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Abstract. We discuss a simple logic to describe one of our favourite
games from childhood, hide and seek, and show how a simple addition
of an equality constant to describe the winning condition of the seeker
makes our logic undecidable. There are certain decidable fragments
of first-order logic which behave in a similar fashion and we add a
new modal variant to that class of logics. We also discuss the relative
expressive power of the proposed logic in comparison to the standard
modal counterparts.

1 From games to logic

Everyone remembers the pleasure of playing hide and seek in her or his child-
hood. After calling out “I am ready, you can come to find me”, the fun part
is to stay at your secret spot, not making any noise, and to expect that the
other player would not discover you. Once you are found, the other wins. Let
us consider a two-player setting, use E to denote the hider, and A the seeker.
Following the research program of [7], the game of hide and seek is naturally
seen as a graph game, where A and E are located at two different nodes, and
are allowed to move around. The goal of A is to meet E, while the goal of E
is to avoid A. For the game that many of us played in childhood, the player
E (one who hides) basically stays at one place, whereas player A (one who
seeks) moves from one node to another. We can describe such graph games
using the basic modal logic. However, if we consider a simple modification by
allowing moves for both the players (akin to the game of cops and robber
[23]), the setting becomes quite diverse. On one hand, these graph games are
natural candidates for modelling computational search problems, on the other
hand, the nuanced interaction between the players playing hide and seek is a
showcase of interactive players having their goals entangled, which is a popular
phenomenon in social networks. In other words, the graph game of hide and
seek provides us with an ideal arena where we can study reasoning about social
interaction and challenges therein arising from such intertwined objectives of
players. In the following we will make these games more precise and provide a
language to express strategic reasoning and winning conditions of players.

However, before going into the logic details, let us first get a feel about the
hide and seek game regarding the information available to the players. That will
also lead us to understand the kind of reasoning that we plan to explore for such
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games. Essentially, it is an imperfect information game where the seeker is not
aware of the position of hider, whereas the hider may or may not know the exact
position of the seeker. Both the players know the game graph where they move
about and are aware of their own positions and moves. Now, the modification
that we talk about makes the setting even more interesting information-wise,
as then we can consider different levels of information available to both the
players. However, to keep things simple we start off from a high-level modeller’s
perspective, that is, we reason about such games. Thus, we reason about players’
observations and moves with the assumption that the whole graph and the
players’ positions at each stage of the game are available to us. We leave the
players’ perspectives for future work.

Coming back to the game proper, we have the two players located at two
different nodes. To model their moves we consider a pair of states as an evalua-
tion point rather than a single state in a Kripke model (a pointed model), and
consider distinct modalities to express the moves of the players. The evalua-
tion of these two different modalities, one for each player, can then be assessed
coordinate-wise with respect to the pair of states. In addition, a winning con-
dition for the hide and seek game corresponding to the seeker finding the hider
can be modelled by considering a pair of states whose first and second ele-
ments are the same. This basically gives us the identity relation which can be
expressed by introducing a special identity proposition. We first note that using
standard modal logic arguments, one can show the decidability of the satisfac-
tion problem of the two-dimensional modal logic mentioned above, without
the special proposition. Interestingly enough, such a simple addition, viz. in-
corporating the identity proposition, transforms a decidable modal logic into
an undecidable one. In fact, there are various elegant examples of logics that
suggest that taking this identity relation into account may change previously
decidable logics (without equality) into undecidable ones, e.g., the Gödel class
of first-order formulas with identity (cf. [16]). A more recent example is the
logic of functional dependence with function symbols (see [4] and [24]). We add
one more logic to this class, and that constitutes the main technical result of
this paper. This result also refutes a claim mentioned in [7] which stated that
the extended logic with the identity proposition will remain decidable. The
related notion of expressive power of the proposed logic is also discussed here.

We finally note that this modified version of hide and seek game played on
graphs is a special case of cops and robber game [23], a classic pursuit-evasion
game played on graphs, where several cops attempt to catch a robber. The hide
and seek game corresponds to the game having a single cop chasing a robber.
Thus, this study opens up the possibility of a logical analysis of these cops and
robber games with all their generality (cf. [23]) which have been well-studied
from algorithmic and combinatorial perspectives. We are currently working on
this idea and exploring an extension of the logic proposed here with modal
substitution operators [26].

In section 2 we introduce a logic (LHS) to reason about plays and winning
conditions in the hide and seek game. Section 3 deals with the relative expres-
sive power of the language and relevant notions of bisimulation are introduced
to facilitate the discussion. Section 4 gives the main result of this work, viz.
the satisfaction problem of LHS is undecidable. Section 5 provides a discussion
on related work, and section 6 gives pointers to further research.
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2 Logic of hide and seek (LHS)

Let us first introduce a logic to describe the game of hide and seek, LHS,
followed by an informal discussion about the expressivity of the proposed logic.

Definition 1 (Language). Let PE denote a countable set of propositional
variables for player E, and PA for player A. The two dimensional modal lan-
guage is given as follows:

ϕ ::= pA | pE | I | ¬ϕ | (ϕ ∧ ϕ) | 〈left〉ϕ | 〈right〉ϕ

where pE ∈ PE, pA ∈ PA, and I is a propositional constant. Other Boolean
connectives are defined in the usual way, and so are the corresponding box
modalities [left] and [right].

Without loss of generality, the modal operator representing player E’s moves
is given by 〈left〉 and that representing A’s moves is given by 〈right〉. Formulas
are evaluated in standard relational models M = (W,R,V), where W is a non-
empty set of vertices, R ⊆ W ×W is a set of edges, and V : PE ∪ PA → 2W

is a valuation function. Moreover, for any s, t ∈ W , we call (M, s, t) a pointed
graph model for two players (for simplicity, graph model): intuitively, s and t
represent respectively the positions of players E and A. To simplify notations,
we also employ M, s, t for (M, s, t). Semantics for LHS is given by the following:

Definition 2 (Semantics). Let M = (W,R,V) be a model and s, t ∈ W .
Truth of formulas ϕ at the graph model (M, s, t), written as M, s, t � ϕ, is
defined recursively as follows:

M, s, t � pE ⇔ s ∈ V(pE)
M, s, t � pA ⇔ t ∈ V(pA)
M, s, t � I ⇔ s = t

M, s, t � ¬ϕ ⇔ M, s, t 6� ϕ
M, s, t � ϕ ∧ ψ ⇔ M, s, t � ϕ and M, s, t � ψ

M, s, t � 〈left〉ϕ ⇔ ∃s′ ∈W s.t. Rss′ and M, s′, t � ϕ
M, s, t � 〈right〉ϕ ⇔ ∃t′ ∈W s.t. Rtt′ and M, s, t′ � ϕ

As mentioned earlier, the above language has two modalities, one for each
player, viz. 〈left〉 for player E and 〈right〉 for player A. Accordingly, all the
formulas are evaluated in a graph model. The constant I denotes the identity
relation in a game graph to describe the meeting of two players, signifying the
fact that the seeker has found the hider. Let us denote LHS−I to be the logic
LHS without the constant I.

Here are some useful notions. Given a model M and a set U ⊆W of states,
define R(U) := {t ∈W | there is s ∈ U with Rst}, denoting the set of successors
of the points in U . For simplicity, we usually write R(s) for R({s}) when U is
a singleton {s}. We can introduce the logical notions such as satisfiability and
modal equivalence in the usual way, and we will omit the details here.

Going back to the hide and seek game itself, one can consider different vari-
ants played on the game graph model, e.g., the players can move simultaneously
or sequentially. In a sequential play, one can also consider different orders of
play. In this paper, we assume that the players move sequentially, and that
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the hider E starts the game. Local one-step winning positions (pairs of states
describing the current positions of the players) for each player can be expressed
in our language as follows:

- E : 〈left〉[right]¬I
- A : [left]〈right〉I

More generally, winning positions for E and A can be described as:

- E: ∀n(〈left〉[right])n¬I
- A: ∃n([left]〈right〉)nI

Note that the above conditions involve countable conjunction/disjunction of
finite iterations of interactions between two players. The interactions 〈left〉[right]/
[left]〈right〉 are expressed with two separate modalities, but they are considered
as a single unit. These are not expressible in our language. As mentioned in
the introduction, we are currently exploring an extension of this language with
modal substitution operators which would also provide a finitary way to express
such countable boolean operations.

Remark 1. There are other ways to give suitable logics capturing the hide and
seek game. For instance, one can replace identity constant I with C, denoting
‘catching ’: M, s, t |= C iff R(s) ⊆ R(t). From the perspective of the game,
constant C describes that all states accessible to the hider are accessible to the
seeker as well. In contrast to I which states that the seeker has already won,
C indicates that she can win in the next round. They amount to the same
condition for games of perfect information: if the seeker has the ability to meet
the hider she will actually do that, if she is rational. However, from a logi-
cal perspective, their interpretations are entirely different, leading to distinct
expressive features. For an illustration, let us note that C can be defined as
[left]〈right〉I in LHS, but I is not definable in the logic extending LHS−I with
C. The constant proposition C with the given interpretation is also useful in
describing cop-win graphs in the cops and robber game involving a single cop
[23], see more details in [26].

In the next two sections we will explore some logical properties of LHS
regarding its expressiveness on one hand and satisfiability on the other hand.

3 Bisimulation and expressive power

The notion of bisimulation is an important tool for studying the expressive
power of modal logics. We are now going to explore a suitable notion tailored to
our logic. We usually need to be careful when introducing the conditions: on one
hand, the definition should ensure that the logic cannot distinguish bisimilar
models (i.e., the desired notion is strong enough), but on the other hand, it
should also hold between two models whenever they cannot be distinguished
by the logical language (thus, it is weak enough). In what follows, we take
the standard bisimulation [9] as the benchmark and investigate the relations
between expressiveness of basic modal logic M, LHS−I and LHS. Let us start
by comparing that for LHS−I and M.
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The standard bisimulation, denoted by ↔s, provides us a semantic char-
acterization of the expressiveness of the basic modal language. And at a first
glance, the semantic design of logic LHS−I is similar to that of the basic modal
logic, except that we now need to consider two states simultaneously when
evaluating formulas. So, is logic LHS−I invariant under the standard notion?
First, we provide a positive answer in the following sense:

Proposition 1. If (M, w)↔s (M′, w′) and (M, v)↔s (M′, v′), then (M, w, v)
and (M′, w′, v′) satisfy the same formulas of LHS−I .

Proof. The proof is straightforward by applying induction on formulas of LHS−I .
We leave the details to the reader. ut

Therefore, the standard bisimulation is strong enough to measure the ex-
pressive power of LHS−I . But meanwhile, to behave properly, is it also weak
enough? Unfortunately, we have the following negative result:

Proposition 2. There are (M, w, v) and (M′, w′, v′) s.t. they satisfy the same
LHS−I-formulas but at least one of (M, w) ↔s (M′, w′), (M, v) ↔s (M′, v′)
may not hold.5

Proof. It suffices to give a counterexample. Consider the models M and M′

depicted in Figure 1. It holds that (M, w1, w2) and (M′, v1, v2) satisfy the
same LHS-formulas, but we do not have (M, w1)↔s (M′, v1). ut

w1

pE , pA

w2

pA

v1

pE

v2

pA

Fig. 1. Two graph models (M, w1, w2) and (M′, v1, v2) satisfying same LHS-formulas.

Intuitively, the failure originates from the ‘evaluation-gap’ between the two
worlds in our graph models (M, s, t): when considering atomic properties of s,
both LHS−I and LHS can only describe those in PE, but not the ones in PA.6

Now, it is time to introduce the notion of bisimulation for LHS, from which
we can easily obtain that for LHS−I . Here is the definition:

Definition 3 (Bisimulation for LHS models). Let M = (W,R,V), M′ =
(W ′, R′,V′) be two models and let s, t ∈ W and s′, t′ ∈ W ′. We say, (M, s, t)
is bisimilar to (M′, s′, t′) (denoted by (M, s, t)↔ (M′, s′, t′)) if

5 Strictly speaking, a negative result holds even for the basic modal logic (see [9]).
However, it is still ideal if the notion of bisimulation can behave well in a large
class of models (e.g., image-finite models). This is also one of our guiding spirits.
But, as illustrated by the counterexample used to show the result, the standard
notion even excludes situations that are very simple but cannot be distinguished
by LHS−I .

6 From the perspective of games, the evaluation-gap suggests a way to handle sit-
uations where the two players have different observations even when they are at
the same position. For example, the gap might allow us to consider further enrich-
ments so that the states in the playing arena can encode different properties for
the players: a crowed street reducing the possible moves of the escaping robber is
helpful for a chasing cop, meanwhile, it is definitely a disaster to the robber.
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Atom: (M, s, t) and (M′, s′, t′) satisfy the same propositional letters.
Meet: s = t iff s′ = t′.
Zigleft: if there exists u ∈ W such that Rsu, then there exists u′ ∈ W ′ such

that R′s′u′ and (M, u, t)↔ (M′, u′, t′).
Zigright: if there exists v ∈ W such that Rtv, then there exists v′ ∈ W ′ such

that R′t′v′ and (M, s, v)↔ (M′, s′, v′).
Zagleft, Zagright: those analogous clauses in the converse direction of Zigleft

and Zigright respectively.7

With this definition, it is now easy to check that (M, w1, w2) and (M′, v1, v2)
in Figure 1 are bisimilar. Although the clauses above look rather routine, it
is instructive to notice some subtle aspects of the definition that are in line
with our previous observation: the condition Atom in effect just requires that
V(s) ∩ PE = V′(s′) ∩ PE and V(t) ∩ PA = V′(t′) ∩ PA, but s and s′ may satisfy
different properties pA and p′A, say, from PA, and t and t′ may satisfy different
properties pE and p′E , say, from PE. Moreover, the clause Meet aims to deal
with the constant I, and the others are analogous to the zigzag conditions in
standard situations.

By dropping the clause Meet above, we get the notion for LHS−I , and by
(M, s, t) ↔− (M′, s′, t′) we denote the case that (M, s, t) and (M′, s′, t′) are
LHS−I -bisimilar. With Definition 3, it holds that:

Proposition 3. If (M, s, t)↔ (M′, s′, t′), then (M, s, t) and (M′, s′, t′) satisfy
the same LHS-formulas. Also, if (M, s, t)↔− (M′, s′, t′), then they satisfy the
same LHS−I-formulas.

It can be proved by induction on the structure of LHS-formulas. Therefore,
the language cannot distinguish between bisimilar models. However, our pre-
vious discussion indicates that having a very strong notion is never the final
goal: it is equally important to ask whether the notion is also weak enough.
This time we are going to present a positive result w.r.t. a class of models that
are LHS-saturated :

Definition 4 (LHS-saturation). A model M = (W,R, V ) is said to be LHS-
saturated, if for any set Φ of formulas and states w, v ∈W , it holds that:

• If Φ is finitely satisfiable in R(w)× v, then the whole set Φ is satisfiable in
R(w)× v, and
• If Φ is finitely satisfiable in w×R(v), then the whole set Φ is satisfiable in
w ×R(v).

The notion is essentially obtained by adapting the so-called m-saturation [9]
to fit into our logics. As usual, any finite model is LHS-saturated. Furthermore,
in terms of infinite M, it intuitively requires that M contains ‘enough’ states:
for instance, if every finite subset of Φ can be satisfied by some pairs in R(w)×
v, then there must also be a pair satisfying Φ itself. By restricting Φ to the
fragment without I, we have a notion for LHS−I , called LHS−I-saturation.
Now we have enough background to show that:

7 One may also like to treat LHS as a product logic over models containing two binary
relations Rleft and Rright on domain W ×W , and then explore expressive power or
other properties of LHS with respect to the new setting. We leave a systematic study
of relations between our logic and existing combined logics for future inquiry.
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Proposition 4. For all M and M′ that are LHS-saturated, if (M, s, t) and
(M′, s′, t′) satisfy the same formulas of LHS, then it holds that (M, s, t)↔ (M′, s′,

t′). Moreover, when M and M′ are LHS−I-saturated, if (M, s, t) and (M′, s′, t′)
satisfy the same formulas of LHS−I , then it holds that (M, s, t)↔− (M′, s′, t′).

It can be proved by showing that the modal equivalence relation itself is a
bisimulation, but due to the page-limit constraints, details are omitted. There-
fore, just as the usual case, w.r.t. the class of models that are LHS/LHS−I -
saturated, our notion of bisimulation coincides with the corresponding notion
of modal equivalence.

Having shown that our novel notions behave well, we end this section with
the following result concerning the relations among aforementioned varieties of
bisimulations:

Proposition 5. With respect to the three varieties of bisimulations ↔s, ↔
and ↔−, we have the following:

(1). Both ↔s and ↔ are strictly stronger than ↔−: ↔s entails ↔− and ↔
entails ↔−, but the converse directions do not hold.

(2). ↔s and ↔ are incomparable: they do not entail each other.

Proof. We show the two claims one by one.

(1). The relation between ↔s and ↔− follows from Proposition 1, 2 and
4. Also, it is obvious that ↔ is stronger than ↔−. For an example, consider
the two models given in Figure 2: it holds (M, w1, w1) ↔− (M′, v1, v1), but
M, w1, w1 |= 〈left〉〈right〉¬I and M′, v1, v1 6|= 〈left〉〈right〉¬I. Now, by Proposi-
tion 3, we do not have (M, w1, w1)↔ (M′, v1, v1).

(2). Consider the models in Figure 2. It is not hard to see that the states w1

and v1 cannot be distinguished by the basic modal language, but this would not
be the case when we consider the logic LHS. Thus, standard bisimulations need
not be bisimulations of LHS. On the other hand, using the models in Figure
1, it is not hard to see that bisimulations of LHS may also be excluded by the
notion of standard bisimulation. This completes the proof. ut

w2 w3

w1

v2

v1

M M′

Fig. 2. (M, w1, w1)↔− (M′, v1, v1), but not (M, w1, w1)↔ (M′, v1, v1).

Properties of LHS- and LHS−I - bisimulation explored here are very basic,
and several further questions are worth studying. For instance,

Open problem. What is the computational complexity of checking for bisim-
ulation of LHS or LHS−I? Are they as complex as each other?
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4 Towards undecidability of the satisfaction problem

Essentially, LHS introduces a propositional constant to deal with equality in
a modal logic framework. This universally accepted relation of indiscernibility
is simple in nature. However, as we mentioned in section 1, there are various
elegant examples of logics that suggest that taking this relation into account
may change previously decidable logics (without equality) into undecidable
ones. In this section, we are going to contribute one more instance to this class:
in what follows, we first show that LHS does not have the tree model property
or the finite model property, and then prove that the satisfiability problem for
LHS is undecidable.

Usually, the tree model property and the finite model property are positive
signals for the computational behaviors of a logic (cf. e.g., [9]). However, in
what follows, we will show that our logic LHS lacks both the properties. Let us
begin with a simple result concerning the tree model property:

Proposition 6. The logic LHS does not have the tree model property.

Proof. Consider the following formula:

ϕr := I ∧ 〈left〉> ∧ [left]I

It is easy to see that it is satisfiable. Also, let M = (W,R,V) and u, v ∈ W
such that M, u, v � ϕr. From I it follows that u = v. Also, the conjunct 〈left〉>
indicates that the state u has successors, i.e., R(u) 6= ∅. Moreover, for all
s ∈ R(u), we have s = v. Therefore, R(u) = {u}. Consequently, the model M
cannot be a tree. The proof is completed. ut

Moreover, by constructing a ‘spy-point ’ [10], i.e., all states that are reachable
from u in n-steps can also be reached in one step, we can also establish the
following:

Theorem 1. The logic LHS lacks the finite model property.

Proof. Let ϕ∞ be the conjunction of the following formulas:

(F1) I ∧ [left]¬I
(F2) 〈left〉[left]⊥
(F3) [left]〈right〉(¬I ∧ 〈right〉> ∧ [right]I)

Let us briefly comment on the intuition underlying these formulas. First,
(F1) shows that the two states in the current graph model are the same and
the point is irreflexive. Also, formula (F2) states that the point can reach a
state that is a dead end having no successors. Additionally, the last formula,
motivated by [20], indicates that the point has more than one successor and
for all its successors i, there is also another successor j of i such that i has j
as its only successor.

After presenting the basic ideas of those formulas, we show that the formula
ϕ∞ is satisfiable. Consider the model M∞ = (W,R,V) that is defined as follows:

• W := {s} ∪ N



On the subtle nature of a simple logic of the hide and seek game 9

• R := {〈s, i〉 | i ∈ N} ∪ {〈i+ 1, i〉 | i ∈ N}
• For all p ∈ PA ∪ PE, V(p) := ∅.

See Figure 3 for an illustration. By construction, it can be easily checked
that the formula holds at (s, s), i.e., M∞, s, s � ϕ∞.

s

0 1 2 3

· · ·

· · ·

Fig. 3. The model M∞.

Next, let M = (W,R,V) be an arbitrary model such that u ∈ W and
M, u, u � ϕ∞. We are going to show that W is infinite. To do so, we claim that
the model contains the following sequence of states of M:

w0, w1, w2, w3, w4, · · ·

such that for all i ∈ N, the following conditions hold:

P1. M, wi, wi+1 � ¬I ∧ 〈right〉> ∧ [right]I

P2. 〈u,wi〉 ∈ R

P3. R(w0) = ∅, and for 1 ≤ i, R(wi) = {wi−1}

By making an induction on i ∈ N, we show that there is always such a sequence
of those w′is.

First, let us consider the basic case that i = 0. As M, u, u � (F2), we
know that there is w0 ∈ W such that Ruw0 and M, w0, u � [left]⊥. Therefore,
R(w0) = ∅, i.e., we have already obtained the dead end. Moreover, by formula
(F3), it holds M, w0, u � 〈right〉(¬I∧〈right〉>∧ [right]I). Therefore, there exists
w1 ∈ W such that Ruw1, w0 6= w1 and R(w1) = {w0}. Now, it is not hard to
see that the clauses P1-P3 hold for both w0 and w1.

Now, suppose that we have already had all those states wi≤n, and we pro-
ceed to show that there exists wn+1 satisfying the conditions P1-P3. By the in-
duction hypothesis, we have Ruwn. Now, from the formula (F3), it follows that
M, wn, u � 〈right〉(¬I ∧ 〈right〉>∧ [right]I). So, there is a state wn+1 ∈W such
that Ruwn+1 and M, wn, wn+1 � ¬I ∧ 〈right〉> ∧ [right]I. This indicates that
wn+1 satisfies the requirements P1 and P2. Also, as ¬I, wn 6= wn+1. Further-
more, from M, wn, wn+1 � 〈right〉> ∧ [right]I, we know that R(wn+1) = {wn},
which indicates that the node satisfies P3 as well.

Moreover, by the property P3, we have wi 6= wj whenever i 6= j. To be
more specific, we have M, wi, wi � 〈left〉i> ∧ [left]i+1⊥ for each i. Therefore,
we have infinitely many states wi. So, the model M is infinite. The proof is
completed. ut



10 Dazhu Li, Sujata Ghosh, Fenrong Liu, and Yaxin Tu

4.1 Undecidability

Now, by encoding the N × N tiling problem, we show that the logic LHS is
undecidable. A tile t is a 1 × 1 square, of the fixed orientation, with colored
edges right(t), left(t), up(t) and down(t). The N× N tiling problem is: given a
finite set T = {t1, · · · , tn} of tile types, is there a function f : N×N→ T such
that right(f(n,m)) = left(f(n+1,m)) and up(f(n,m)) = down(f(n,m+1))? The
problem is known to be undecidable (see [8]).

Theorem 2. The satisfiability problem of logic LHS is undecidable.

The proof is given by reduction of the tiling problem to the satisfaction
problem of LHS, and is provided in the Appendix. It is worth noting that the
proof essentially indicates the undecidability of the class of logics generalizing
our framework to capture the games with 2 ≤ n ∈ N players.

A closely related problem is that of model-checking, and it is important to
study the complexity of the model-checking problem for our logic. In contrast
to the satisfaction problem, we believe that the model checking problem for
LHS can be solved efficiently, that is, the problem lies in P.

Finally, it is not hard to see that logic LHS can be translated into first-order
logic,8 which then suggests that the logic itself is effectively axiomatizable.
Consequently, a crucial direction is to explore the following:

Open problem. Is there a complete proof calculus for the logic LHS?

5 Related works

Graph games and modal logics. Motivated by a simple graph game of hide
and seek, this paper belongs to a broader program [7] that promotes a study
of graph game design in tandem with matching new modal logics. In recent
years, several interesting new graph games have been studied. For instance, in
sabotage games [6], a player moves along a link available to her on a graph
to reach some fixed goal region, while her opponent removes an arbitrary link
in each round to prevent her from reaching her goal. The games are captured
by the sabotage modal logic [3], extending the basic modal logic with a link
deletion operator. Further, games in which links are removed locally according
to certain conditions which were expressed explicitly in the language have been
studied in [21]. Moreover, several variants of sabotage games were applied to the
learning/teaching scenarios [15], and their computational behaviors were ana-
lyzed. Following this direction, a new game setting allowing both link deletion
and link addition was developed in [5] to capture some further features of the
learning process. Closely related to the logic of [5], a class of relation-changing
logics, containing operators to swap, delete or add links, was well explored in [2,
1]. Instead of modifying links, in poison games [13], a player can poison a node
to make it unavailable to the opponent. These games have been studied with
diverse modal approaches in [11] and [17]. Additionally, by updating valuation

8 Although details of the translation are not described in the article, it is instructive
to notice that unlike usual situations, LHS is not a fragment of the first-order logic
with two free variables.
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functions of models, a dynamic logic of local fact change was studied in [25],
which captures a class of graph games in which properties of states might get
affected by those of others.

Product logics with diagonal constant. Technically, our work is close to
that of many-dimensional modal logics [22, 14]. In particular, a class of product
logics was studied in [19, 20, 18] with the so-called diagonal constant δ.9 In [20,
18] it was shown that K×δK, the product logic augmenting K×K with δ, lacks
the finite model property and is undecidable, which seem very similar to our
results at a first glance. However, our logic differs from those both conceptually
and technically.

First, our formulas are evaluated at pairs of states, where each of the states
can occur by itself (and, not just as a constituent of an ordered pair), which
makes it possible for us to study the relationship between two states directly.
In K ×δ K, even though formulas are evaluated at pairs of states, these pairs
themselves form nodes in the domain. As a result, product logic cannot express
the more fine-grained relation (i.e., identity) between the two components form-
ing a pair. In [20, 18], δ is interpreted as a special subset of the domain, not
necessarily consisting of pairs formed by the same components from those di-
mensions. Therefore, we can say that constant I explored in this article works
at a meta level. In contrast, δ in [20, 18] is an object level notion.10

Next, techniques adopted to establish the undecidability of LHS are very
different. Similar to all other product logics, various relations representing tran-
sitions of states in different dimensions are considered in [20, 18]. Moreover, the
product nature endows the relations with possible interactions: say, commuta-
tivity and confluence. With such interactions, product logics obtain grid-like
structures automatically. However, as illustrated in our proofs, a crucial step
in proving undecidability of LHS was exactly to build such a shape. In other
words, these extra efforts make our proof technically non-trivial.

6 Conclusion and future work

Summary. Motivated by the meeting/avoiding game, this paper studies a
modal logic LHS that allows us to talk about moves for each player, as well as
the situation of meeting. More specifically, formulas in this logic are evaluated at
two states of the domain, representing positions of different players. A constant
I expressing the meeting of two players is explored in depth, which adds a
natural and novel treatment of equality in modal logics. We establish a series
of results concerning its expressive power and computational behavior. A new
notion of bisimulation for LHS is proposed, and is compared systematically with
those of related logics. Further, we have proved that the logic does not enjoy
the tree model property or the finite model property, and that the satisfiability

9 For instance, in two dimensional models δ holds at a state (s, t) just in the case
that s = t.

10 But this does not exclude possible ‘mixture’ of the two lines of the frameworks:
on one hand, technically LHS can be reduced to product logics with δ, and on the
other hand, product models themselves can also be viewed as special models (with
two relations) for LHS (and then I denotes the identity of two pairs).
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problem of the logic is undecidable, which refutes a conjecture made by van
Benthem and Liu in their recent paper [7].

Further directions. We mention a few directions that we would like to pur-
sue immediately. Though we have obtained some basic results about LHS, more
properties of the logic need to be explored. Several open problems have been
formulated along the way, including the axiomatization of LHS, and issues re-
garding its expressive power. Regarding the language, the constant I seems
rather simple and innocent, but surprisingly, our logic turned out to be unde-
cidable. It makes sense to understand this phenomenon better, and possibly
by investigating some alternative logics (e.g., the logic mentioned in Remark
1). In section 5, we have seen the differences between our work and product
logics, and a systematic comparison is needed. As stated earlier, we have taken
a high-level modeller’s perspective to study the hide and seek game in this
paper. We reason about players’ observations and moves with the assumption
that the whole graph and the players’ positions at each stage of the game are
available to us. For the next step, we will pursue strategic reasoning from the
players’ perspectives in the game. We will focus on technical issues like the epis-
temic aspects of the players and extend the current language with epistemic
modalities to deal with those concepts.

Finally, as mentioned in various places, our work has a natural connection
with the game of cops and robber in the vast literature of graph games (see, e.g.,
[12, 23]). We are exploring richer versions of these games, focusing on different
characterization results of cop-win graphs. We have extended LHS with modal
substitution operators [26] which enable us to express winning positions of
players in the general sense, as discussed in section 2. We have also obtained
some new results regarding cop-win characterizations. We will continue this
line of research in the future.
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Appendix: Proof of Theorem 2

Proof. Let T = {T 1, · · · , Tn} be a finite set of tile types. For each T i ∈ T we
use u(T i), d(T i), l(T i), r(T i) to represent the colors of its up, down, left and
right edges, respectively. We are going to define a formula ϕtile such that:

ϕtile is satisfiable iff T tiles N× N.

To do so, we will use three relations in models (W,Rs, Rr, Ru) in the proof to
follow. In line with this, syntactically we have six operators [left]? and [right]?

for ? ∈ {s, r, u}. Intuitively, all the relations describe the transitions of the
left evaluation point and the right evaluation point of a graph model: in what
follows, we are going to construct a spy point over relation Rs, and the rela-
tions Ru and Rr represent moving up and to the right, respectively, from the
corresponding tile to the other.

These three relations are useful to present the underlying intuitions of the
formulas that will be constructed. Also, they are helpful in making these for-
mulas short and readable, facilitating a better understanding of the same. Cru-
cially, this does not change the computational behavior of the original LHS: the
three relations can be reduced to one relation as that of our standard models.
For instance, given that we have three relations and the evaluation gap, we can
mimic the three relations with a singular relation and 3× 2 fresh propositional
letters encoding, e.g., [left]? and 〈right〉? as [left](p?E → · · · ) and 〈right〉(p?A∧· · · ),
respectively. Definitely, to preserve the structure of those relations and truth
of formulas, we need to be careful when defining the new relation and the valu-
ation function. However, due to page-limit constraints, we forego those details
here. Now, we proceed to present the details of ϕtile, whose components will be
divided into four groups. Let us begin with the first one.

Group 1: Infinite many states induced by Rs and their ‘scope’

(U1) I ∧ [left]s¬I
(U2) 〈left〉s[left]s⊥
(U3) [right]s〈left〉s(¬I ∧ 〈left〉s> ∧ [left]sI)

(U4) [left]s[right]s([left]s⊥ ∧ [right]s⊥ → I)

(U5) [left]s[right]s(〈left〉s〈right〉sI → I)

Notice that formulas (U1)-(U3) are just the Rs-version of the formulas in
Theorem 1 that are used to create infinite models. Immediately, there exists an
infinite sequence of states as follows:

w0, w1, w2, · · ·

such that Rs(wi+1) = {wi} and Rs(w0) = ∅. Also, for the current evaluation
pair (e.g., (s, s)), we have {wi | i ∈ N} ⊆ Rs(s).

Now let us spell out what (U4) and (U5) express. Essentially, both the
formulas establish a ‘border’ for the scope of nodes that are (directly or indi-
rectly) reachable from s via relation Rs. Specifically, the formula (U4) shows
that Rs(s) contains only a dead end which is exactly w0 listed above, and more-
over, the formula (U5) indicates that for any wi, wj ∈ Rs(s), if they can reach
the same state, then we have wi = wj . See Figure 4 for two counterexamples
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Case 1

w0 w1 w2 w3

· · ·

w′0 w′1 w′2 w′3

· · ·

Case 2

w0 w1 w2

w3

· · ·

w′3

· · ·

Fig. 4. Two impossible cases of the Rs-structure Rs(s): Case 1 cannot satisfy (U4),
while Case 2 cannot satisfy (U5).

without the properties of (U4) or (U5). From the two formulas, we know that
Rs(s) = {wi | i ∈ N}.

Intuitively, we will use these w′is to represent tiles. To make this precise,
beyond the simple linear order of Rs among those states, we still need to
structure them with Rr and Ru in a subtler way. Our next group of formulas
concerns some basic features of the two relations:

Group 2: Basic features of Ru and Rr

(U6) [left]s[left]†〈right〉sI † ∈ {u, r}
(U7) [left]s(〈left〉u> ∧ 〈left〉r>)

(U8) [left]s[right]s(I → [left]u¬I ∧ [left]r¬I)

(U9) [left]s[right]s(I → [left]†¬〈left〉†I) † ∈ {u, r}

Before listing more formulas, let us briefly comment on these properties.
For all i ∈ N, the formulas of (U6) essentially give Rr(wi) and Ru(wi)

a ‘scope’. Specifically, they guarantee that Rr(wi), R
u(wi) ⊆ {w0, w1, · · · }.

Therefore, when considering the two relations, we only need to consider those
w′is, and there do not exist other states that are involved.

The formula (U7) states that every wi has successors via Ru and Rr, i.e.,
Ru(wi) 6= ∅ and Rr(wi) 6= ∅. Intuitively, this expresses that every tile has at
least one tile above it and at least one tile to its right.

Also, the formula (U8) indicates that for all i ∈ N, we do not have Rrwiwi
or Ruwiwi. Moreover, formulas in (U9) show that both the relations Rr and
Ru are asymmetric.

Except those basic features captured by formulas of Group 2, what might
be more important is our next group of formulas, which structure the states in
a grid with Rr and Ru:

Group 3: Grid formed by Ru and Rr

(U10) [left]s[right]s(〈left〉†I → [left]†I) † ∈ {u, r}
(U11) [left]s[right]s(I → [left]u[right]r¬I)

(U12) [left]s[right]s(I → [left]u[left]r¬I ∧ [left]r[left]u¬I)

(U13) [left]s[right]s(I → [left]u[left]r[left]u¬I)

(U14) [left]s[right]s(I → [left]u[right]r〈left〉r〈right〉uI)

Whereas (U7) tells us that all the w′is have Rr- and Ru-successors, formulas
in (U10) state that every wi has at most one Rr-successor and at most one
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Ru-successor. Thus, both (U7) and (U10) ensure that the transitions between
those w′is via Ru and Rr are essentially functions: precisely, for all i ∈ N and
† ∈ {u, r}, R†(wi) is a singleton.

Moreover, formula (U11) suggests that theRr-successor and theRu-successor
of a tile are different: for all i ∈ N, Rr(wi)∩Ru(wi) = ∅. That is, a tile cannot
be above as well as to the right of another tile.

Additionally, (U12) shows that no tile can be both above/below and to
the right/left of another tile, and (U13) disallows cycles following successive
steps of the Ru, Rr and Ru relations, in this order. Formula (U14) states the
property of ‘confluence’: for all tiles wi, wj , wk, if Ruwiwj and Rrwiwk hold,
then there exists another tile wn such that Rrwjwn and Ruwkwn hold. Now,
the tiles are arranged in a grid.

Now, it remains to set a genuine tiling, which can be achieved by our fourth
group of formulas. Very roughly, in usual cases this work is often routine when
we have an infinite grid-like model (cf. [9]). Let us present the details here:

Group 4: Tiling the model

(U15) [left]s(
∨

1≤i≤n

tiE ∧
∧

1≤i<j≤n

¬(tiE ∧ t
j
E))

(U16) [right]s(
∨

1≤i≤n

tiA ∧
∧

1≤i<j≤n

¬(tiA ∧ t
j
A))

(U17) [left]s[right]s(I →
∨

1≤i≤n

(tiE ∧ tiA))

(U18) [left]s(
∧

1≤i≤n

(tiE → 〈left〉u
∨

1≤j≤n,u(Ti)=d(Tj)

tjE))

(U19) [left]s(
∧

1≤i≤n

(tiE → 〈left〉r
∨

1≤j≤n,r(Ti)=l(Tj)

tjE))

Formulas (U15)-(U16) indicate that a node can be occupied ‘two’ tiles tiE
and tjA. As one node can only be occupied by exactly one tile, the statement
here may look a bit strange. However, we would like to argue that essentially
there exists no problem, see our discussion on formula (U17) below.

By formula (U17), for every fixed i, when both tiE and tjA hold at a node,
then we have i = j, i.e., they are of the same type T i. In this sense, we can
say that ‘E’ and ‘A’ are just ‘position-labels’ to refer to the evaluation nodes
in the current graph model, and a node in the model is essentially occupied by
exactly one tile. Moreover, for the same reason, although for each T i, we have
different propositional atoms tiA and tiE , all types of tiles we use are exactly
those given by the original T , but not any extra ones.

Finally, the ideas of formulas (U18) and (U19) are routine: the former one
states that colors match going up, while the latter expresses that they match
going right.

Now, let ϕtile be the conjunctions of all formulas listed in the four groups.
Based on our analyses above, any model satisfying ϕtile is a tiling of N× N.

On the other hand, we still need to show the other direction. Now suppose
that a function f : N × N → T is a tiling of N × N. Define a model Mt =
(W,Rs, Ru, Rr,V) in the following:
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• W := {s} ∪ (N× N)

• Rs consists of the following:
• For all x ∈ N× N, 〈s, x〉 ∈ Rs
• For all 〈n, 0〉 ∈ N× N with 1 ≤ n, 〈〈n+ 1, 0〉, 〈0, n〉〉 ∈ Rs
• For all other 〈n,m+ 1〉 ∈ N× N, 〈〈n,m+ 1〉, 〈n+ 1,m〉〉 ∈ Rs

• Ru := {〈〈n,m〉, 〈n,m+ 1〉〉 | n,m ∈ N}
• Rr := {〈〈n,m〉, 〈n+ 1,m〉〉 | n,m ∈ N}
• V(tiE) = V(tiA) = {〈n,m〉 ∈ N× N | f(〈n,m〉) = T i}, for all i ∈ {1, · · · , n}
• V(pE) = V(qA) = ∅, for all other pE , qA ∈ PE ∪ PA.

Figure 5 presents a crucial fragment of the model. By construction, it is not
hard to check that Mt, s, s � ϕtile. This completes the proof. ut

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉 〈4, 0〉
· · ·

· · ·

· · ·

· · ·

· · ·

〈0, 1〉

〈0, 2〉

〈0, 3〉

〈0, 4〉

...
...

...
...

...

Fig. 5. The restriction of the structure of Mt to N×N, where the resulting Rs, Ru, Rr

are represented by dotted-, dashed- and solid-arrows respectively. To obtain the whole
structure, we just need to add the state s and draw a dotted-arrow from s to each of
the members of N× N.


