one can consider a more complex strategy to play one of our exper-
imental games: A participant considers what her opponent might play in the
next node in case it is reached and plays according to what she thinks about her
opponent’s mental states, for example, she believes that the opponent is playing
according to the simple zero-order strategy described above. Participants who
reason in this way can be considered to be first-order theory of mind players.

Finally, at a next level of complexity, a participant could consider at her first
decision node n2 that her opponent would believe at the next decision node n3

that the participant’s strategy at the final decision node n4 would be the simple
zero strategy described above. Then the participant’s considerations at n2 would
be an example of applying a second-order theory of mind strategy.

Note that the way the participants answered the final question (cf. Section
3.3) in the experiment indicated what kind of reasoners they were with respect
to theory of mind. We now express theory of mind types of our Marble Drop ex-
periment in the language proposed in Section 2.2. A similar syntax for expressing
player types has been proposed in [53].

We use the abbreviated formulas ↵,�, �, �,� that describe the payo↵ struc-
ture of the game as given above in Section 4.1.

A zero-order theory of mind participant can be described by the following spec-
ification:

⌧ 0P : rp'^  

P

^ xb´yrootq fiÑ csP
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In words: If the payo↵s of players at the respective nodes are given by ' and  
P

is given accordingly, then player P will play c at the current node.

A first-order theory of mind participant can be described by the following spec-
ification:

⌧ 1P : rp'^  

P

^  

C

^ xb´yroot ^ Bn2,P

g1 xdy eq fiÑ dsP
In words: If the payo↵s of players at the respective nodes are given by ' and  

P

and  
C

are given accordingly, then if player P is at n2, believes at that node that
after her move d, e will not be played by C, then P will play c at the current node.

Finally, a second-order theory of mind player can be described by:

⌧ 2P : rp'^ 

P

^ 

C

^ xb´yroot^Bn2,P

g1 xdy e ^Bn2,P

g1 Bn3,C

g1 xfyhq fiÑ dsP
In words: If the payo↵s of players at the respective nodes are given by ' and  

P

and  

C

are given accordingly, then if player P is at n2, believes at that node
that after her move d, e will not be played by C, and believes that player C

believes that after the f move player P will play h, then P will play d at the
current node.

Note the subtle di↵erences in the belief expressions between these three the-
ory of mind formulas and the formulas provided in the previous section: The
formula ⌧1

P

only considers P ’s belief about C’s move at the next node and noth-
ing beyond that (describing a first-order theory of mind participant), whereas
the formulas ⌘1

P

and ⌘

2
P

do consider beliefs about all possible future plays, the
way a game theorist would go about strategic reasoning.

Expected, learner and random types We now provide a brief discussion
regarding how the type categories found by the latent class analysis in Section
3.2 can be described in a similar way using appropriate temporal representations
of the specification formulas. To this end, we introduce a finite set of time-points
Time, say, and parametrize the specification formulas ⌘ with respect to those
time-points t P Time, denoted by ⌘

t

. The semantic function v⌘
t

w
M

is given by:

v⌘
t

w
M

“ v⌘w
Mt

,

where M

t

“ pT
t

, t›Ñx

i,t

u, V
t

q is almost the same as M “ pT , t›Ñx

i

u, V q with
T

t

“ T , and V

t

“ V , the only possible change happening in the set of relations
t›Ñx

i,t

u. So, for any given set of time-points Time and a model M , we first define
the M

t

’s for t P Time and then we can interprete the strategy specifications
corresponding to those time-points.

As a simple exemplification consider the set of time-points Time “ tt1, t2u,
Game 1 (cf. Figure 3) where the expected move at the first decision node for
player P is d, then the expected, learner and random types can be di↵erentiated
by the following pairs of formulas, respectively:

⇣EP : prp'^ 
P

^ 
C

^xb´yrootq fiÑ dsP
t1

, rp'^ 
P

^ 
C

^xb´yrootq fiÑ dsP
t2

q
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In words: If the payo↵s of players at the respective nodes are given by ' and  
P

and  

C

are given accordingly, then if player P is at n2, she will play d at that
node at both time points t1 and t2.

⇣LP : prp'^ 
P

^ 
C

^xb´yrootq fiÑ csP
t1

, rp'^ 
P

^ 
C

^xb´yrootq fiÑ dsP
t2

q
In words: If the payo↵s of players at the respective nodes are given by ' and  

P

and  

C

are given accordingly, then if player P is at n2, she will play c at that
node at time-point t1, and d at time-point t2.

⇣RP : prp'^ 
P

^ 
C

^xb´yrootq fiÑ dsP
t1

, rp'^ 
P

^ 
C

^xb´yrootq fiÑ csP
t2

q
In words: If the payo↵s of players at the respective nodes are given by ' and  

P

and  

C

are given accordingly, then if player P is at n2, she will play d at that
node at time-point t1, and c at time-point t2.

Note that for separating these classes of participants we had to take the indi-
vidual rounds of the games under consideration, and hence we had tuples of
specification formulas indicating the di↵erent time-points where the strategies
are played. This formalization su�ces to list out the possibilities of typologies
which could be used as a controlling factor in the build-up of computational
cognitive models.

In the experiment described in Section 3, the participants had to make their
decisions at 6 rounds of each of the games 1, 2, 3 and 4, and hence to model
the strategies we need to consider the set Time with 6 di↵erent time points, and
we could describe Expected players as those playing d in the last 5 time-points,
Learners as those playing d in the last 3 time-points, and the others as Random
players.

Formalizing other player types from the literature We end this section
showcasing some other simple player types which describe players with di↵erent
kinds of restrained reasoning capabilities. Note that such limited reasoning is
ubiquitous in our daily life (see e.g. [29,40]). A myopic (or near-sighted) player
can be considered as one who only considers her current node and the next one
to compare her payo↵s and act rationally depending on those payo↵s without
being able to look further into the game (cf. [29]). Such a player-strategy can be
described for games 11 and 31 as follows:

11
P : rp�11 ^ �11 ^ p0 § 2q ^ rootq fiÑ csP

31
P : rp�31 ^ �31 ^ p2 § 3q ^ rootq fiÑ csP

One can also consider players who are only capable or interested to look at
their own payo↵s and do not consider the opponent’s payo↵s at all and move
wherever they get more payo↵ (cf. [52]). Their strategies in games 11 and 31 can
be described as follows:

�11
P : rp↵11 ^ �11 ^ �11 ^ �11 ^ p0 § 2q ^ p2 § 3q ^ p1 § 2q ^ rootq fiÑ dsP
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�31
P : rp↵31 ^ �31 ^ �31 ^ �31 ^ p2 § 3q ^ p3 § 4q ^ rootq fiÑ dsP

Note that in the above set of formulas, we only consider the relevant pay-o↵s,
e.g. � and � in case of the  formulas, and ↵, �, �, and � for the � formulas. In
fact, one could ignore the payo↵s for C for the � formulas. We will come back
to these strategies in the next section when we validate the model predictions
with the experimental results.

5 Modelling strategic reasoning processes in a cognitive

architecture

Our aim in this section is to sketch a way how some of the strategy descrip-
tions that we formulated in the logical strategic language in Subsections 4 can
be translated in a straightforward way into computational cognitive models in
the state-of-the art cognitive architecture PRIM, which is based on ACT-R. The
upshot of coupling our strategy logic to PRIM is that PRIM, through its asso-
ciation with ACT-R, implements very precise, experimentally validated theories
about human memory and cognitive bounds on reasoning processes. These the-
ories have been built over the decades on the basis of hundreds of tasks modeled
in ACT-R and compared to experimental data: from learning high school alge-
bra [2] and playing the game of SET [45] to driving cars [27]. Thus, there is no
need to add possibly arbitrary resource bounds in the logical language.

We start with providing a brief description of the cognitive architectures
at the basis of our computational cognitive model, ACT-R and PRIMs and
of previous computational cognitive models of Marble Drop based on ACT-
R. Then in Subsection 5.4 we translate a number of the strategies that were
represented by strategy formulas in the previous section into PRIMs models
– both strategies well-known from game theory such as backward induction,
followed by reasoning formulas corresponding to the di↵erent players’ typologies,
such as the one based on theory of mind. Finally, we come full circle and we
compare the simulation results of two PRIMs models with actual participant
data, to show that participants probably do not apply the reasoning strategy
that Hedden and Zhang [29] called “myopic” (near-sighted).

5.1 ACT-R

ACT-R is an integrated theory of cognition as well as a cognitive architecture
that many cognitive scientists use [2]. It consists of modules that link with cogni-
tive functions, for example, vision, motor processing, and declarative processing.
Each module is associated with a bu↵er and the modules communicate via these
bu↵ers. Importantly, cognitive resources are bounded in ACT-R models: Each
bu↵er can store just one piece of information at a time.

The declarative memory module represents long-term memory and stores in-
formation encoded in so-called chunks, representing knowledge structures. For
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example, a chunk can be represented as a formal expression with a defined mean-
ing. Each chunk in declarative memory has an activation value that determines
the speed and success of its retrieval. Whenever a chunk is used, the activation
value of that chunk increases. As the activation value increases, the probability
of retrieval increases and the latency (time delay) of retrieval decreases. There-
fore, a chunk representing a comparison between two payo↵s will have a higher
probability of retrieval, and will be retrieved faster, if the comparison has been
made recently, or frequently in the past [1,2]. As soon as a chunk is retrieved
from declarative memory, it is placed into the declarative module’s bu↵er.

The problem state module also contains a bu↵er that can hold one chunk.
Typically, the problem state stores a sub-solution to the problem at hand. In
the case of a social reasoning task, this may be the outcome of a reasoning step
that will be relevant in subsequent reasoning. Storing information in the problem
state bu↵er is associated with a time cost (typically 200ms).

A central procedural system recognizes patterns in the information stored
in the bu↵ers, and responds by sending requests to the modules, for example,
‘retrieve a fact from declarative memory’. This condition-action mechanism is
implemented in production rules. Production rules have so-called utility values.
The model receives reward or punishment depending on the correctness of its
response. Both reward and punishment propagate back to previously fired pro-
duction rules, and the utility values of these production rules are increased in
case of reward and decreased in case of punishment by a process called utility

learning [2]. If two or more production rules match a particular game state, the
production rule with the highest utility is selected.

5.2 PRIMs

PRIM, the primitive elements theory, is a recent cognitive theory developed
by Taatgen, who implemented it in the computational cognitive architecture
PRIMs [58]. It builds on ACT-R, using ACT-R modules, bu↵ers and mecha-
nisms such as production compilation. However, in contrast to ACT-R, PRIMs
is suited for modeling general reasoning strategies that are not included in the
basic cognitive architecture shared by all humans, but that are at the same time
more general than ad hoc task-specific reasoning rules. Thereby, PRIMs is espe-
cially suitable for modeling the nature and transfer of cognitive skills. Because of
our need to model participants’ beliefs about the opponent’s beliefs, we decided
to use PRIMs as cognitive architecture to model more sophisticated reasoning
strategies rather than ACT-R, which we used in [23].

More specifically, PRIM breaks down the complex production rules typically
used in ACT-R models into the smallest possible elements (PRIMs) that move,
compare or copy information between modules (cf. Figure 7). There is a fixed
number of PRIMs in the architecture. When PRIMs are used often over time,
production compilation combines them to form more complex production rules.
While those PRIMs may have some task-specific elements, PRIMs also have task-
general elements that can be used by other tasks. Taatgen [58,59] showed the
predictive power of PRIMs by modeling a variety of transfer experiments such
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Figure 1. Global outline of the primitive elements model of skills, inspired on the neural network model by
Stocco et al. (2010), the global workspace model (Dehaene et al., 1998), and the Adaptive Control of
Thought–Rational (ACT-R) architecture (Anderson, 2007). Specialized modules (the boxes on the outside)
provide input to the workspace (the central ring in the figure) or carry out actions placed in the workspace. The
production rules in the center make comparisons between items in the workspace (indicated by circles here), and
copy them. For example, a comparison can be made between a visual item and an item retrieved from memory,
and another visual item can be copied to working memory. See also Jackendoff (1987) for another version of
this general idea. PRIM ! primitive information processing element; DLPFC ! dorsolateral prefrontal cortex;
VLPFC ! ventrolateral prefrontal cortex. Bottom left figure reprinted with permission from “A Neuronal Model
of a Global Workspace in Effortful Cognitive Tasks,” by S. Dehaene, M. Kerszberg, and J. P. Changeux, 1998,
Proceedings of the National Academy of Sciences, USA, 95, p. 14530. Copyright 1998 by the National Academy
of Sciences.
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443THE NATURE AND TRANSFER OF COGNITIVE SKILLS

Fig. 7. Schema of a PRIM model as represented in [58]

as text editing, arithmetic, and cognitive control. The architecture has been
used to model children’s development of theory of mind [4], transfer between the
‘take the best’ heuristic and the balance beam task [25], and children’s mistakes
in arithmetic [16]. PRIMs models can be run to predict the estimated time to
complete certain tasks, which we will use in Section 5.4 to fit the predictions
of our PRIMs models of reasoning strategies in “Marble Drop with Surprising
Opponent”.

Like ACT-R, PRIMs models cognitive resources as being bounded: Each
bu↵er can store just one piece of information at a time. Consequently, if a model
has to keep track of more than one piece of information, it has to move the
pieces of information back and forth between two important modules: declarative
memory, representing long-term memory, and the problem state, in which a small
chunk of information can be stored for a short time. Moving information back and
forth comes with a time cost, in some cases causing a cognitive bottleneck [14].

5.3 Earlier models of strategic reasoning in Marble Drop

Van Maanen and Verbrugge [36] proposed an ACT-R model that follows a back-
ward reasoning strategy to predict the opponent’s moves further on in a game
of “Marble Drop with Rational Opponent” against a computer opponent that
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was known to be rational. The drawback of this model is that it implements
just one reasoning strategy, while the results in [43,12] show that participants
used several reasoning strategies. There have been two follow-up ACT-R mod-
els to remedy this problem. Meijering and colleagues [40] have implemented the
idea that players use negative feedback in order to move from an overly simple
reasoning strategy without theory of mind to a more complicated second-order
theory of mind strategy only if it is really needed.

loc 1 = �, u

C

loc 2 = �, u

C

Set goal: Compare payoffs 
at loc 1 and loc 2

Find location loc 1

Attend payoff at loc 1

Update problem state: 
store payoff

Find location loc 2

Attend payoff at loc 2

Update problem state: 
store payoff

payoff 1 
> 

payoff 2
last

comparison
last

comparison
yesno

yes yes

respond:
continue

respond:
continue

loc 2 = �, u

P

loc 2 = �, u

P

loc 1 = ↵, u

P

loc 1 = �, u

P

no

no

Fig. 8. Flowchart for reasoning processes as described in Example 1, constructed from
formula ⌘

1
P

of Section 4.1

Ghosh, Meijering and Verbrugge [23] constructed a more generic model that
is able to fit a broader spectrum of possible strategies than [36,40]. It relies
on the declarative memory and the problem state, by retrieving relevant infor-



33

mation from declarative memory and moving that information to the problem
state bu↵er whenever it requests the declarative module to retrieve new infor-
mation.The PRIMs models that we present in the next subsection are based on
similar ideas, but they can also incorporate reasoning about beliefs of opponents.

5.4 Modeling reasoning strategies in PRIMs

We consider a class of models, where each model is based on a set of strategy
and type specifications that can be generated using the logical framework we
presented in Section 2. As explained in Sections 4.1 and 4.2, both backward
induction reasoning and forward induction reasoning (in particular, EFR rea-
soning), as well as other types of reasoning can be represented using logical
specifications.

Modeling specific strategies from Section 4.1 in PRIMs Each of the
specifications defined in Section 4.1 comprises comparisons between relevant
payo↵s for both players. For each comparison, a cognitive model has a set of
production rules that specify what the model should do. To compare player C’s
payo↵s, say at two leaf nodes, the model first has to find, attend, and encode
them in the problem state. For each subsequent payo↵, the model performs the
following procedure (cf. Figure 8):

– request the visual module to find the visual location of the payo↵ (cf. [45]);
– direct visual attention to that location; and
– update the problem state (bu↵er).

The specifications ⌘1
P

(corresponding to the choices of the vast majority of par-
ticipants, see Example 1 in Section 4.1) and ⌘

2
P

(corresponding to backward
induction, see Section 4.1) specify what the model should do after encoding the
payo↵s in the problem state. First, the payo↵s need to be compared and the
comparison needs to stored. Then the belief operators are dealt with as follows
(cf. Figure 9):

– attend to the visual location of the node depicted by the belief operator; and
– encode the actions and beliefs at the problem state (bu↵er).

These beliefs can be taken care of in the PRIMs model in the same way as
in [3], namely some n-th order strategy chunk can be created in the declarative
memory for an n-th order belief in the strategy / type formulas followed by
creating an pn ´ 1q-th order chunk for the pn ´ 1q-th order belief. This process
can be continued until the model creates a zero-order chunk corresponding to a
zero-order belief. For each n, the model would keep a reference to the pn ´ 1q-
th order chunk in the declarative memory, which in turn would have a pointer
towards the n-th order chunk. The stored beliefs are retrieved accordingly in the
problem state bu↵er and production rules are fired depending on the retrieval
in order to make decisions.

The decisions are made corresponding to the recorded payo↵s and the re-
sulting beliefs. An example production rule could be as follows; the model will
select and fire this production rule to generate a response:
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Set goal: record 
beliefs at loc

Find location loc 

Attend belief at loc 

Update problem state: 
store belief

no

yes

respond:
play c

respond:
play d

loc = �b��root

B

loc,P

e

Fig. 9. Flowchart for reasoning processes utilized in backward induction, constructed
from formula ⌘

2
P

of Section 4.1

IF
Goal is to record Player P ’s If the current goal is to record Player P ’s beliefs
belief at node n at node n,

Problem State represents and the problem state has stored the actions,
Player P ’s actions at n,
c and d

BpP,nq
f and the belief is that f will be played (by C),

THEN
Decision is play d then request the manual (or motor) module

to produce a key press (i.e., play d).

Modeling specific player types from Section 4.2 in PRIMs Based on the
same syntax as used for the strategies, one can model the player types, for exam-
ple, according to levels of theory of mind or according to the latent class analysis.
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C C PP

a

b

c

d

e

f

g

h

(1,2) (2,0) (0,3)

(4,1)

stop

continue

max

2 < max{0, 3, 1} → continue

Fig. 10. Representing the simple zero-order theory of mind strategy from the player
P ’s perspective playing at the second node. The model will compare P ’s payo↵ in case
it stops with her maximum possible payo↵ in case she continues. This corresponds to
zero-order theory of mind reasoning represented by formula ⌧

0
P

of Section 4.2.

One can add di↵erent assumptions to the model with regard to the strategies
being used, the roles of players, whether they are considering the roles of their
opponents, and also with regard to the beliefs players have regarding opponents’
moves and strategies. Figure 10 shows a schematic representations of the reason-
ing processes of a model performing zero-order theory of mind reasoning from
the viewpoint of the participant P . One level of complexity higher, Figure 11
shows a schematic representation of the model attributing zero-order reasoning
to player C from the viewpoint of P , who is thereby applying first-order the-
ory of mind. Similarly, one could use di↵erent models with regard to di↵erent
time-points in Time based on the di↵erent specification formulas as given by
the tuples of such formulas in Section 4.2 to deal with the Expected, Learner
and Random types of players. As with the strategy formulas, the type formulas

C C PP

a

b

c

d

e

f

g

h

(2,0) (0,3)

(4,1)

stop

continue

max

2 < max{0, 4} → continue

Fig. 11. Representing the simple first-order theory of mind strategy from the player C’s
perspective playing at the third node. The model will compare C’s payo↵ in case it stops
with her maximum possible payo↵ in case she continues. This corresponds to attributing
zero-order theory of mind reasoning to player C by player P , who thereby performs
first-order theory of mind reasoning, as represented by formula ⌧

1
P

of Section 4.2.
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can be implemented in production rules in the cognitive architecture PRIMs.
Such production rules can determine, for example, what the payo↵ would be
when going down immediately and stopping the game, what the maximum of all
P ’s possible future payo↵s could be in case she continues the game, and which
beliefs influence which moves. The production rules are generally executed from
the perspective of the player who is currently deciding which course of action to
follow. Thus, the Learner types that have been captured by tuples of formulas
in Section 4.2, can be transformed into production rules of a tuple of models to
simulate the behavior of such Learner types of players. Another kind of learning,
namely the move from simpler to more complex theory of mind levels, can be
reflected in PRIMs models as follows (inspired by, but implemented di↵erently
than [40]). The model attributes a player’s moves and beliefs from the perspec-
tive of the current decision node to the opponent operating at the next decision
point, stepping into the opponent’s shoes, and while doing this, the model up-
dates its belief levels. Subsequently, the model acts in its heightened order of
theory of mind reasoning.
On the whole, the strategy and the type specification formulas can be used
to construct various PRIMs models to simulate behaviors of players involved
in varying kinds of strategic reasoning, belonging to various type categories.
Based on the validation of the predictions of such models with respect to the
experimental results (cf. Section 3), one can narrow down the set of reasoning
formulas and type formulas that provide apt descriptions of human strategic
reasoning and typologies. From another perspective, these specification formulas
act as controlling factors for suggesting the production rules in di↵erent PRIMs
models, providing a formal basis of the algorithms used to construct the models.
In other words, rather than having some ad-hoc production rules for the PRIMs
model, one could be guided by the logical formulas in formulating rules leading
to di↵erent PRIMs models that correspond to di↵erent strategies and types of
players. The models can then be compared with each other in terms of decisions
and reaction times with respect to the validations of their predictions, in order
to provide better modelling of human strategic reasoning and typologies.

5.5 Validating some reasoning types modeled in PRIMs against

experimental results

We have seen in section 4.1 that some fitting of formal strategies to experimental
data can be done based directly on the logical strategy formula; for example,
it turns out that more than 84% of participants made decisions according to
Example 1, formalized as formula ⌘1

P

. However, in order to be able to use more of
the participant data, such as their reaction times for making their first decision,
the formulas do not su�ce but a PRIMS model corresponding to one or more
strategy formulas can be constructed and run a number of times, as if the models
are virtual participants that perform the game experiment.

As a test case, we have constructed PRIMs models based on the specification
formulas corresponding to two relatively simple player types inspired by the lit-
erature: mypoic players (

P

formulas of Section 4.2, inspired by [29]), and own

payo↵ players (�
P

formulas of Section 4.2, inspired by [52]). The models were
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Fig. 12. Reaction time predictions in milliseconds from the PRIMs models for games
11 and 31, from left to right corresponding to the formulas �

11
P

and �

31
P

(own payo↵

strategy) and the formulas 11
P

and 

31
P

(myopic strategy)

Fig. 13. Comparison of reaction times in milliseconds between the predictions of the
own payo↵ strategy model and the participants, for game 11 (left two bars) and game
31 (right two bars). The red bars represent the model predictions, while the blue bars
represent the mean reaction times corresponding to participants’ choices that were
consistent with the own payo↵ strategy. Error bars represent standard deviations.

constructed following the general translation procedures described in the previ-
ous subsection and can be found at http://www.ai.rug.nl/SocialCognition/
experiments/. In our simulations, both models were run 50 times (correspond-
ing to 50 “virtual participants” each), playing 50 rounds each for the games 11

and 31 of Figure 4. The reaction time predictions obtained from the models are
given in Figure 12.
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As can be seen in Figure 12, the “virtual participants” who use the own payo↵

strategy (based on the formulas �11
P

and �31
P

of Section 4.2), need on average more
time for their first decision in game 11 (more than 800 milliseconds) than in Game
31 (around 7500 milliseconds).

The “virtual participants” who use the myopic strategy (based on the formu-
las 1

1
P

and 3
1

P

of Section 4.2), in contrast, need about the same amount of time
for their decisions in both games 11 and 31 (both around 4000 ms), and moreover,
this is much less than the mean time needed for the “virtual participant” that
uses the own payo↵ strategy.

The reaction times for the PRIMs model corresponding to the own payo↵

types and those of the myopic types were fitted against those of the participants
in the experiment described in Section 3. It turns out that the participants’
reaction times fit well with the own payo↵ model predictions for two reasons.
Qualitatively, as Figure 13 shows, participants were slower in their decisions on
Game 11 than they were on Game 31, just like the “virtual participants” that
use the own payo↵ strategy.8 More quantitatively, the reaction times for the real
participants in Game 11 (more than 8000 milliseconds) and for Game 31 (around
7500 milliseconds) are quite similar to those of the virtual ones.

In contrast, the findings from the PRIMs model corresponding to the myopic

types (based on the formulas 1
1

P

and 

31
P

of Section 4.2) do not fit the reaction
time data at all: in general, the real participants use much more time (mean
around at least 7000) than the “virtual participant” who uses the myopic strategy
does (mean around 4000 ms).

A great advantage of computational cognitive models in an architecture such as
PRIMs is that one can also make predictions for future experiments. We will
make one such prediction now. Currently, together with Aviad Heifetz and Eric
Jansen, we are in the midst of a set of experiments in The Netherlands, India
and Israel, based on games that are variations of those of the experiments of [22],
with the same centipede-like trees as those in Figures 3 and 4 but di↵erent payo↵
structures. In particular, the new truncated game 12 corresponding to game 11

of the current paper has new payo↵s p1, 2q after c, p3, 1q after e, p1, 4q after g,
and p6, 3q after h; and the new truncated game 32 corresponding to game 31 of
this paper has payo↵s p1, 2q after c, p3, 1q after e, p1, 4q after g, and p6, 4q after
h. We predict that also for these games, participants whose choices fit the own

payo↵ strategy as well as the myopic one, are still more likely to reason following
the own payo↵ strategy, as shown by their reaction times: we predict that they
will be slower on Game 12 than on Game 32.

6 Conclusions and future work

8 Note that to construct Figure 13, we considered those instantiations of the games in
which participants’ choices were consistent with the choice prescribed in the relevant
�

P

. To account for individual di↵erences between participants, only those partici-
pants were considered for whom the majority of choices in games 11 and 31 were
consistent with the specification formula �

11
P

and �

31
P

, respectively.
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In this paper we have explored the question “How do people really reason about
their opponent in turn-taking games?” for specific turn-taking games of the
type “Marble Drop with Surprising Opponent”, in which the opponent often
started with a seemingly irrational move. We began with presenting a logical
language that expresses di↵erent kinds of strategies which people can apply
when reasoning about their opponent and making decisions in turn-taking games
such as “Marble Drop”. It can also express di↵erent possible ‘reasoning types’
reflected in participants’ behavior. The new logical language extends our earlier
strategy language of [23] with (higher-order) beliefs. The extended language
results in more user-friendly and more concise formulas than the earlier one;
this is an advantage because it makes the formulas more understandable for
cognitive modelers who are not logicians.

We then explored the data of our earlier experiment with Heifetz about the
games that was presented first in [22]. In the current article, we moved beyond
the question whether participants in general use forward induction reasoning
and instead first explored two ways of segregating the participants into groups
to see whether and how they can be divided into reasonable “player types”. The
first way to construct a typology was based on latent class analysis, which turned
out to divide the players into three classes according to their first decisions in
the game: Random players, Learners, and finally Expected players who make
decisions consistent with forward induction. This typology appeared to be rea-
sonable, because the three levels correspond with increasing gains in the games
and with increasing time spent on decisions. The second way of constructing
a typology was based on the participants’ answers to a question about their
opponent, classified according to levels of theory of mind: the resulting types
are Zero-order, First-order and Second-order. This typology was also validated
by increasing levels of theory of mind turning out to correspond to increasing
monetary awards and increasing decision times. The logical language was then
used to describe di↵erent reasoning strategies and reasoning types that were dis-
played by the participants during the experiment, including the types discussed
previously.

We mainly aimed for contributions on Marr’s computational and algorith-
mic levels and the interplay between them through this study based on logic,
experiment and computational cognitive model. The logical language helped us
delineate a number of plausible reasoning strategies in a systematic manner. In
general it is possible to translate such logical formulas into computational mod-
els in the computational cognitive architecture PRIMs, and this can be done in
a generic way, enabling the construction of a corresponding set of computational
models in PRIMs. More specifically, the formulas are implemented as produc-
tion rules, which handle visual processing, problem state updates, and motor
processing. We have shown how such translation works for two specific reason-
ing strategies and we have run the computational models and made predictions
from the simulations about the data. It turned out that the predictions of one of
the models, corresponding to the own payo↵ strategy, fit the actual participants’
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data in terms of their response times remarkably well. We have also formulated
a model-based prediction for a future experiment.

All in all, we have shown that logic makes a contribution at Marr’s computa-
tional level by providing a precise specification language for cognitive processes.
Moreover, we have illustrated that logic has a fruitful role to play in theories
of resource-bounded strategic reasoning at the algorithmic level, namely in the
construction of computational cognitive models in PRIMs. The great advantage
of using the cognitive architecture PRIMs rather than an ad hoc computational
model, is that it already implements very precise, experimentally validated the-
ories about human memory and cognitive bounds on reasoning processes. In
comparison to ACT-R, PRIMs appears to be easier for logicians to learn.

Future work We aim to implement various sets of specifications of reasoning
strategies in separate models, inspired by the 39-model study of [37]. The aim
is to simulate repeated game play, both to determine which participants in a
new experiment most closely belong to which player types, as well as to study
possible learning e↵ects. An advantage of constructing PRIMs models, not only
logical formulas, is that quantitative predictions are generated, for example,
concerning decision times and locus of attention, which can then be tested in
further experiments, for example, using an eye-tracker.

Now that we have models in PRIMs, we can also make specific predictions
for training experiments, e.g. training people with second-order false belief tasks
or complex working memory tasks and investigating whether that helps them to
transfer these skills to “Marble drop with Surprising Opponent”.

From the logical perspective, the next step will be to provide a sound and
complete axiom system for strategic reasoning that models empirical human
reasoning in dynamic games of perfect information, including reasoning about
the higher-order beliefs of the opponent.
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Appendix A: Instruction sheet

The following instruction sheet was given to each participant of the experiment
presented in Section 2 and was explained to them by the experimenter.

- In this task, you will be playing two-player games. The computer is the other
player.

- In each game, a marble is about to drop, and both you and the computer
determine its path by controlling the orange and the blue trapdoors.

- You control the orange trapdoors, and the computer controls the blue trap-
doors.

- Your goal is that the marble drops into the bin with as many orange marbles
as possible. The computer’s goal is that the marble drops into the bin with
as many blue marbles as possible.

- Click on the left trapdoor if you want the marble to go left, and on the right
trapdoor if you want the marble to go right.

- How does the computer reason in each particular game?
The computer thinks that you already have a plan for that game,
and it plays the best response to the plan it thinks that you have for
that game.

However, the computer does not learn from previous games and does
not take into account your choices during the previous games.

- The first 14 games are practice games. At the end of each practice game,
you will see how many marbles you gained in that game, and also the total
number of marbles you have gained so far.

- The practice games are followed by 48 experiment games. At the beginning
of the experiment games, the total number of marbles won will be set at 0
again. At the end of each experiment game, you will see how many marbles
you gained in that game, and also the total number of marbles you have
gained so far.

- You will be able to start each game by clicking on the “START GAME”
button, and move to the next game by clicking on the “NEXT” button.

- At some points during the experiment phase, you will be asked a few ques-
tions regarding what guided your choices.

- There will be a break of 5 minutes once you finish 24 of the 48 experiment
games.

- The money you will earn is between 10 and 15 euros and depends on how
many marbles you have won during the experiment phase. You will get 10
euros for participation, and each marble you win will add 4 cents to your
amount. The final amount will be given to you rounded o↵ to the nearest 5
cents mark.


