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This paper discuses a bridging technique of the different perspectives on modeling strate-
gic reasoning, namely, experiments, logics and computational cognitive models. Empirical
studies describe human strategic behavior. Logical studies on one hand facilitate the study
of properties of such reasoning processes, on the other hand pave the way for implemen-
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cognitive functionalities in the realm of strategic reasoning. Bridging these methodologies
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1. Introduction

Strategies are everywhere, not just in ‘real’ games like chess and bridge, but also
in many social interactions in daily life: How can you create a win-win solution
in negotiations in contexts as local as the sale of your house, or as global as an
international treaty aimed at fighting global warming? How do you decide as a
new company entering the market whether to give your articles a high price or a
low one, reckoning with the strategy of the existing competing company? How
do you decide to which place in New York to go and try to meet your friend,
when only the meeting time and city have been coordinated in advance, and you
cannot communicate? Unlike when playing a chess game, we usually do not know
explicitly all the relevant details, leading to strategizing under partial information.
Choosing between possible meeting points where a friend might show up, pricing
of commodities without knowing the rival prices, or divulging fallback positions
in negotiations without knowing its effects are natural examples.

1.1. Modeling strategic reasoning in various fields

Because strategies play out in so many different areas of life, the study of strate-
gies has become an integral part of many areas of science: game theory itself,
which is usually viewed as part of economics; ethics and social philosophy; the
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study of multi-agent systems in computer science; evolutionary game theory in
biology; strategic reasoning in cognitive science; and the study of meaning in lin-
guistics. There are various signs of interdisciplinary cooperation between these
fields based on plausible viewpoints on the basic similarities between the perspec-
tives on strategies. Let us first briefly describe some of the different perspectives
on strategies.

Game theory: In this area of economics, strategies and their dependence on in-
formation form the main topics of study. One of the main focus of study is on
strategies bringing about equilibrium play in conflicting as well as cooperating sit-
uations. Many such important concepts, such as Nash equilibrium, sub-game per-
fect equilibrium, sequential equilibrium and extensions and modifications thereof
have been developed over the years by the game theorists while modelling var-
ious situations as games. In these games the players are considered with varied
information content, e.g. perfect, imperfect, incomplete and their strategies are
modelled accordingly. Such concepts have been developed by game theorists1

and adopted by the other areas. More recently, work on psychological game the-
ory2 has gained momentum which considers the effect of human emotions on their
strategies. This line of work often provides justifiable solutions to problems that
come up with the orthodox assumptions of rationality on the players as cited by
experimental studies on games.3,4

Mathematics: In mathematics, and in particular in set theory, game theory has re-
ceived a warm reception. Set theorists have investigated infinite games, focusing
mainly on the question of determinacy: does a particular game have a winning
strategy for one of the players? This question has important repercussions for de-
scriptive set theory.5 The axiom of determinacy (AD) which states that ‘a certain
type of two player perfect information infinite games is determined, that is, one
of the two players will always have a winning strategy’ is inconsistent with the
axiom of choice (AC), but certain related set of axioms which are actually con-
sistent with AC have led to interesting results in terms of provability inside ZFC
(Zermelo-Fraenkel set of axioms with AC) and more recently, in terms of the re-
lationship to large cardinal axioms.6

Philosophy: David Hume (1740) was probably the first person to mention the role
of mutual knowledge in coordination in his account of convention in A treatise of
Human Nature. He argued that without the required amount mutual knowledge,
beneficial social conventions would disappear. Subsequently, there have been a
few researchers who noted the importance of the role of common knowledge in
reasoning about one another in certain situations. However, Morris Friedell7 and
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David Lewis,8 in the late 1960s, were among the firsts who studied the concept of
coordination using game-theoretic methods. For this, they formally introduced the
concept of common knowledge, which came to be profitably used in economics.
In the 1980s, Michael Bratman started the philosophical analysis of intentions,
plans, and practical reason.9 Flowing out of this line of work, the notions of ac-
tion and agency form integral parts of the study on strategies.10

Multi-agent systems: In the begin of the 1990s, the field of multi-agent sys-
tems, investigating teamwork and other social interactions among software agents,
started to flower. Part of the investigations concentrated on agents’ planning and
intentions, inspired by Bratman’s philosophical work. The study of strategic rea-
soning forms another crucial ingredient of multi-agent systems. Agents, on the
basis of some information, reason to devise strategies for ensuring maximal gain.
Using the languages of logic and game theory, the models of strategic reasoning in
multi-agent systems have led to new insights into the dynamics of observation, up-
dating of knowledge and belief, preference change, and dialogues.11 Researchers
have also developed decidable/tractable formulations of strategies from the view-
point of both strategy synthesis and strategy verfication.12

Logic: Modeling social interaction has brought to the fore various logical sys-
tems to model agents’ knowledge, beliefs, preferences, goals, intentions, common
knowledge and belief.13 When interactions are modelled as games, reasoning in-
volves analysis of agents’ long-term powers for influencing outcomes. While re-
searching intelligent interaction, logicians have been interested in the questions
of how an agent selects a particular strategy, what structure strategies may have,
and how strategies are related to information. Thus, logicians have devised logical
models in which strategies are ‘first class citizens’, rather than unspecified means
to ensure outcomes.14,15

Cognitive science: In addition to idealized game-theoretic and logical studies
on strategies in interactive systems, there have also been experimental studies
on players’ strategies and cognitive modelling of their reasoning processes. The
classical game-theoretic perspective assumes that people are rational agents, max-
imizing their own utility by applying strategic reasoning. However, many exper-
iments3,4,16,17 have shown that people are not completely rational in this sense.
Players may be altruists, giving more weight to the opponent’s payoff; or they
may try to salvage a good cooperative relation in case they meet the other agent
again in future. Also, due to cognitive constraints such as working memory ca-
pacity,18,19 people may be unable to perform optimal strategic reasoning, even if
in principle they are willing to do so.Various cognitive models have been put for-
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ward to model such boundedly rational reasoning capabilities.18

Linguistic semantics and pragmatics: The concepts of strategies also play a role
in language use and interpretation. For example, pragmatics can be explained in
terms of a sender and receiver strategizing to understand and be understood, on
the basis of concise and efficient messages.20 Evolutionary game theory has been
used to explain the evolution of language; for example, it has been shown that in
signaling games, evolutionarily stable states occur when the sender’s strategy is
a one-one map from events to signals, and the receiver’s strategy is the inverse
map.21

1.2. Logical approaches to modeling strategic reasoning

The questions of how an agent selects a particular strategy, what structure strate-
gies may have, and how strategies are constituted, are of utmost importance in
the context of interaction situations, and as we see above, these questions arise in
different forms in different subject areas. For a joint perspective on strategizing in
related areas towards forming more realistic models of social and intelligent inter-
action, the need of the hour is to widen our scope of understanding to seemingly
orthogonal viewpoints on strategizing, in other words, strategic reasoning. As a
case in point, we describe below a meeting of game theory and logic for providing
models of strategic interaction.

The study of strategic reasoning forms a crucial ingredient of the research area of
intelligent interactive systems. Agents devise their strategies on how to interact
so as to ensure maximal gain in the interaction process modeled as games. Their
strategic reasoning is influenced by their knowledge, beliefs and intentions as well.
Various logical studies of games and strategic reasoning have led to new insights
into the dynamics of information,22,23 updating of knowledge and belief,24–28

preference change,29–31 and processes of strategic interaction.15,32–38 Studying
structures in strategies, namely union, intersection, sequential composition and
response strategies has led to describing top-down strategizing in large games
played by perfectly-informed players with full as well as limited resources.15,34,38

All these have now merged into broader studies of formal models of society, where
computer science meets decision theory, game theory, and social choice theory.

1.3. Cognitive science approaches to modeling strategic reasoning

In cognitive science, the term ‘strategy’ is used much more broadly than in game
theory. A well-known example is formed by George Polya’s problem solving
strategies (understanding the problem, developing a plan for a solution, carrying
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out the plan, and looking back to see what can be learned).39 Nowadays, cognitive
scientists construct fine-grained theories about human reasoning strategies,40,41

based on which they construct computational cognitive models. These models can
be validated by comparing the model’s predicted outcomes to results from experi-
ments with human subjects.42 Cognitive models developed within this framework
aim to explain certain aspects of cognition by assuming only general cognitive
principles. Cognitive models of simple games exist in which it is important to
know the opponent’s behavior,43–45 however, they do not take complex strategic
reasoning into account.

The usual game-theoretic perspective assumes that people are rational agents, op-
timizing their gain by applying strategic reasoning. However, many experiments
have shown that people are not completely rational in this sense. For example,
McKelvey and Palfrey4 have shown that in a traditional centipede game (cf. Fig-
ure 1) participants do not behave according to the Nash equilibrium reached by
backward induction. In this version of the game, the payoffs are distributed in
such a way that the optimal strategy is to always end the game at the first move.
However, in McKelvey and Palfrey’s experiment, participants stayed in the game
for some rounds before ending the game: in fact, only 37 out of 662 games ended
with the backward induction solution. One interpretation of this result is that the
game-theoretic perspective fails to take into account the reasoning abilities of the
participants. That is, perhaps, due to cognitive constraints such as working mem-
ory capacity, participants are unable to perform optimal strategic reasoning, even
if in principle they are willing to do so. Thus, building up computational cogni-
tive models for strategic reasoning, as suggested in our work,46 provides a way
to incorporate people’s beliefs and constraints within the scope of their reasoning
processes and also enhances our understanding of choices of strategies found in
the empirical studies done by other researchers4 as well as ourselves.16,17
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Figure 1. An example of a centipede game. For a detailed description, see 47.
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In 48, a comparative study of various cognitive architectures has been provided.
The quality of a cognitive model depends on its simplicity, its fit to the experi-
mental data and predictions. These models sometimes have numerical parameters
which can be tweaked, giving different outcomes. One can also specify the ini-
tial knowledge and actions of the model in a varied manner, resulting in different
ways of modeling a single task. An advantage of having cognitive models, be-
sides having statistical models, is that cognitive models can be broken down into
mechanisms. Another advantage of a cognitive model is that one can compare
the model’s output with human data, and acquire a better understanding of indi-
vidual differences. Strategic reasoning in complex interactive situations consists
of multiple serial and concurrent cognitive functions, and thus it may be prone
to great individual differences. Such differences become explicit in the modeling
because of the reduction mechanism of the cognitive architecture of ACT-R.42 It
provides an excellent architecture to model learning and the application of cog-
nitive skills. The theory has been validated by behavioral and neuro-scientific
research.49,50 From this computational cognitive modelling perspective, decision
strategies like backward induction for turn-taking games have been used to cap-
ture second-order social reasoning.45,51 For modelling strategic reasoning in such
games, both declarative memory (to retrieve successive steps) and working mem-
ory (to store temporarily) have been used.

1.4. Building bridges between empirical, logical and cognitive modeling

In recent years, many researchers have questioned the idealization that a formal
model undergoes while representing social reasoning methods (e.g. see [52,53]).
Do formal methods represent human reasoning satisfactorily or should we concen-
trate on empirical studies and models based on those empirical data? A tension
exists between the normative aspect of logic and the descriptive aspect of cogni-
tive science.54 A methodology for resolving this tension has been provided in our
work in [46,55] which deals with human strategic reasoning in games of perfect
information. Rather than thinking about formal and cognitive modeling as sepa-
rate, one can consider them to be complementary and investigate how they can aid
each other to bring about a more meaningful model of real-life scenarios. Game
experiments will lead us to the behavioral strategies of humans having varying
amounts of information. Such strategies will be modeled as logical formulas con-
stituting a descriptive logic of strategies which will help in the construction of
cognitive models. The cognitive models will predict human strategies which can
be tested against the human data available from the experiments. The following is
a schematic diagram of the process.
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Figure 2. A schematic diagram of the bridging technique between different methodologies.

In [55], we provided an attempt to bridge the gap between experimental studies,
cognitive modeling, and logical studies of strategic reasoning. In particular, a first
study of a cognitive model of strategic reasoning that is constructed with the aid
of a formal framework is discussed there. In [46], we extended the language that
we introduced in [55] to represent strategies by a new belief component, so that
we can describe reasoning about the opponent at a more fine-grained level. A new
architecture PRIMs,56 based on ACT-R, was used as the basis of the computa-
tional cognitive models. Actual implementations were made with respect to some
strategy formulas and predictions were made based on the simulations about the
data of the experiment reported in [16], closing the circle depicted in Figure 2.

To have a sustainable bridging technique between these methodologies, it is not
enough to construct computational cognitive models corresponding to certain
strategy formulas, but to come up with a translation system which, starting from
a strategy represented in formal logic, automatically generates a computational
model in the PRIMs cognitive architecture, which can then be run to generate de-
cisions made in certain games, e.g. perfect informations games in our case. Such
a translation system has been developed in [57,58] based on centipede-like games,
a particular kind of perfect informations games. Since we wanted to make predic-
tions on experiments like those reported in [16,17] which are based on centipede-
like games, we concentrated on these games. These games are like centipede
games (cf. Figure 1) in almost all respects, the only difference being that unlike
centipede games, the sum of the points of players may not increase in the subse-
quent moves.47

In the remainder of the paper, based on the work reported in [46,55,57,58], we
provide a systematic study of the endeavors underlying each of these schematic
arrows depicted in Figure 2 providing pointers towards the complementary con-
tributions of these methods in modeling human strategic behavior. To build up
our study, we start with describing a particular kind of game experiment,16,17 a
strategy logic46 and a computational cognitive model.56
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2. Experiment, logic and computational cognitive model

In this section we briefly describe an experiment done in two phases, a language
for describing strategic reasoning and a cognitive architecture, which are all essen-
tial ingredients for our study on the meeting of different methodologies involved
in modeling strategic behaviour of the humans.

2.1. Experiments

The experiments that we describe here are experiments on perfect information
games reported in [ 16,17] to analyze human strategic behavior. Experimental
studies in behavioral economics have shown that the backward induction outcome
is often not reached in large centipede games (cf. Figure 1). Instead of imme-
diately taking the ‘down’ option, people often show partial cooperation, moving
right for several moves before eventually choosing ‘down’.4,59,60 Accordingly, in
the experiments reported in [16,17], our main interest was to examine participants’
behavior in centipede-like games following a deviation from backward induction
behavior by their opponent right at the beginning of the game. We primarily asked
the following questions:

(1) Are people inclined to use forward induction when they play such games?
(2) If not, what are they actually doing? What roles are played by risk attitudes

and cooperativeness versus competitiveness?
(3) Do people take the perspective of their opponents and make use of theory of

mind?
(4) Can they be reasonably divided into types of players?

The experiments were conducted at the Institute of Artificial Intelligence (AL-
ICE) at the University of Groningen, The Netherlands. A group of 50 Bachelor’s
and Master’s students from different disciplines at the university took part in each
phase of the experiment. The participants had little or no knowledge of game
theory, so as to ensure that neither backward induction nor forward induction rea-
soning was already known to them. The participants played the finite perfect-
information games in a graphical interface on the computer screen (cf. Figure 3).
In each case, the opponent was the computer, which had been programmed to play
according to plans that were best responses to some plan of the participant. The
participants were instructed accordingly. In each game, a marble was about to
drop, and both the participant and the computer determined its path by controlling
the orange and the blue trapdoors: The participant controlled the orange trapdoors,
and the computer controlled the blue trapdoors. The participant’s goal was that
the marble should drop into the bin with as many orange marbles as possible. The
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computer’s goal was that the marble should drop into the bin with as many blue
marbles as possible.

THE  GAME

The  computer  decides  here.

The  computer  decides  here.

You  decide  here.

You  decide  here.

Figure 3. Graphical interface for the participants. The computer controls the blue trapdoors and
acquires pay-offs in the form of blue marbles (represented as dark grey in a black and white print),
while the participant controls the orange trapdoors and acquires pay-offs in the form of orange marbles
(light grey in a black and white print).

In the experiment reported in [16], we investigated whether people are inclined
to use forward induction in centipede-like games, rather than backward induction.
We found that in the aggregate it appeared that participants showed forward induc-
tion behavior in response to deviation from backward induction behavior by their
opponent, the computer, right at the beginning of the game. However, there exist
alternative explanations for the choices of most participants; for example, choices
could have been based on the extent of risk aversion that participants attributed to
the computer in the remainder of the game, rather than to the sunk outside option
that the computer has already foregone at the beginning of the game. Cardinal
effects seemed to play a role as well: a number of participants might have been
trying to maximize expected utility. For these reasons, the results of the experi-
ment did not provide conclusive evidence for forward induction reasoning on the
part of the participants.
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So, we followed up with a similar experiment, reported in [17], where we designed
centipede-like games with new payoff structures in order to make such cardinal
effects less likely. We asked a number of questions to gauge the participants’
reasoning about their own and the opponent’s strategy at all decision nodes of a
sample game. Even though in the aggregate, participants in the new experiment
still tend to slightly favor the forward induction choice at their first decision node,
their verbalized strategies most often depend on their own attitudes towards risk
and those they assign to the computer opponent, sometimes in addition to consid-
erations about cooperativeness and competitiveness.

The tasks that the participants had to perform in these experiments are mentioned
in the table below in the order given there.

Step 1 Introduction and instructions.
Step 2 Practice Phase: 14 games.
Step 3 - Experimental Phase: 48 game items, divided into

8 rounds of 6 different games each, in terms of
isomorphism class of pay-off structures.
- Each of the 6 games occurs once in each round;
in [16], these games occur in the same order in each round;
in [17], these games occur in a random order in each round.
- Question on computer’s behavior in several rounds: For [16]
Group A in rounds 3, 4, 7, 8; Group B in rounds 7, 8.
For [17] Group A in the middle of the game at certain rounds;
Group B at the end of the game in certain rounds.

Step 4 Final Question(s): In [16], the question was about possible
future moves of the computer; in [17], the questions
were regarding decisions at all nodes of a sample game.

2.2. Logic

With regard to the logical framework, we describe the one proposed in [46]. We
restrict to the strategy specification language discussed there and present the same
as that is the main ingredient of the formal framework involved in our bridge-
building method. We start with describing extensive form games.
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2.2.1. Extensive form games

Extensive form games are a natural model for representing finite games in an
explicit manner. In this model, the game is represented as a finite tree where the
nodes of the tree correspond to the game positions and edges correspond to moves
of players. For this logical study, we will focus on game forms, and not on the
games themselves, which come equipped with players’ payoffs at the leaf nodes
of the games. We present the formal definition below.

Let N denote the set of players; we use i to range over this set. For the time
being, we restrict our attention to two player games, and we take N = {C, P}. We
often use the notation i and ı to denote the players, where C = P and P = C. Let
Σ be a finite set of action symbols representing moves of players; we let a, b range
over Σ.

2.2.2. Game trees

Let T = (S ,⇒, s0) be a tree rooted at s0 on the set of vertices S and let ⇒ :
(S × Σ) → S be a partial function specifying the edges of the tree. The tree T is
said to be finite if S is a finite set. For a node s ∈ S , let

→
s= {s′ ∈ S | s

a
⇒s′ for

some a ∈ Σ}. A node s is called a leaf node (or terminal node) if
→
s= ∅.

An extensive form game tree is a pair T = (T, λ̂) where T = (S ,⇒, s0) is a tree.
The set S denotes the set of game positions with s0 being the initial game position.
The edge function⇒ specifies the moves enabled at a game position and the turn
function λ̂ : S → N associates each game position with a player. Technically, we
need player labelling only at the non-leaf nodes. However, for the sake of uniform
presentation, we do not distinguish between leaf nodes and non-leaf nodes as far
as player labelling is concerned. An extensive form game tree T = (T, λ̂) is said
to be finite if T is finite. For i ∈ N, let S i = {s | λ̂(s) = i} and let frontier(T) denote
the set of all leaf nodes of T .

2.2.3. Strategies

A strategy for player i is a function µi which specifies a move at every game
position of the player, i.e. µi : S i → Σ. A strategy µi can also be viewed as a
subtree of T where for each node belonging to player i, there is a unique outgoing
edge and for nodes belonging to player ı, every enabled move is included.

A partial strategy for player i is a partial function σi which specifies a move
at some (but not necessarily all) game positions of the player, i.e. σi : S i ⇀ Σ. As
above, a partial strategy σi can also be viewed as a subtree of T where for some
nodes belonging to player i, there is a unique outgoing edge and for other nodes
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belonging to player i as well as nodes belonging to player ı, every enabled move
is included.

2.2.4. Syntax for extensive form game trees

We now build a syntax for game trees. We use this syntax to parametrize the belief
operators given below so as to distinguish between belief operators for players at
each node of a finite extensive form game. Let Nodes be a finite set. The syntax
for specifying finite extensive form game trees is given by:

G(Nodes) ::= (i, x) | Σam∈J((i, x), am, tam )

where i ∈ N, x ∈ Nodes, J(finite) ⊆ Σ, and tam ∈ G(Nodes).

Given h ∈ G(Nodes), we define the tree Th generated by h inductively as follows
(see Figure 4 for an example):

- h = (i, x): Th = (S h,⇒h, λ̂h, sx) where S h = {sx}, λ̂h(sx) = i.
- h = ((i, x), a1, ta1 ) + · · · + ((i, x), ak, tak ): Inductively we have trees T1, . . .Tk

where for j : 1 ≤ j ≤ k, T j = (S j,⇒ j, λ̂ j, s j,0).

Define Th = (S h,⇒h, λ̂h, sx) where

– S h = {sx} ∪ S T1 ∪ . . . ∪ S Tk ;
– λ̂h(sx) = i and for all j, for all s ∈ S T j , λ̂h(s) = λ̂ j(s);
– ⇒h =

⋃
j:1≤ j≤k({(sx, a j, s j,0)} ∪ ⇒ j).

Given h ∈ G(Nodes), let Nodes(h) denote the set of distinct pairs (i, x) that occur
in the expression of h.

1

a

}}

b

!!

x0

2

c1

��

d1

��

x1 2

c2

��

d2

��

x2

y1 y2 y3 y4

Figure 4. Extensive form game tree. The nodes are
labelled with turns of players and the edges with the ac-
tions. The syntactic representation of this tree can be
given by:
h = ((1, x0), a, t1) + ((1, x0), b, t2), where
t1 = ((2, x1), c1, (2, y1)) + ((2, x1), d1, (2, y2));
t2 = ((2, x2), c2, (2, y3)) + ((2, x2), d2, (2, y4)).

2.2.5. Strategy specifications

We are now ready to describe the strategy specification language. The main case
specifies, for a player, which conditions she tests before making a move. In what
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follows, the pre-condition for a move depends on observables that hold at the
current game position, some belief conditions, as well as some simple finite past-
time conditions and some finite look-ahead that each player can perform in terms
of the structure of the game tree. Both the past-time and future conditions may
involve some strategies that were or could be enforced by the players. These pre-
conditions are given by the syntax defined below.

For any countable set X, let BPF(X) (the boolean, past and future combinations of
the members of X) be sets of formulas given by the following syntax:

BPF(X) ::= x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 〈a+〉ψ | 〈a−〉ψ,

where a ∈ Σ, a countable set of actions.

Formulas in BPF(X) can be read as usual in a dynamic logic framework and are
interpreted at game positions. The formula 〈a+〉ψ (respectively, 〈a−〉ψ) refers to
one step in the future (respectively, past). It asserts the existence of an a edge after
(respectively, before) which ψ holds. Note that future (past) time assertions up to
any bounded depth can be coded by iteration of the corresponding constructs. The
‘time free’ fragment of BPF(X) is formed by the boolean formulas over X. We
denote this fragment by Bool(X).

For each h ∈ G(Nodes) and (i, x) ∈ Nodes(h), we now add a new operator B(i,x)
h to

the syntax of BPF(X) to form the set of formulas BPFb(X). The formula B(i,x)
h ψ

can be read as ‘in the game tree Th, player i believes at node x that ψ holds’. We
reiterate our disclaimer from [46]. One might feel that it is not elegant that the
belief operator is parametrized by the nodes of the tree. However, our main aim is
not to propose a logic for the sake of its nice properties, but to have a logical lan-
guage that can be used suitably for constructing computational cognitive models
corresponding to participants’ strategic reasoning.

Let Pi = {pi
0, pi

1, . . .} be a countable set of observables for i ∈ N and P =
⋃

i∈N Pi.
To this set of observables we add two kinds of propositional variables (ui = qi) to
denote ‘player i’s utility (or payoff) is qi’ and (r ≤ q) to denote that ‘the rational
number r is less than or equal to the rational number q’. The syntax of strategy
specifications is given by:

Strati(Pi) ::= [ψ 7→ a]i | η1 + η2 | η1 · η2,

where ψ ∈ BPFb(Pi). The basic idea is to use the above constructs to specify
properties of strategies as well as to combine them to describe a play of the game.
For instance, the interpretation of a player i’s specification [p 7→ a]i where p ∈ Pi,
is to choose move a at every game position belonging to player i where p holds.
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At positions where p does not hold, the strategy is allowed to choose any enabled
move. The strategy specification η1 +η2 says that the strategy of player i conforms
to the specification η1 or η2. The construct η1 · η2 says that the strategy conforms
to specifications η1 and η2.

2.3. Computational cognitive model

We now provide a brief description of the cognitive architectures at the basis of our
computational cognitive models. We first provide a description of ACT-R based
on which the architecture of PRIMs has been developed, followed by a description
of PRIMs, especially pointing out the differences from ACT-R. The description of
ACT-R is based on what we provided in [55], and that of PRIMs in [46].

2.3.1. ACT-R

ACT-R, Adaptive Control of Thought - Rational, is an integrated theory of cog-
nition as well as a cognitive architecture that many cognitive scientists use.42 It
consists of modules that link with cognitive functions, for example, vision, motor
processing, and declarative processing. Each module maps onto a specific brain
region. Furthermore, each module is associated with a buffer and the modules
communicate via these buffers. Importantly, cognitive resources are bounded in
ACT-R models: Each buffer can store just one piece of information at a time.
Consequently, if a model has to keep track of more than one piece of information,
it has to move the pieces of information back and forth between two important
modules: declarative memory and the problem state. Moving information back
and forth comes with a time cost, in some cases causing a cognitive bottleneck.18

The declarative memory module represents long-term memory and stores infor-
mation encoded in so-called chunks, representing knowledge structures. For ex-
ample, a chunk can be represented as a formal expression with a defined meaning.
Each chunk in declarative memory has an activation value that determines the
speed and success of its retrieval. Whenever a chunk is used, the activation value
of that chunk increases. As the activation value increases, the probability of re-
trieval increases and the latency (time delay) of retrieval decreases. Therefore, a
chunk representing a comparison between two payoffs will have a higher proba-
bility of retrieval, and will be retrieved faster, if the comparison has been made
recently, or frequently in the past.61 Anderson42 provided a formalization of the
mechanism that produces the relationship between the probability and speed of
retrieval. If the activation value drops below a certain minimal value (the retrieval
threshold), the related information is no longer accessible. In that case, the system
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will report a retrieval failure after a constant time factor. If the activation value is
above the retrieval threshold, the information is accessible. Then, the higher the
activation value, the faster the retrieval will be. As soon as a chunk is retrieved
from declarative memory, it is placed into the declarative module’s buffer. As
mentioned earlier, each ACT-R module has a buffer that may contain one chunk
at a time. On a functional level of description, the chunks that are stored in the
various buffers are the knowledge structures of which the cognitive architecture is
aware.

The problem state module also contains a buffer that can hold one chunk in which
information can be temporarily stored. Typically, the problem state stores a sub-
solution to the problem at hand. In the case of a social reasoning task, this may
be the outcome of a reasoning step that will be relevant in subsequent reasoning.
Storing information in the problem state buffer is associated with a time cost (typ-
ically 200ms).

A central procedural system recognizes patterns in the information stored in the
buffers, and responds by sending requests to the modules, for example, ‘retrieve a
fact from declarative memory’. This condition-action mechanism is implemented
in production rules. Production rules have so-called utility values. The model
receives reward or punishment depending on the correctness of its response. Both
reward and punishment propagate back to previously fired production rules, and
the utility values of these production rules are increased in case of reward and
decreased in case of punishment by a process called utility learning.42 If two or
more production rules match a particular game state, the production rule with the
highest utility is selected.

2.3.2. PRIMs

PRIM, the primitive elements theory, is a recent cognitive theory developed
by Taatgen, who implemented it in the computational cognitive architecture
PRIMs.56 It builds on ACT-R, using ACT-R modules, buffers and mechanisms
such as production compilation. However, in contrast to ACT-R, PRIMs is suited
for modeling general reasoning strategies that are not included in the basic cogni-
tive architecture shared by all humans, but that are at the same time more general
than ad hoc task-specific reasoning rules. Thereby, PRIMs is especially suitable
for modeling the nature and transfer of cognitive skills. Because of our need to
model participants’ beliefs about the opponent’s beliefs, we decided to use PRIMs
rather than ACT-R as cognitive architecture in [46] to model more sophisticated
reasoning strategies.
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More specifically, PRIM breaks down the complex production rules typically used
in ACT-R models into the smallest possible elements (PRIMs) that move, compare
or copy information between modules (cf. Figure 5). There is a fixed number of
PRIMs in the architecture. When PRIMs are used often over time, production
compilation combines them to form more complex production rules. While those
PRIMs may have some task-specific elements, PRIMs also have task-general ele-
ments that can be used by other tasks. Taatgen56,62 showed the predictive power
of PRIMs by modeling a variety of transfer experiments such as text editing, arith-
metic, and cognitive control. The architecture has been used to model children’s
development of theory of mind,63 transfer between the ‘take the best’ heuristic and
the balance beam task,64 and children’s mistakes in arithmetic.65 PRIMs models
can also be run to predict the estimated time to complete certain tasks. Like ACT-
R, PRIMs models cognitive resources as being bounded.

3. Details of the bridging techniques

To describe the essentials of the bridging between experiments, logic and com-
putational cognitive models we will mainly focus on the centipede-like games
presented in Figure 6, which are the Games 1, 4 and 1′ used in the experiment
reported in [17].
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Figure 6. Games 1, 4 and 1′ from [17]

3.1. Experimentation −→ Formal modeling

Empirical studies on games can describe human strategic behavior. Logical stud-
ies on one hand facilitate the study of properties of such reasoning processes in
games, on the other hand pave the way for implementation through formal lan-
guages. It is this second feature that we utililize for our bridging methodology.
We will use a suitably defined formal language to express human strategic behav-
ior as found in the empirical studies. As a case in point, we consider some of the
strategies used in playing games 1, 1′ and 4 as reported in [17], and represent them
in the language described in Section 2.2.

We start with fixing the preliminary notions. Let us assume that actions are part
of the observables, that is, Σ ⊆ P. The semantics for the actions can be defined
appropriately. Let n1, . . . , n4 denote the four decision nodes of games 1 and 4 of
Figure 6, with C playing at n1 and n3, and P playing at the remaining two nodes
n2 and n4. Since game 1′ is a subgame of game 1, the three decision nodes are
denoted by n2, n3 and n4. We have four belief operators for the games 1 and 4,
namely two per player. We abbreviate some formulas that describe the payoff
structure of the games:

α := 〈d〉〈 f 〉〈h〉((uC = pC) ∧ (uP = pP))
(from the current node, a d move followed by an f move followed by an
h move lead to the payoff (pC , pP) )
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β := 〈d〉〈 f 〉〈g〉((uC = qC) ∧ (uP = qP))
(from the current node, a d move followed by an f move followed by a
g move lead to the payoff (qC , qP) )

γ := 〈d〉〈e〉((uC = rC) ∧ (uP = rP))
(from the current node, a d move followed by an e move lead to the pay-
off (rC , rP) )

δ := 〈c〉((uC = sC) ∧ (uP = sP))
(from the current node, a c move leads to the payoff (sC , sP) )

χ := 〈b−〉〈a〉((uC = tC) ∧ (uP = tP))
(the current node can be accessed from another node by a b move from
where an a move leads to the payoff (tC , tP) )

Now we can define the conjunction of these descriptions to describe the payoff
structures of the games in Figure 6:

ϕ1 := α1 ∧ β1 ∧ γ1 ∧ δ1 ∧ χ1 ϕ4 := α4 ∧ β4 ∧ γ4 ∧ δ4 ∧ χ4

ϕ1′ := α1′ ∧ β1′ ∧ γ1′ ∧ δ1′

Let ψ j
i denote the conjunction of all the order relations of the rational payoffs for

player i (∈ {P,C}) given in Game j (∈ {1, 4, 1′}) of Figure 6.

Strategy specifications describing forward induction (extensive form rationaliz-
able (EFR))66 reasoning of player P at the node n2 in games 1 and 4 are as fol-
lows:

η1
P : [(ϕ1 ∧ ψ

1
P ∧ ψ

1
C ∧ 〈b

−〉root ∧ Bn2,P
g1 〈d〉¬e ∧ Bn2,P

g1 〈d〉〈 f 〉g) 7→ d]P

η4
P : [(ϕ4 ∧ ψ

4
P ∧ ψ

4
C ∧ 〈b

−〉root ∧ Bn2,P
g4 〈d〉e ∧ Bn2,P

g4 〈d〉〈 f 〉g) 7→ c]P

Backward induction reasoning at the same node n2 for these games can be formu-
lated as follows:

ζ1
P : [(ϕ1 ∧ ψ

1
P ∧ ψ

1
C ∧ 〈b

−〉root ∧ Bn2,P
g1 〈d〉e ∧ Bn2,P

g1 〈d〉〈 f 〉g) 7→ c]P

ζ4
P : [(ϕ4 ∧ ψ

4
P ∧ ψ

4
C ∧ 〈b

−〉root ∧ Bn2,P
g4 〈d〉 f ∧ Bn2,P

g4 〈d〉〈 f 〉h) 7→ d]P

We note here that in game 1, P has a unique extensive form rationalizable strategy
and a unique backward induction strategy and they are not identical, whereas in
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game 4 all strategies can be considered as both backward induction and extensive
form rationalizable strategies. Thus the formulas for game 4 provide some exam-
ple cases.

We now describe some other simple strategies of players with different kinds of
restrained reasoning capabilities. Note that such limited reasoning is ubiquitous in
our daily life (see e.g. [45]). A myopic (or near-sighted) player can be considered
as one who only considers her current node and the next one to compare her
payoffs and act rationally depending on those payoffs without being able to look
further into the game (cf. [67]). Such a player-strategy can be described for game
1′ as follows:

κ1′
P : [(δ1′ ∧ γ1′ ∧ (1 ≤ 2) ∧ root) 7→ c]P

One can also consider players who are only capable or interested to look at their
own payoffs and do not consider the opponent’s payoffs at all and move wherever
they get more payoff (cf. [68]). Their strategy in game 1′ can be described as
follows:

χ1′
P : [(α1′ ∧ β1′ ∧ δ1′ ∧ γ1′ ∧ (1 ≤ 2) ∧ (2 ≤ 4) ∧ (2 ≤ 3) ∧ root) 7→ d]P

Note that in the above set of formulas, we only consider the relevant pay-offs,
e.g. δ and γ in case of the κ formula, and α, β, δ, and γ for the χ formula. In
fact, one could ignore the payoffs for C for the χ formula. We will come back
to these strategies in Section 3.3 when we validate the model predictions with
the experimental results. The experimental findings17 showed that c was played
about 35% in game 1, about 28% in game 4, and about 41% in game 1′ at the first
decision node for the participant P.

3.2. Formal modeling −→ Cognitive modeling

Computational cognitive models provide ways to explore the essence of cognitive
functionalities in the realm of strategic reasoning. The current method of con-
structing computational cognitive models is basically ad hoc - created by hand.
For example, decision strategies like backward induction for turn-taking games
have been used to capture second-order social reasoning.45,51 Using the language
described in Section 2.2, Top57 has devised a method that automatically gener-
ates cognitive models from strategy formulas, without human intervention. In this
section, we describe the main points of this approach - for details, see [58]. The
models are constructed based on the PRIMs architecture.

In what follows, we provide for each component in the logical language the cor-
responding behaviour of a PRIMs model generated using that component.
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- 〈a+〉 and 〈a−〉: A model translated from a formula containing these opera-
tors uses focus actions63 to move its visual attention to the specified location.
Focus actions take time to complete similar to human gazing, causing these
operators to increase the model’s reaction time.

- root: When a strategy formula contains the proposition root, the PRIMs
model will visually inspect the specified node to determine whether it is the
root of the tree.

- turni: When a strategy formula contains a proposition turni, where i is C or
P, the PRIMs model will read the player name from the specified node in the
game tree, and compare it to i.

- (ui = qi): The proposition (ui = qi) states that player i’s payoff is equal to qi at
a certain location. The PRIMs model will compare qi to a value in its visual
input. Because this value may be required for future comparisons, it is also
stored in an empty slot of working memory.

- (r 6 q): A PRIMs model cannot instantly access each value in a visual dis-
play: it has to remember them by placing them in working or declarative
memory before it can compare them. A proposition (ui = qi) causes such
a value to be stored in working memory. A proposition (r 6 q) then sends
two of these values from working memory to declarative memory, to try and
remember which one is bigger. When a model is created, its declarative mem-
ory is filled with facts about single-digit comparisons, such as (0 6 3) and
(2 6 2).

- B(i,x)
h and a: To describe the PRIMs model behavior, let us consider an exam-

ple of a belief formula:

B(C,n1)
g1 〈b+〉c

This formula can be read as ‘In Game 1, at node 1, player C believes that
after playing b, c will be played’. To verify such a belief, a model employs a
plan of action similar to the ones used by models in [69]. When a model is
created, it contains several strategies in its declarative memory. When a model
verifies a belief, it sends a partial sequence of actions to declarative memory,
corresponding to the assumptions of the belief, in an attempt to retrieve a full
sequence of actions, which conforms to a strategy. Using the formula above
as an example, the assumptions of the belief are that b is played. Therefore the
model sends the sequence b to declarative memory. All sequences b-c, b-d-e,
b-d-f -g and b-d-f -h could be retrieved, depending on the strategies present
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in declarative memory. However, only b-c verifies B(C,n1)
g1 〈b+〉c. All the other

sequences falsify it.

As we have mentioned in Section 3.1, strategies such as BI and EFR can have mul-
tiple solutions in one game, when there are payoff ties (cf. game 4 in Figure 6).
In this case one has to exhaustively list all solutions for the specified strategy. Be-
cause of this, the translation system as reported in [58] allows for a strategy to
consist of a list of multiple strategy formulas. The PRIMs model generated from
this list tries to verify each formula in it, using the behaviour described above,
until it finds one it can verify, and play the action prescribed by the formula it
verified. There is no need to specify what the model has to do when it cannot
verify any of the formulas in the list - the list is exhaustive, and at least one of the
formulas holds.

A pertinent question here could be as follows: How to make this exhaustive list of
strategy formulas? Doing it with hand is just moving the burden from the ad hoc
construction of computational cognitive models to the ad hoc listing of strategy
formulas. This could be taken care of quite easily by implementing a software
for generating this exhaustive list of formulas, given the alphabet of the language,
formation rules and the finite game(s) under consideration.

While describing the bridging methodologies, (i) experiment to logic, and (ii)
logic to cognitive modeling, we have only used the syntax of the logic as pre-
sented in Section 2.2. We neither needed the semantics of the logic, nor any
properties within the purview of logic. So we could have easily restricted to some
suitable formal language doing away with the logic aspect altogether. The reason
that we do not do so, and logic is an integral part of this bridge-building tech-
nique is that, presenting the whole logical framework, that is, the language plus
semantics provides a sanity check on, for example, the expressivity of the lan-
guage. Moreover, without the semantics it would not have been possible to attach
the respective roles of the different language components in the PRIMs models.
Because of space restrictions we did not present the semantics of the language
described in Section 2.2, it is available in [46].

3.3. Cognitive modeling −→ Experimentation

Towards completing the full circle in our schematic diagram of Figure 2, based on
the work done in [58], we now provide a comparison of how the computational
cognitive models built by hand as well as by the translation system described in
Section 3.2 performed with respect to the human participants in the experiment
reported in [46].
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We consider four models: a handmade myopic and own-payoff model, and an
automatically generated myopic and own-payoff model (cf. Section 3.1). These
automatically generated myopic and own-payoff models are generated from the
myopic and own-payoff strategy formulas for game 1′. These models play Game
1′ (see Figure 6) only. They play against computer opponents who play pre-
specified moves. The models play as player P, whereas the computer opponent
plays as player C. Each model was run 50 times, where it plays 50 games, to
simulate 50 virtual participants who play 50 games each. Reaction times and de-
cisions were recorded.

The reaction times for the four models, as well as the human participants in [46],
can be found in Figure 7. It indicates that the myopic models are faster than
the own-payoff models, and the generated models are faster than the handmade
models. Human players tend to be faster than these models, but they may not use
the myopic and own-payoff strategies, which is why there is no point in making
direct comparisons for now.

Figure 7. Reaction times for handmade and automatically generated myopic and own-payoff models,
as well as the human participants in [46], when making their first decision in Game 1′.

The abilities of the translation system were also investigated by looking at novel
automatically generated models playing games 1 and 4 (see Figure 6). For both
games, two models were generated: one that uses backward induction (BI), and
one that uses extensive-form rationalizability (EFR). These strategy formulas not
only contain payoffs and comparisons, like the myopic and own-payoff strategy
formulas, but also contain beliefs. Because both BI and EFR strategies have mul-
tiple solutions in game 4, exhaustive strategy formulas are required to describe
these strategies.

The reaction times for the BI and EFR models can be found in Figure 8. These
exhaustive models are a lot slower than the myopic and own-payoff models. Fur-
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thermore, reaction times in Game 1 are faster than reaction times in Game 4. It
seems that reaction times are a function of the number of formulas required to
create the exhaustive strategy formula: for both BI and EFR, in Game 1, only one
formula is needed. In Game 4, BI requires two formulas, and EFR requires four
formulas. To test this, a simple linear regression using number of formulas was
performed to predict reaction times. A significant regression equation is found
(F(1, 189) = 432.6, p < 2.2 · 10−16), with an R2 of 0.696. Predicted reaction time
in milliseconds is equal to 10401 + 50453·(number of formulas).

Figure 8. Reaction times for automatically generated BI and EFR models, when making their first
decision. Here, ‘1 BI’ denote the reaction time for the BI model in Game 1.

4. Conclusion and future work

In this paper we have presented a broad overview of a bridging methodology be-
tween the so-called orthogonal approaches towards modeling human reasoning -
descriptive reasoning methods vis-à-vis normative or idealized reasoning meth-
ods. In [ 55], these ideas were presented for the first time, and we followed it
up with certain extensions in [46], providing the first ever description of how the
cycle depicted in Figure 2 can be completed in terms of connecting the different
methods. Based on subsequent work17,57,58 we provide here more detailed explo-
rations of the underlying ideas for each of the arrows in Figure 2. They provide
further proofs of concept of the methodology under consideration.

It is evident that an in-depth study of these connections between different methods
also provide novel insight into the individual methods. The experimental findings
on strategic reasoning of humans suggest for incorporating newer operators in the
logical languages to deal with such kind of reasoning. For example, risk-taking
and risk-averseness form a major part of the considerations of the participants in
the experiments reported in [16,17]. This suggests that a graded belief operator
might model the participants’ behavior in a better way in comparison to the be-
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lief operators that we use in the current work. From the computational cognitive
modeling perspective, it is useful to note that the performance of automated mod-
els is better than the corresponding handmade models (cf. Figure 7). This could
speed up research to a great extent in this area. Also, it is found that the reaction
times of the models are too slow compared to human reaction times (cf. Figure 7).
This suggests the need of further development of the focus actions in the PRIMs
model.58 Finally, from the experimentation viewpoint, given the exhaustive list of
strategy formulas and the corresponding cognitive models, it is useful to have a
comparative study of these strategies empirically and then to have a comparison
with the predictions of the cognitive models.

Marr70 has influentially argued that any task computed by a cognitive system must
be analyzed at the following three levels of explanation (in order of decreasing
abstraction):

the computational level: identification of the goal and of the information-
processing task as an input - output function;

the algorithmic and representational level: specification of an algorithm
which computes the function;

the implementation level: physical or neural implementation of the algorithm.

According to Isaac et al.,71 logic can be of use at each of Marr’s three levels, but
in the history of cognitive science, logic has been especially useful at the compu-
tational level. Baggio and colleagues72 provide some fruitful examples in which
computational level theories based on appropriate logics predict and explain be-
havioral data and even EEG data in the cognitive neuroscience of reasoning and
language. As to computational cognitive modeling, Cooper and Peebles73 argue
that computational cognitive architectures such as ACT-R through their theoretical
commitments constrain declarative and procedural learning, thereby constraining
both the functions that can be computed (the computational level) and the way that
they can be computed (the algorithmic level). Through our bridging methodology
we show that this study based on logic, experiment and computational cognitive
model can play a fruitful role at all these levels and at the interfaces between them.

A natural continuation for this line of work is to model partially-informed agents’
strategies which provide interesting challenges - incorporating information struc-
tures and memory restrictions leading to evolution of strategies in formal frame-
works, testing and introducing such information states in experimental subjects,
and modelling such states as cognitive modules. As before, one should start with
developing logical frameworks, possibly using automata-theoretic techniques.
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Then one can produce computational cognitive models based on these formal
frameworks, and finally validate those models based on game experiments that
have been performed earlier to investigate human strategic reasoning under par-
tial information. The focus would be to overcome interdisciplinary modelling
challenges and construct computationally useful and efficient models of human
society.
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