
Receiving messages in their correct order:
Analyzing broadcast protocols in dynamic epistemic logics

(a technical report)

Spandan Das1 and Sujata Ghosh2

1 Indian Statistical Institute, Kolkata, India
2 Indian Statistical Institute, Chennai, India

spandandas94@gmail.com, sujata@isichennai.res.in

Keywords: Broadcast Protocols, Correctness of Protocols, Dynamic Epistemic Logic, Algorithm, Complexity

Abstract: In this paper we analyse certain distributed protocols using logical frameworks. In particular, we provide a
dynamic epistemic logic analysis of certain broadcast protocols, viz. Birman-Schiper-Stephenson protocol
and Lamport’s mutual exclusion protocol. In the process, we provide correctness proofs of these protocols via
knowledge-based reasoning. We also provide a detailed algorithmic analysis of the logical modeling of these
protocols.

1 INTRODUCTION

Distributed systems occur ubiquitously in todays world of computing and as such, a great deal of effort has
been provided towards improving our understanding of these systems. A major challenge is to deal with such
systems efficiently and effectively. The distributed nature of control and information in these systems lead us to
consider the tasks of the systems in terms of the global behavior of the system, even though the actions that an
individual processor performs can depend only on its local information.

Since the design of a distributed system involves the behavior and interaction between individual processors
in the system, designers frequently find it useful to reason intuitively about processors’ states of knowledge at
various points in the execution of a system. Over the years, states of knowledge of groups of processors have
become useful concepts for the design and analysis of distributed protocols. Epistemic logic and its variants
provide us with a proven methodology to analyze these knowledge states of processors and their interactions. A
seminal work in this area is (Halpern and Zuck, 1992) which provides a uniform knowledge-based framework to
deal with the sequence transmission problem in both synchronous and asynchronous settings.

Over the years, such frameworks have been used to model various authentication protocols (for a survey, see
(Ahmadi et al., 2019)), and epistemic and temporal epistemic logics played a major role in the analyses of such
protocols. Dynamic epistemic logics have also been used to model such protocols, but as described in (Dechesne
and Wang, 2010), there are certain limitations to such approaches in terms of handling equivalence of messages.
However, these logics are quite adept in handling higher-order uncertainties and partial information in protocols
(e.g., see (van Ditmarsch et al., 2014)).

In dynamic epistemic logics, the actions/events bring in changes in the epistemic states of the agents, but
these changes happen immediately. Consequently, these logics are generally not appropriate for modelling com-
munication of information where there is a time gap between the send-event and the receive-event, a natural
occurrence in asynchronous systems. Recently, some variants of dynamic epistemic logics have been developed
to deal with communication in asynchronous systems, e.g., see (Knight et al., 2019; Balbiani et al., 2020), both
of which extends the usual dynamic epistemic language so as to express the time-lag in communication.

This work uses a simple variant of dynamic epistemic logic, where the action updates are generally modeled
as soft updates (e.g., see (Baltag and Smets, 2008)), i.e., only the agent relations get updated, and there is no
change in the set of possible worlds. The logic is used to model communication of information in form of message
passing in asynchronous systems. In such systems, communication speed might differ from channel to channel
leading to problems in the arrangement of messages from different processes in their correct temporal order. In
case the messages are not executed in their correct temporal order, the system might act erroneously. The goal of
distributed protocols such as BSS and Lamport’s mutual exclusion is to choose an execution order so that such
inconsistencies do not occur.

The focus is on the modelling of broadcast protocols (Singhal and Shivaratri, 1994) in the framework men-
tioned above together with the correctness proofs of such protocols in terms of knowledge-based reasoning pro-
vided by the framework. In addition, implementation details and complexity analyses are also provided. We
basically model the effect of following these protocols on certain message passing systems. The novelty of this
work is two-fold. On one hand, broadcast protocols are natural candidates for analyses in terms of dynamic
epistemic logics, but to the best of the knowledge of the author(s), such logical analyses of these protocols have
not been done before. On the other hand, a simple variant of dynamic epistemic logic has been used to deal with
these asynchronous systems, and that was made possible due to the usage of the different possible orderings of
the messages as possible worlds of the underlying Kripke model used to describe such systems.

We note here that these broadcast protocols have been studied quite extensively over the years and correctness
proofs are also there in the literature. Our goal here is to showcase the use of dynamic epistemic logic in handling
the knowledge-based reasoning of such systems. We believe that this methodology can be adopted for modelling
the underlying reasoning processes in different distributed protocols which would provide a better understanding
of such protocols applied on asynchronous systems.

We have assumed some properties of the asynchronous systems for our analyses which might not be valid in
general. First of all, we assume that each process has a local clock with respect to which it can arrange local send
and receive events in their correct temporal order. Secondly, inter-process communication channels are First In
First Out (FIFO) in nature, i.e., two messages from the same process are received in their order of generation by
any other process. Thus each process can always arrange two messages from the same process in their correct
temporal order. Thirdly, the set of messages generated by all the processes is finite and each process has an
estimate of this set, that is, each process has an initial knowledge about the set of messages generated in the

system. This estimate must be uniform in nature, i.e., all processes must know the same set of messages, and also
the actual set of messages generated in the system must be a subset of the estimated set. Due to overestimation
if a message is never generated, we can always assume that it is sent at local time ∞ and received at local time
∞ by other processes. If more than two messages from a process remain unsent (i.e., they have sending times at
∞), we assign an arbitrary generation order to them and assume that they are received in the same order by other
processes.

In section 2, we introduce the broadcast protocols that we would analyze in this work. Section 3 contains the
logical analyses of the protocols, with worked-out examples being provided in the appendices. Section 4 deals
with the correctness proofs, whereas, section 5 deals with relevant algorithms and the run-time complexity of the
algorithms. We conclude in section 6.

2 BROADCAST PROTOCOLS

In asynchronous distributed systems (Singhal and Shivaratri, 1994), when the communication of information
is taken care of by message-passing, more often than not, the messages cannot be ordered according to their time
of generation, the main reason being the fact that the global clock is unavailable. However, there is a reasonable
way in which one can say that a message m1 is generated before another message m2. If m1 is received by the
sender of m2 before m2 is sent then evidently m1 is generated before m2. Such an ordering, defined by Lamport,
is given as follows:

Definition 1. (Causal ordering). Let a and b be two events. We say a causally precedes b (notation a→ b) if one
of the following three cases happen:

1. a and b are events on the same process and a chronologically precedes b by local clock of the process.
2. a is the send event and b is the receive event of the same message.
3. There exist an event c such that a→ c and c→ b.

If none of these three cases happen then we say a and b are concurrent.

Various protocols have been developed for such distributed systems so that the causal ordering of messages
could be enforced. For example, in Birman-Schiper-Stephenson (BSS) protocol, the processes always execute
messages in the correct causal order, whereas, in Lamport’s mutual exclusion (LME) protocol critical section
requests are granted in their correct causal order. Before moving any further, let us describe those protocols.

The BSS protocol helps the processes to execute the messages received in correct causal order. If two mes-
sages are concurrent, they are sorted in first come first serve basis.

Definition 2. BSS Protocol is defined as follows:

1. When a process broadcasts a message it also broadcasts how many messages it has received from each of the
other processes.

2. When a process receives a message from another process it checks whether it has received all previous mes-
sages from that same process and also whether it knows about at least as many messages in the system as the
sender process does. If both checks are true, the recipient process executes the message, otherwise it puts the
message on hold and waits.

The LME protocol helps the processes to decide the order of accessing the critical section (a set of objects
which can be modified by at most one process at a time) in case of multiple requests coming from different
processes. If one request causally precedes another, the former process is granted access before the latter. Addi-
tionally, the protocol assumes that each process has a unique process ID from a totally ordered set and in case of
concurrent requests, it breaks tie using process ID. This means that the protocol gives first access of the critical
section to the process with the smallest ID.

Definition 3. LME protocol is defined as follows in terms of the movements around the critical section:

- Requesting the critical section:
1. When a process wants to access the critical section, it generates a request and a timestamp for that request.

The process keeps this request in its own request queue sorted according to timestamps and then broadcasts
it to all other processes along with the timestamp.

2. When a process receives a timestamped request, it keeps the request in its own request queue sorted ac-
cording to timestamps. Then it generates a timestamped reply corresponding to the request and sends the
reply to the sender of the request.

- Accessing the critical section: When a process observes
1. its request is at the top of its own request queue, and
2. it has received at least one message (request or reply or release) with higher timestamp than its request

from all other processes,
the process enters the critical section.

- Exiting the critical section:
1. When a process exits the critical section, it generates a timestamped release message and broadcasts it to

all other processes. It deletes its own request from its request queue.
2. Upon receiving a release message, a process removes the request of the sender process from its own request

queue.
In the remainder of this paper we will model these two protocols in a variant of dynamic epistemic logic, so as

to exemplify a novel way of formal modelling such protocols towards proving correctness of the protocols using
knowledge-based reasoning.

3 MODELLING PROTOCOLS IN DYNAMIC EPISTEMIC LOGIC

Let us first provide a brief introduction to a relevant variant of dynamic epistemic logic before moving on to
the modelling of the protocols. For a detailed exposition, see (van Ditmarsch et al., 2007). Then we would move
on to describe the protocols in this dynamic epistemic language.

Syntax: Given a finite set of propositions P , a finite set of agents A and a finite set of actions Act, the language
L is defined as follows:

φ := p | ¬φ | φ∧φ | Kaφ | Aφ,

where p ∈ P , a ∈ A , A ∈ Act. The formulas φ∨ψ, φ→ ψ are defined as usual. A formula of the form Kaφ reads
as “φ is known to agent a” and Aφ reads as “φ holds after some action A”. The actions are generally considered
to be protocol-dependent and changes the model suitably. We use Laφ to denote the formula ¬Ka¬φ.

Semantics: A model M for this language is a tuple (W,R,V) where W denotes a non-empty set of worlds, R
denotes a set of agent-relations and V denotes a valuation function. Each agent defines a relation Ra ∈ R such that
Ra ⊆W ×W . In essence, Ra models knowledge of an agent a which can be modified by certain events or actions.
A valuation function V : P → 2W associates propositions to sets of worlds. For this logic, we consider an action
A to bring about certain changes in the set of agent relations, which we will explain in details while modelling the
protocols. If an action A is applied to M, we call the resulting new model MA. The truth definition of a formula
at a world w ∈W in the model M is as follows:

M,w |= p iff p ∈V (w),
M,w |= ¬φ iff M,w 2 φ,

M,w |= φ∧ψ iff M,w |= φ and M,w |= ψ,

M,w |= Kaφ iff for all w̃ ∈W with wRaw̃, M, w̃ |= φ

M,w |= Aφ iff MA,w |= φ.

M |= φ means that for all w ∈W , M,w |= φ.

3.1 BSS Protocol

Before we define the language for analyzing BSS protocol, let us first note some important notations and defini-
tions. Let A denote the set of agents/processes in the distributed system, and let M denote the set of messages
whose causal ordering we are interested in. Each message is denoted by xi, which can be read as the ith message
from agent x.

Definition 4. (Permutation). We say π is a permutation on a finite set S iff π : S→{1,2, . . . , |S|} is a bijection.

Definition 5. (Allowed permutation). A permutation π on M is an allowed permutation iff π(xi) < π(x j)
whenever i < j. Here π(xi) (π(x j)) denotes the position of xi (x j) in the permutation π.

Definition 6. (MSN). At a particular local time of agent x, MSN (message to send next) of x (denoted MSN(x))
is k ∈ N if x has already sent xk−1 ∈M but has not sent xk ∈M . However if x has already sent all its messages
in M then MSN(x) is ∞.

3.1.1 Language

Now we are ready to define the language that can describe the content of the exchanged messages. Let P be the
set of propositions. We have,

P = {Px,i | x ∈ A ; xi ∈M }∪{Qx, j
a,i | a,x ∈ A ; ai,x j ∈M ; ai 6= x j}.

Here Px,i reads “agent x has spoken i times” and Qx, j
a,i reads “agent a in its ith message notifies that jth message

from agent x has reached it”. The formulas are given by,

φ :=> | p | ¬φ | φ∧φ | Kaφ | Aa
φφ.

Here Kaφ reads “agent a knows φ”. We include Aa
φ
ψ in the language only for Boolean formulas φ (no restric-

tion on ψ) and not for more complex formulas since they are not needed for modeling the BSS protocol. For a
Boolean formula φ and a general formula ψ in the language, Aa

φ
ψ reads “ψ is true after φ is received by a”. Let

us now have the following definitions for the Boolean formulas in the language:

Definition 7. (Sender of a formula). The sender of a Boolean formula φ is defined recursively,

• sender(φ) = x if φ = Px,i.

• sender(φ) = a if φ = Qx, j
a,i .

• sender(¬φ) = sender(φ).
• sender(φ∧ψ) = sender(φ) if sender(φ) = sender(ψ) and undefined otherwise.

Definition 8. (Index of a formula). The index of a Boolean formula φ is defined recursively,

• index(φ) = i if φ = Px,i.

• index(φ) = i if φ = Qx, j
a,i .

• index(¬φ) = index(φ).
• index(φ∧ψ) = index(φ) if index(φ) = index(ψ) and undefined otherwise.

3.1.2 Semantics

We define the model M as the tuple (W,R,V) where W is the set of worlds, R is the set of indistinguishability
relations and V : P → 2W is the valuation function. We have,

W = {π | π is an allowed permutation on the underlying
message set }

R = {Ra | a ∈ A ;Ra is a binary relation on W}. Actually Ra models the knowledge of agent a and is changed by
the actions.

We define V : P → 2W as,

V (Px,i) =W for all xi ∈M

V (Qx, j
a,i) = {π ∈W | π(x j)< π(ai)} for all ai,x j ∈M .

Here π(x j) (π(ai)) denotes the position of message x j (ai) in the permutation π and the order between two
positions is shown by the relation ‘<’.

Definition 9. (Semantics). Let a model M be given. We inductively define the interpretation of formula φ ∈ L
on (M,π) as follows,

M,π |=>, always ,
M,π |= p ∈ P iff π ∈V (p),
M,π |= ¬φ iff M,π 2 φ,

M,π |= φ∧ψ iff M,π |= φ and M,π |= ψ,

M,π |= Kaφ iff for all π̃ with πRaπ̃, M, π̃ |= φ,

M,π |= Aa
φψ iff Mφ,a |= ψ,

where Mφ,a is the updated model under the action Aa
φ
. We provide the details of model updation under actions in

the following subsection.

3.1.3 Action Update Model to model BSS Protocol

In BSS protocol the content of each message is a formula in L either of the form φ = Px,i or of the form φ =

Px,i ∧∧
y6=x Qy, j

x,i , since the sender also broadcasts the information how many messages from each of the other
agents it has received along with the message. We now concentrate on such formulas to model the BSS protocol.
The initial model is M = (W,R,V) where W is the set of all allowed permutations on M and for each agent
x, Rx is a universal relation on W , i.e., Rx = W ×W . Suppose the formula φ is received by agent x. Then the
corresponding action will transform the current model M into be the model denoted as Mφ,x = (W,Rφ,x,V) where
only the agent relations are modified. The new set of agent relations is Rφ,x = {R′a | a ∈ A} where,

• For each y 6= x, R′y = Ry,

• R′x is the intersection of Rx and the complete relation on E ′ where, E ′ = {π ∈W | π(sender(φ)index(φ)) <
π(xMSN(x)) and M,π |= φ}.

When a message having content φ is received by an agent x, the corresponding action Ax
φ

is performed on the
current model M. This results into transforming M to Mφ,x. We note that that the operator Ax

φ
acts globally. After

all messages are received, the set of permutations can be partitioned into two sets. In one set, each permutation π

is isolated with respect to every Rx, i.e., π��Rxσ for all σ ∈W and for all x. The other set is universal with respect
to every Rx (i.e., for any π, σ in the set, πRxσ for all x) and in each of them the messages appear in correct causal
order. Formally, xi→ y j if and only if we have that in the final model M f in, M f in |= ∧a∈A(La>→ KaQx,i

y, j). For a
worked out example, see Appendix A.

3.2 Lamport’s mutual exclusion protocol

For the analysis of LME Protocol, we will develop the language corresponding to request messages only, as the
other kinds of messages do not play a role in generating the order of these messages. The ordering of requesst
messages generated by LME Protocol is an index-based ordering where ties between request messages with equal
indices are broken based on the IDs of the requesting processes. We will later show that this is actually a causal
ordering of the request messages. Let A denote the set of agents/processes in the distributed system, and M
denote the set of request messages whose causal ordering we are interested in. Each request is of the form xi,
which means that it is the ith request made by agent x.

Definition 10. (Permutation). We say π is a permutation on a finite set S iff π : S→{1,2, . . . , |S|} is a bijection.

Definition 11. (Allowed permutation). A permutation π on M is an allowed permutation iff π(xi) < π(x j)
whenever i < j. Here π(xi) (π(x j)) denotes the position of xi (x j) in the permutation π.

Definition 12. (Index of a message). Index of a message generated by a process is 1 if the process has not sent or
received any other message before. Otherwise it is k+1 where k is the maximum index of all messages received
or sent by the process before.

Definition 13. (Timestamp of a message). Timestamp of a message is generated by concatenating its index
(definition 12) at the front of the ID of the sender process.

3.2.1 Language

We will now define the language for modeling the LME protocol. The set of propositions is given by,

P = {Qy, j
x,i | x,y ∈ A ; xi,y j ∈M ; xi 6= y j}.

Here, Qy, j
x,i reads “request xi causally precedes request y j”. The formulas are given by,

φ :=> | p | ¬φ | φ∧φ | Kaφ | Axi, j
s φ | Axi, j

r,y φ,

where, p ∈ P . As earlier, the formula Kaφ reads as “agent a knows φ”. Axi, j
s φ reads “after request xi with index j

is sent, φ holds” and Axi, j
r,y φ reads “after request xi with index j is received by y, φ holds”.

3.2.2 Semantics

The model M is defined as the tuple (W,R, Ind,V) where,

W = {π | π is an allowed permutation on M }.

R = {Ra | a ∈ A ; Ra is a binary relation on W}. Actually, Ra models the knowledge of agent a and is modified
by the actions.

Ind = {Inda | a ∈ A} where Inda = {(ai, j) | ai ∈M , index(ai) = j ∈ N}. Actually Inda stores the requests
observed by agent a and their corresponding indices.

V : P → 2W defined as V (Qy, j
x,i) = {π | π(xi)< π(y j)}. Here π(xi) (π(y j)) denotes the position of request xi (y j)

in the permutation π and the order between two positions is shown by the relation ‘<’.

Definition 14. (Semantics). Let a model M be given. The truth definition of the formulas φ of the language above
at (M,π) is given as follows,

M,π |=>, always ,

M,π |= Qy, j
x,i iff π ∈V (Qy, j

x,i)

M,π |= ¬φ iff M,π 2 φ,

M,π |= φ∧ψ iff M,π |= φ and M,π |= ψ,

M,π |= Kaφ iff for all π̃ with πRaπ̃, M, π̃ |= φ,

M,π |= Axi, j
s ψ iff M′,π |= ψ,

M,π |= Axi, j
r,y ψ iff M′′,π |= ψ.

Here M′ denotes the updated model under the action Axi, j
s and M′′ denotes the updated model under the action Axi, j

r,y
(with respect to the current model M). We provide the details of model updation under actions in the following
subsection.

3.2.3 Action Update Model to model LEM Protocol

The model M changes when a request is generated or received by a process. The corresponding action transforms
the model M to the model M′ = (W,R′, Ind′,V) where only the agent relations and Ind sets corresponding to the
agents are modified.

Suppose request xi is generated by agent x.

• If y 6= x then Ind′y = Indy.

• Ind′x = Indx∪{(xi, j)} where j = index(xi).

• If y 6= x then R′y = Ry.

• R′x is the intersection of Rx and the complete relation on E ′ where

E ′ = {π ∈W | ∀(y j,k) ∈ Indx;π(y j)< π(xi)}.

Suppose request xi is received by agent y.

• If z 6= y then Ind′z = Indz.

• Ind′y = Indy∪{(xi, j)} where j = index(xi).

• If z 6= y then R′z = Rz.

• R′y is the intersection of Ry and the complete relation on E ′ where,
E ′ = {π ∈W | ∀(z j,k) ∈ Indy;π(xi)<π(z j) iff
index(xi)<k and π(xi)>π(z j) iff index(xi)>k}.
The initial model in M = (W,R, Ind,V) where W is the set of all allowed permutations on M , for each agent

x, Rx is a universal relation on W (i.e., Rx = W ×W) and Inda = /0 for all a ∈ A . When an agent x sends its ith

request or when an agent y receives the request xi, the corresponding actions Axi, j
s or Axi, j

r,y is performed on the
current model respectively. The model update happens according to the rules defined above. After all requests
are received, the set of permutations gets partitioned into two sets, as in the case of BSS Protocol. In one set, each
permutation is isolated with respect to every Rx (i.e., π��Rxσ for all σ∈W and for all x) and the other set is universal
with respect to every Rx (i.e., for any π, σ in the set, πRxσ for all x) and in each world of it, the requests appear
in correct causal order. Observe that index(xi) < index(y j) iff in the final model M f in |= ∧a∈A(La>→ KaQy, j

x,i),
i.e., every agent considers only those permutations where the requests are ordered according to their indices. For
a worked out example, see Appendix B.

4 CORRECTNESS OF THE PROTOCOLS

In the following, we prove the correctness of the protocols, using knowledge-based reasoning as provided by
the formal frameworks we just discussed.

4.1 Correctness of BSS Protocol

It is claimed that in BSS protocol, each agent executes messages in the correct causal order. To prove this we
will show that after all the messages are received, each agent knows the causal order between any two messages.
Since any agent executes messages only in one of the orders known to it, it is not possible for an agent to violate
the causal order. In logical language, we will show that the final model M f in |= ∧a∈A(La>→ KaQx,i

y, j) iff xi→ y j.
The following theorems prove this.

Theorem 1. (Agreement). After all the messages are received, an agent a is sure that xi precedes y j iff every
other agent in the system is sure about this. Formally, we have that M f in |= (La>→KaQx,i

y, j)↔ (∧b∈A ;b 6=a(Lb>→
KbQx,i

y, j)).

Proof. (⇒) Let us assume an agent a knows that xi precedes y j, i.e., M f in |= La>→ KaQx,i
y, j. Now agent a can

only gather this information via some message passed in the system because initially it cannot distinguish any two
permutations. If this information is gathered from a Qx,i

y, j formula then every other agent has also received it (since
this formula only appears in a broadcast message). Thus every agent of the system is aware of the information.
On the other hand, agent a can be y itself and when it received the message Px,i it still has not sent the message y j.
Thus it knows Qx,i

y, j. But when it will send its next message, which may be yk (k≤ j), it will share the information

xi precedes yk with all the other agents via the formula Qx,i
y,k. Thus every other agent will know that xi precedes

yk, which implies xi precedes y j because k ≤ j.
(⇐) Conversely, let us assume a does not know that xi precedes y j. We need to prove that every other agent is
ignorant about this information. Let us suppose, if possible, some agent b knows this information. Again b can
know it only by a message. It cannot be a Q-type message since then a should also have received it (Q-type
messages are broadcast to every agent. Since message passing is reliable, every agent should receive the same set

of Q-messages). Thus b must have known it from a P-type message. But then b must have had at least one more
message to send when it received the P-type message. So b should have shared this information with a when it
broadcast the next message. Hence contradiction. Thus any other agent b cannot know this information.

Definition 15. (Basic precedence). We say a causal precedence ai→ b j is a basic precedence iff either a = b and
ai is sent before a j or a 6= b and ai is received by b before b j is sent.

It is easy to observe from the definition of causal order that if ai→ b j then either it is a basic precedence or
there are c(1)i1 , . . . ,c(m)

im such that ai→ c(1)i1 → ··· → c(m)
im → b j where each precedence is a basic precedence. Let

us use this observation to show that each agent knows all the causal orders when BSS protocol is used.

Theorem 2. If xi→ y j is a basic precedence then agent y knows xi precedes y j. In other words, in the final model
M f in |= Ly>→ KyQx,i

y, j.

Proof. If x = y this claim trivially holds since all permutations are allowed permutations. So we assume x 6= y.
Then xi has been received by y before y j is sent. Hence at the time xi is received by y, MSN(y) ≤ j. Thus
the updated model at that point of time, say M′, will satisfy Ly> → KyQx,i

y,MSN(y). This automatically implies

M′ |= Ly>→ KyQx,i
y, j since MSN(y)≤ j. Thus M f in will also satisfy this since y will retain this knowledge at all

later updated models.

Using theorem 1 and theorem 2, we can see each basic precedence is known to all agents. Since any causal
precedence can be built up from basic precedence only, we get that all causal precedence are known to every
agent. Thus the claim that each agent knows all and only the causal orders after message passing, is true. Thus,
no agent can violate the causal order while executing messages. We also observe that BSS protocol generates
a unique allowed permutation iff for any two messages xi and y j, either every agent knows xi → y j or every
agent knows y j → xi. In logical language, BSS protocol generates a unique permutation iff the final model
M f in |= ∧xi 6=y j((∧a∈A(La>→ KaQx,i

y, j))∨ (∧a∈A(La>→ KaQx,i
y, j))).

4.2 Correctness of LME Protocol

For LME protocol, we have to show that no two requests can access the critical section at the same time. To
prove this we will show that all agents agree on a unique permutation of the requests and the critical section is
accessed in that order only. Thus there cannot be any conflict between the decisions of any two agents. We will
also show that the permutation each agent agrees on, is actually a causal order of the requests.

Definition 16. (Order of precedence). Let xi → y j. We define order of causal precedence xi → y j (denoted
ord(xi → y j)) to be 1 iff xi → y j is a basic precedence (definition 15). Otherwise we define ord(xi → y j) to be
m> 1, where m is the smallest natural number such that there exist c(1)i1 , . . . ,c(m)

im with xi→ c(1)i1 →···→ c(m)
im → y j,

where each of the precedences is a basic precedence.

Theorem 3. If two requests xi and y j are such that xi→ y j, then index(xi)< index(y j).

Proof. We prove this by induction on ord(xi→ y j)
Base case : When ord(xi→ y j) = 1 there may be two cases.

1. xi and y j are generated by the same process with xi generated ahead of y j. Then clearly index(xi)< index(y j)
by definition of index of a message. Hence our claim holds.

2. A process receives xi and sends y j and the point of receipt of xi lies before the point of sending of y j. Then
also by the definition of index of a message, index(xi)< index(y j) and our claim holds.

Inductive hypothesis : Assume the claim to be true for any xi→ y j such that ord(xi→ y j) = m−1.
Inductive step : Now let xi and y j be two requests and ord(xi → y j) = m. Then there exists zk such that
ord(xi→ zk) = m−1 and ord(zk→ y j) = 1. Then by inductive hypothesis index(xi)< index(zk) and from base
case index(zk)< index(y j). Thus index(xi)< index(zk)< index(y j) and our claim holds.

Theorem 4. (Agreement). Each agent agrees on permutations where requests appear in correct causal order and
all agents agree on same set of permutations.

Proof. Take any agent a ∈ A . Let two requests xi and y j be observed by a. If xi→ y j, then by previous theorem
3, index(xi) < index(y j). By rule of the update model, a then agrees on only those permutations π such that
π(xi) < π(y j) (remember that M f in |= La>→ KaQy, j

x,i since in the final model both xi and y j have been observed
by a and thus (xi, index(xi)),(y j, index(y j)) ∈ Inda). Since a observes all requests made eventually (requests are
broadcast), a agrees only on permutations where requests appear in correct causal order. Since choice of a ∈ A
is arbitrary, every agent agrees on permutations where requests appear in correct causal order.
Since all agents observe the same set of requests, they must agree on the same set of permutations. Hence we are
done.

Now if every agent breaks tie between requests with same index using process ID (i.e., the process with
smallest ID wins in case of a tie in indices), they must agree on a unique permutation since without using process
ID they agree on same set of permutations. Thus LME protocol leads to a unique permutation of requests which
is agreed upon by all agents. This proves the correctness of the protocol. In other words, each agent knows the
order in which the requests should access the critical section.

5 ON IMPLEMENTATION AND TIME COMPLEXITY

In all our models we have used only allowed permutations as the set of states. Let us first provide an estimate
for the number of allowed permutations. Let for each agent a ∈ A , Ma be the set of messages sent by agent a.
Then M =∪a∈A Ma. Since Ma∩Mb = /0 for a 6= b, |M |= ∑a∈A |Ma|. Let SA be the set of allowed permutations.
In each allowed permutation, all messages from a particular agent (say a) must appear in a particular order. In
this respect, all messages from one agent are practically indistinguishable. The problem of determining the size
of SA is now actually equivalent to the problem of determining the number of permutations of |M | balls of |A |
distinct types where two balls of the same type are indistinguishable. Thus,

|SA|= |M |!
∏a∈A |Ma|!

In case each agent sends only one message, we have |SA|= |M |!.

5.1 Implementation of the model for BSS protocol

In this section we will provide a possible implementation of the action update model for BSS protocol and its
time complexity. The implementation has two steps:
1. Given set of agents A and set of messages M build the initial model according to BSS protocol.
2. Update the model according to BSS protocol as messages are received by agents until each message is re-

ceived by all other agents except for the sender.

5.1.1 Time complexity of the action update model for BSS protocol

Let us now discuss the time complexity of the above implementation stepwise.

1. In the initial model for each agent a ∈ A the agent relation Ra is universal on SA (set of allowed permutations
on M), i.e., Ra = SA× SA. Thus it is enough to store support(Ra) instead of Ra for each a where by
support(Ra) we denote the set {π | ∃π′ such that πRaπ′ or π′Raπ}. Initially support(Ra) = SA for all a. Thus
we make |A | copies of SA and associate to each agent. This will take O(|A ||M |!) time.

2. Suppose message with formula φ is received by agent a. To update the model we only need to modify
support(Ra) to support(Ra)∩ E ′ where E ′ = {π ∈ SA | π(sender(φ)index(φ)) < π(aMSN(a)) and M,π |= φ}
(here M is the current model not yet updated). We can save time by a simple check whether we need to
update the model at all. If φ is of the form Px,i and MSN(a) = ∞ then there is no need to update support(Ra).
This check can be performed in O(1) time. In all other cases we need to update support(Ra) but in doing that
we fix the order of at least two messages which was not previously fixed. Thus size of support(Ra) reduces
by at least half of its current size. To check whether a π ∈ support(Ra) also belongs to E ′ we need at most
O(|support(Ra)|) time. Thus for each agent, total time for model updation is at most O(|M |!+ |M |!/2+
|M |!/4+ · · ·+1) = O(|M |!). Thus for all the agents total time is O(|A ||M |!).

Thus total time complexity of the entire implementation is O(|A ||M |!+ |A ||M |!), i.e., O(|A ||M |!).

5.2 Implementation of the model for LME protocol

In this section we will provide a possible implementation of the action update model for LME protocol and its
time complexity. The implementation has two steps:
1. Given a set of agents A and a set of requests M build the initial model according to LME protocol.
2. Update the model according to LME protocol as messages are sent and received by agents until each message

is received by all other agents except the sender.

5.2.1 Time complexity of the action update model for LME protocol

Let us now discuss the time complexity of the above implementation stepwise.
1. We can build the initial model exactly like we did for BSS protocol. This is because for each agent a ∈ A , Ra

is a complete relation on M and Inda = /0. Thus time complexity for building the initial model is O(|A ||M |!).
2. We will discuss the time complexity for two cases, when a request is sent by an agent and when a request is

received by an agent.
(a) Suppose request xi is sent by agent x. Now we need to include xi along with its index into Indx. This

can be done in O(1) time. Now support(Rx) must be modified to support(Rx)∩E ′ where E ′ = {π ∈ SA |
∀(y j,k)∈ Indx;π(y j)< π(xi)}. We can save time by performing a simple check whether we need to modify
support(Rx) at all. If Indx contains only requests from x, we need not update Rx since each π is an allowed
permutation. Also if for each request y j in Indx (y 6= x) index of y j is same as that of xi, we need not
update Rx. Both these checks can be performed in O(1) time using suitable data structures. For example,
we can maintain 3 counters IndO, MaxO, MinO for each x ∈ A . IndO stores the number of agents other
than x whose requests are received by x. MaxO stores the maximum index of such REQUESTs and MinO
stores the minimum index of such requests. These counters can be updated in O(1) time during model
updation. Now for the first check we need to see if IndO > 0 and for the second check we need to see if
MaxO = MinO = index(xi). Both checks can be done in O(1) time. In all other cases, support(Rx) must be
modified and the size of the updated support(Rx) reduces by at least half. The reason for this is discussed
in detail in section 5.1.1. Using the reasoning from section 5.1.1 we conclude that the total time complexity
for model updation during sending requests for any agent is O(|M |!).

(b) For the other case, let us suppose request xi is received by agent y. As before, inclusion of xi into Indy
can be done in O(1) time. However, time for updating support(Ry) can be reduced using the following
check. Note that support(Ry) must be modified to support(Ry)∩ E ′ where E ′ = {π ∈ SA | ∀(z j,k) ∈
Indy;π(xi)< π(z j) iff i < k and π(xi)> π(z j) iff i > k}. Now if all requests in Indy has the same index as
xi, we need not modify Ry. This check can be performed in O(1) time using suitable data structures. We
maintain 2 counters Max and Min for each y ∈ A . The first counter maintains the maximum index of any
request received by y whereas the second counter maintains the minimum index of any request received
by y. These counters can be updated in O(1) time during model updation. Now we can simply perform
the check Max = Min = index(xi) to see whether all requests of Indy has the same index as xi. Clearly
this takes O(1) time. For all the other cases support(Ry) must be modified and the size of the updated
support(Ry) reduces by at least half. The reason for this is discussed in detail in section 5.1.1. Using the
same reasoning, we conclude that the total time complexity for model updation while receiving requests
for any agent is O(|M |!).

Thus total time for model updation is O(|A ||M |!) considering each agent spends O(|M |!) in updating the
model while sending and receiving requests.

Thus total time complexity of the entire implementation is O(|A ||M |!+ |A ||M |!), i.e, O(|A ||M |!).

6 CONCLUSION AND FUTURE DIRECTIONS

To summarize, we have shown that simple variants of dynamic epistemic logic can indeed be used to model
distributed protocols in asynchronous settings. The knowledge-based framework can be used to model the effect

of these protocols, and the underlying reasoning process becomes explicit. In some sense, the action update op-
erators model the effect of receipt of messages, and can be considered as private announcements to the individual
processes/agents. However, the logical languages developed here are protocol-specific and quite ad hoc in nature.
It would be interesting to see whether a uniform framework could be developed and how that framework would
relate to the existing literature on announcement logics. We leave this for the future.

Another direction to work on is to bring other distributed protocols in the purview of the logical framework
described here. To this end, one can consider Maekawa’s quorum based mutual exclusion algorithm (Singhal and
Shivaratri, 1994), where each process consults only a proper subset of all processes before accessing the critical
section. It would be interesting to see the variant of dynamic epistemic logic which could be used to model the
underlying reasoning process of the protocol. Once again, we leave this for future work.

REFERENCES

Ahmadi, S., Fallah, M. S., and Pourmahdian, M. (2019). On the properties of epistemic and temporal epistemic
logics of authentication. Informatica, 43(2).

Balbiani, P., van Ditmarsch, H., and González, S. F. (2020). From public announcements to asynchronous
announcements. In Giacomo, G. D., Catala, A., Dilkina, B., Milano, M., Barro, S., Bugarn, A., and Lang,
J., editors, Proceedings of the 24th European Conference on Artificial Intelligence, volume 325 of Frontiers
in Artificial Intelligence and Applications.

Baltag, A. and Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In Bonanno, G.,
van der Hoek, W., and Wooldridge, M., editors, Logic and the Foundations of Game and Decision Theory
(LOFT07), volume 3 of Texts in Logic and Games, pages 9–58. Amsterdam University Press, Amsterdam.

Dechesne, F. and Wang, Y. (2010). To know or not to know: epistemic approaches to security protocol verifica-
tion. Synthese, 177(1):51–76.

Halpern, J. Y. and Zuck, L. D. (1992). A little knowledge goes a long way: knowledge-based derivations and
correctness proofs for a family of protocols. Journal of the ACM (JACM), 39(3):449–478.

Knight, S., Maubert, B., and Schwarzentruber, F. (2019). Reasoning about knowledge and messages in asyn-
chronous multi-agent systems. Mathematical Structures in Computer Science, 29(1):127–168.

Singhal, M. and Shivaratri, N. (1994). Advanced Concepts in Operating Systems: Distributed, Database, and
Multiprocessor Operating Systems. Computer Science Series. McGraw-Hill.

van Ditmarsch, H., Ghosh, S., Verbrugge, R., and Wang, Y. (2014). Hidden protocols: Modifying our expectations
in an evolving world. Artificial Intelligence, 208:18–40.

van Ditmarsch, H., van der Hoek, W., and Kooi, B. (2007). Dynamic Epistemic Logic, volume 337 of Synthese
Library. Springer Verlag, Berlin.

Appendix A

Let us assume a message-passing system with 3 agents, namely a,b,c. Each agent broadcasts one message,
so M = {a1,b1,c1}. The set of allowed permutations is {a1b1c1,a1c1b1,b1a1c1,b1c1a1,c1a1b1,c1b1a1}. The
initial model is M0. We have, M0 |=∧a∈A La>. As messages are received, knowledge of each agent changes. The
time points where messages are received are numbered in the space-time diagram. We will discuss about each of
these points sequentially. For reference, see Figure 1.

- The first message received is a1 with formula Pa,1. The knowledge of agent b will be updated according to the
action update model. Since the permutations {b1c1a1,b1a1c1,c1b1a1} do not satisfy the condition π(a1) <

π(bMSN(b)), they are not related to any world by b. Observe that in the new model M1, M1 |= Lb>→ KbQa,1
b,1,

or in other words M0 |= Ab
Pa,1(Lb>→ KbQa,1

b,1).

- The next message received is b1 with formula Pb,1 ∧Qa,1
b,1. The knowledge of agent c is updated. Since the

permutations {b1c1a1,b1a1c1,c1b1a1} do not satisfy Qa,1
b,1, they are not related to any world by c. Observe

that in the new model M2, M2 |= Lc>→ KcQa,1
b,1, or in other words M1 |= Ac

Pb,1∧Qa,1
b,1
(Lc>→ KcQa,1

b,1).

1.6. Worked Out Example 5

1.6 Worked Out Example

Let us assume a Distributed system with 3 agents, namely a, b, c. Each agent broad-

casts one message, so M = {a1, b1, c1}. The following space-time diagram (Fig-

ure[1.1]) depicts the message passing.

Figure 1.1: Message passing in a 3 agent system

Figure 1.2: Initial model

1.6. Worked Out Example 5

1.6 Worked Out Example

Let us assume a Distributed system with 3 agents, namely a, b, c. Each agent broad-

casts one message, so M = {a1, b1, c1}. The following space-time diagram (Fig-

ure[1.1]) depicts the message passing.

Figure 1.1: Message passing in a 3 agent system

Figure 1.2: Initial model

1.6. Worked Out Example 6

The set of allowed permutations is {a1b1c1, a1c1b1, b1a1c1, b1c1a1, c1a1b1, c1b1a1}.

Initially each agent has a complete relation on the set of allowed permutations. This

is depicted in Figure[1.2]. Observe that the initial model, Minit |= ^a2A¬Ka¬>.

As messages are received, knowledge of each agent changes. The time points

where messages are received are numbered in the space-time diagram (Figure[1.1]).

We will discuss about each of these points sequentially.

Figure 1.3: M (1)

1. The message received is a1 with corresponding formula P a,1. The knowl-

edge of agent b will be updated according to the Relation Update model.

Since the permutations {b1c1a1, b1a1c1, c1b1a1} do not satisfy the condition

⇡(a1) < ⇡(bMSN(b)), they are not related to any world by b. Observe that in

the new model M (1), M (1) |= ¬Kb¬> ! KbQ
a,1
b,1 , or in other words Minit |=

Ab
P a,1(¬Kb¬> ! KbQ

a,1
b,1) (Minit is the initial model). Figure[1.3] depicts the

modified model where relations of a and c are unchanged but relation of b is

changed (marked by red).

1.6. Worked Out Example 7

2. The message received is b1 with corresponding formula P b,1^Qa,1
b,1 . The knowl-

edge of agent c is updated. Since the permutations {b1c1a1, b1a1c1, c1b1a1}
do not satisfy Qa,1

b,1 , they are not related to any world by c. Observe that in

the new model M (2), M (2) |= ¬Kc¬> ! KcQ
a,1
b,1 , or in other words M (1) |=

Ac
P b,1^Qa,1

b,1

(¬Kc¬> ! KcQ
a,1
b,1). Figure[1.4] depicts this change (relation of c

marked red).

Figure 1.4: M (2)

3. The message received is b1 with corresponding formula � = P b,1 ^ Qa,1
b,1 . The

knowledge of agent a is updated. Since the permutations {b1c1a1, b1a1c1, c1b1a1}
do not satisfy Qa,1

b,1 , they are not related to any world by a. Observe that in

the new model M (3), M (3) |= ¬Ka¬> ! KaQ
a,1
b,1 , or in other words M (2) |=

Aa
�(¬Ka¬> ! KaQ

a,1
b,1). The updated model is shown in Figure[1.5].

4. The message received is a1 with corresponding formula P a,1. The recipient is

c. But according to the Relation Update model, no further change occurs to

1.6. Worked Out Example 8

Figure 1.5: M (3)

the model M (3) because a does not have any message left to send. So there is

no change in the knowledge of any agent.

5. The message received is c1 with corresponding formula P c,1. No change occurs

in the knowledge of recipient b, since the model M (3) does not change according

to the Relation Update model (for similar reasons as discussed in point 4).

6. The message received is c1 with corresponding formula P c,1. No change occurs

in knowledge of recipient a, since the model M (3) does not change according

to the Relation Update model (for similar reasons as discussed in point 4).

Thus M (3) is the final model. Observe that M (3) |= ^a2A(¬Ka¬> ! KaQ
a,1
b,1), since

a1 ! b1. Also observe that since c1 is concurrent with both a1 and b1, none of the

agents know the actual position of c1. Notice that for a1 and c1, neither a1 was

received by c before sending c1 nor c1 was received by a before sending a1. Thus

we cannot eliminate relation between any two worlds by the relation update model.

M0 M1

M2 M3

Figure 1: An exemplification of BSS Protocol

- The next message received is b1 (by a), and the knowledge of a is updated similarly as in the previous step.

- The message received is a1 with corresponding formula Pa,1. The recipient is c. But according to the action
update model, no further change occurs to the model M3 because a does not have any message left to send.
The rest of the cases can be handled similarly.

Here, M3 is the final model. Observe that M3 |= ∧a∈A(La>→ KaQa,1
b,1), since a1 → b1. Also observe that

since c1 is concurrent with both a1 and b1, none of the agents know the actual position of c1. Notice that for
a1 and c1, neither a1 was received by c before sending c1 nor c1 was received by a before sending a1. Thus we
cannot eliminate relation between any two worlds by the action update model. The same thing is true for b1 and
c1 as well. Accordingly, each of a,b,c has complete relation on a set of permutations ({a1b1c1,a1c1b1,c1a1b1}
is the set of permutations in this case) such that in each of these permutations, the messages appear in correct
causal order.

Appendix B

The initial assumptions are the same as the previous example with 3 agents and 3 request messages, given
by the set M = {a1,b1,c1} with allowed permutations as earlier. The initial model is given by M0. Observe
that, initially index of all the requests are unknown and hence their orderings are unknown as well. Thus, for
any π ∈W and for any a ∈ A , M,π |= ¬KaQy, j

x,i where xi,y j ∈M and x 6= y. The points of sends and receives
are numbered in the space-time diagram. For reference, see Figure 2. We will discuss about each of these points
sequentially.

- The request a1 is sent with corresponding index 1. Since Inda = /0, R′a is complete relation on W . Ind′a =
{(a1,1)}. Thus R′a = Ra. R′b and R′c do not change since b and c are neither sender nor receiver. Thus the
initial model M0 does not change.

- The request c1 is sent with corresponding index 1. Ind′c = {(c1,1)}. The initial model does not change for
similar reason as above.

- The request a1 is received by b. So Ind′b = {(a1,1)}. The initial model does not change.

- The request b1 is sent with corresponding index 3 (index is 3 since b has sent a reply to a before this). Now
Ind′b = {(a1,1),(b1,3)}. Since b1 is generated by b after a1 is received, it must be placed after a1 by condition
of the relation update model. Thus R′b is a complete relation on {a1b1c1,c1a1b1,a1c1b1}. R′a and R′c remain
unchanged. In the new model M1, R′b is marked in red. Observe that M1 |= Lb>→ KbQb,1

a,1 (alternatively,

M0 |= Ab1,3
s (Lb>→ KbQb,1

a,1)).

- The request b1 (index 3) is received by c. Now Ind′c = {(c1,1),(b1,3)}. Since index of b1 is higher than that
of c1, R′c is the complete relation on {c1b1a1,a1c1b1,c1a1b1}. R′a and R′b do not change. In the new model
M2, R′c is marked in red. Observe that M2 |= Lc>→ KcQb,1

c,1 (alternatively, M1 |= Ab1,3
r,c (Lc>→ KcQb,1

c,1)).

- The request b1 (index 3) is received by a. Now Ind′a = {(a1,1),(b1,3)}. According to the update model,
given that index of b1 is higher than a1, R′a is complete relation on {a1c1b1,a1b1c1,c1a1b1}. R′b and R′c do
not change. In the new model M3, R′a is marked in red. Observe that M3 |= La> → KaQb,1

a,1 (alternatively

M2 |= Ab1,3
r,a (La>→ KaQb,1

a,1)).

- The request a1 (index 1) is received by c. Now Ind′c = {(c1,1),(b1,3),(a1,1)}. According to the update
model, since index of b1 is higher than both c1 and a1, R′c is complete relation on {a1c1b1,c1a1b1}. R′a and R′b
remain as they were. In the new model M4, R′c is marked in red. Observe that M4 |= Lc>→ Kc(Q

b,1
a,1∧Qb,1

c,1).

- Therequest c1 (index 1) is received by b. Now Ind′b = {(a1,1),(b1,3),(c1,1)}. For similar reasons as above,
R′b is complete relation on {a1c1b1,c1a1b1}. No other change occurs. In the new model M5, R′b is marked in
red. Observe that M5 |= Lb>→ Kb(Q

b,1
a,1∧Qb,1

c,1).

- The request c1 (index 1) is received by a. Now Ind′a = {(a1,1),(b1,3),(c1,1)}. R′a is now a complete relation
on {a1c1b1,c1a1b1}. No other change occurs. In the new model M6, R′a is marked in red. Observe that
M6 |= La>→ Ka(Q

b,1
a,1∧Qb,1

c,1).

2.6. Worked Out Example 17

Figure 2.1: REQUEST passing in a 3 agent system

Figure 2.2: Initial model

R0
b marked in red. Observe that M (1) |= ¬Kb¬> ! KbQ

b,1
a,1 (alternatively

Minit |= Ab1,3
s (¬Kb¬> ! KbQ

b,1
a,1)).

2.6. Worked Out Example 17

Figure 2.1: REQUEST passing in a 3 agent system

Figure 2.2: Initial model

R0
b marked in red. Observe that M (1) |= ¬Kb¬> ! KbQ

b,1
a,1 (alternatively

Minit |= Ab1,3
s (¬Kb¬> ! KbQ

b,1
a,1)).

2.6. Worked Out Example 18

Figure 2.3: M (1)

Figure 2.4: M (2)

2.6. Worked Out Example 18

Figure 2.3: M (1)

Figure 2.4: M (2)

2.6. Worked Out Example 19

5. The REQUEST b1 (index 3) is received by c. Now Ind0
c = {(c1, 1), (b1, 3)}.

According to the rule, since index of b1 is higher than that of c1, R0
c is the

complete relation on {c1b1a1, a1c1b1, c1a1b1}. R0
a and R0

b do not change. The

new model M (2) is drawn in Figure[2.4] with R0
c marked in red. Observe that

M (2) |= ¬Kc¬> ! KcQ
b,1
c,1 (alternatively M (1) |= Ab1,3

r,c (¬Kc¬> ! KcQ
b,1
c,1)).

6. The REQUEST b1 (index 3) is received by a. Now Ind0
a = {(a1, 1), (b1, 3)}.

According to the update model, given that index of b1 is higher than a1, R0
a

is complete relation on {a1c1b1, a1b1c1, c1a1b1}. R0
b and R0

c do not change. The

new model M (3) is drawn in Figure[2.5] with R0
a marked in red. Observe that

M (3) |= ¬Ka¬> ! KaQ
b,1
a,1 (alternatively M (2) |= Ab1,3

r,a (¬Ka¬> ! KaQ
b,1
a,1)).

Figure 2.5: M (3)

7. The REQUEST a1 (index 1) is received by c. Now Ind0
c = {(c1, 1), (b1, 3), (a1, 1)}.

According to the update model, since index of b1 is higher than both c1 and

a1, R0
c is complete relation on {a1c1b1, c1a1b1}. R0

a and R0
b remain as they were.

The new model M (4) is drawn in Figure[2.6] with R0
c marked in red. Observe

2.6. Worked Out Example 20

that M (4) |= ¬Kc¬> ! Kc(Q
b,1
a,1^Qb,1

c,1) (alternatively M (3) |= Aa1,1
r,c (¬Kc¬> !

Kc(Q
b,1
a,1 ^ Qb,1

c,1))).

Figure 2.6: M (4)

8. The REQUEST c1 (index 1) is received by b. Now Ind0
b = {(a1, 1), (b1, 3), (c1, 1)}.

For similar reasons as in 7, R0
b is complete relation on {a1c1b1, c1a1b1}. No

other change occurs. The new model M (5) is drawn in Figure[2.7] with R0
b

marked in red. Observe that M (5) |= ¬Kb¬> ! Kb(Q
b,1
a,1 ^Qb,1

c,1) (alternatively

M (4) |= Ac1,1
r,b (¬Kb¬> ! Kb(Q

b,1
a,1 ^ Qb,1

c,1))).

2.6. Worked Out Example 21

Figure 2.7: M (5)

Figure 2.8: M (6)

2.6. Worked Out Example 21

Figure 2.7: M (5)

Figure 2.8: M (6)

M0 M1 M2

M3 M4 M5 M6

Figure 2: An exemplification of LME Protocol

Thus after all requests are received, each of a,b,c has complete relation on the set of permutations
{a1c1b1,c1a1b1}. According to the space-time diagram, a1 → b1 and c1 is concurrent with both a1 and b1.
Observe that in each of these permutations, a1 appears ahead of b1. Thus these permutations preserve causal
ordering of the requests. Note that although c1 is concurrent with both a1 and b1, we have some constraints on

the position of c1 in the permutations. Since LME protocol orders requests according to their indices and index
of c1 is less than that of b1, c1 must always be placed ahead of b1. Hence we end up with 2 permutations instead
of 3. Observe that the final model M6 |= ∧x∈A(Lx>→ Kx(Q

b,1
a,1∧Qb,1

c,1)) which shows that each agent only knows
those permutations where requests are ordered with respect to their indices.

