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Abstract

Public observation logic (POL) is a variant of dy-
namic epistemic logic to reason about agent expec-
tations and agent observations. Agents have cer-
tain expectations, regarding the situation at hand,
that are actuated by the relevant protocols, and they
eliminate possible worlds in which their expecta-
tions do not match with their observations. In this
work, we investigate the computational complexity
of the model checking problem for POL and prove
its PSPACE-completeness. We also study various
syntactic fragments of POL. We exemplify the ap-
plicability of POL model checking in verifying dif-
ferent characteristics and features of an interactive
system with respect to the distinct expectations and
(matching) observations of the system. Finally, we
provide a discussion on the implementation of the
model checking algorithms.

1 Introduction

Agents have expectations about the world around, and they
reason on the basis of what they observe around them, and
such observations may or may not match with the expecta-
tions they have about their surroundings. Let us first provide
two examples showing the diverse nature of such reasoning
phenomena.

* Consider a person traveling from Switzerland to France
in a car. Here is one way she would know whether she
is in France. According to her expectations based on
the traffic light signals of the different states, if she ob-
serves the sequence of (green*-amber-red*)* (* denotes
the continuance of such sequences), she would know
that she is in France, whereas if she observes (green*-
amber-red*-amber)*, she would know that she is not.

* Consider three agents denoted by Sender (S), Receiver
(R) and Attacker (A). Suppose S and R have already
agreed that if S wants to convey that some decision has
been taken, S would send a message, say m, to R; oth-
erwise, S would send some other message, say m/, to R.
Suppose also that A has no information about this agree-
ment. Then upon getting a message from S, there would
be a change in the knowledge state of R but not A.

The first example concerns a certain rule that we follow in
our daily life, and the second example brings in the flavour of
coded message-passing under adversarial attacks. Expecta-
tions about the moves and strategies of other players also oc-
cur naturally in game theory, and possible behaviours of play-
ers are represented in these terms. Moving from theory to ac-
tual games, in the strategy video game Starcraft', one player
may know/expect that the other player will attack her base as
soon as possible, and thus may play accordingly. Games like
Hanabi?, and Colored Trails [de Weerd et al., 2017] also con-
sider the connection between expectations and observations
regarding the moves and strategies of the other players.

The challenge now is to build intelligent systems that are
able to reason about knowledge regarding expectations, and
plan accordingly. Whereas epistemic logic [Fagin er al.,
1995] and more generally, its dynamic extensions, popularly
known as dynamic epistemic logics (DEL) [van Ditmarsch et
al., 2008] help us to build agents that reason about knowl-
edge, they do not offer any mechanism dealing with expec-
tations. In the same way, epistemic planning, based on the
model checking of DEL ([Bolander er al., 2020]), extends
classical planning with epistemic reasoning, but is unable to
take agent expectations into account. Fortunately, follow-
ing [Wang, 20111, Public observation logic (POL) [van Dit-
marsch et al., 20141, a variant of DEL, reasons about knowl-
edge regarding expectations. POL provides dynamic opera-
tors for verifying whether a given epistemic property holds
after observing some sequence of observations matching cer-
tain expectations that are modelled by regular expressions .

However, investigations on algorithmic properties of POL
were left open. In this paper, we show that the POL model
checking is decidable and PSPACE-complete. Our result re-
lies on automata theory and the careful use of an oracle for
deciding the algorithm running in poly-space.

For practical purposes, we investigate syntactic fragments
that offer better complexities than reasoning in the full lan-
guage of POL (see Figure 1), and are suitable for relevant
verification tasks:

* the Word fragment, where any regular expression 7 is a
word, is sufficient to verify that some given plan leads to
a state satisfying some epistemic property;

"https://en.wikipedia.org/wiki/StarCraft_(video_game)
*https://en.wikipedia.org/wiki/Hanabi_(card_game)



in PTIME | NP-complete PSPACE-complete
Word _ Star-Free
(Th. 5) (Th.3) == Full language
Sta.r-Fre.e Existential—» (Th- 1)
Existential = (Th. 2)
(Th. 4) :

Figure 1: Complexity results of model checking for different frag-
ment of POL. (arrows represent inclusion of fragments).

* the Existential fragment, where the dynamic operators
of POL are all existential, is suitable for epistemic plan-
ning (e.g., does there exist a plan?);

o the Star-Free fragment, where the regular expressions
7 are star-free, embeds bounded planning (in which se-
quences of observations to synthesize are bounded by
some constant). In particular, the Star-FreeExistential
fragment (i.e. the intersection of the Star-Free and the
Existential fragments) is suitable for bounded epistemic
planning.

Outline. Section 2 recalls POL with a formal presentation
of the two examples mentioned in the introduction. Section 3
deals with all our complexity results about the model check-
ing problem of POL. Section 4 shows the applicability of
POL and its fragments in modelling interactive systems. It
also includes a discussion on the implementation. Section 5
presents the related work and section 6 concludes the paper.

2 Background and Preliminaries

We first provide an overview of public observation logic
(POL) as introduced in [van Ditmarsch et al., 2014]. Let I
be a finite set of agents, P be a countable set of propositions
describing the facts about the world and X be a finite set of
actions. Below, we will not differentiate between the action
of observing a phenomenon and the phenomenon itself.

2.1 Observations

For our purposes, we assume observations to be finite strings
of actions. In the traffic example, an observation may
be green-amber-red-green (abbreviated as garg) or, green-
amber-red-amber-green (abbreviated as garag), among oth-
ers, whereas, in the message-passing example, an observa-
tion is either m or m’. An agent may expect different (even
infinitely many) potential observations at a given state, but
to model agent expectations, they are described in a finitary
way by introducing the observation expressions (as regular
expressions over X):

Definition 1 (Observation expressions). Given a finite set of
action symbols 35, the language L ,ps of observation expres-

sions is defined by the following BNF:
7 u= Qlela|lm-m|rt+n|n*

where () denotes the empty set of observations, the constant €
represents the empty string, and a € 3.

In the traffic example, the observation expression (g*ar*)*
models the traveller’s expectation of traffic signals in case she
is in France. In the other one, the expression m models the
expectation of the receiver in case a decision is made.

The size of an observation expression 7 is denoted by |r|.
The semantics for the observation expressions are given by
sets of observations (strings over ), similar to those for reg-
ular expressions. Given an observation expression T, its set
of observations is denoted by L(7). For example, £(m) =
{m}, and L((g*ar*)*) = {e,a,ga,ar,gar,gargar,...}.
The regular language 7\w is the set of words given by {v €
¥* | wv € L(m)}. The regular language prefizes(m) is the
set of prefixes of words in £(7), that is, w € prefizes gﬂ‘) iff
Jv € X* such that wv € L(w) (namely, L(m\w) # 0).
Example 1. (¢g*ar*a)*\(garaga) = r*(g*ar*a)* denotes
the language of words {v : garaga - v € L((g*ar*)*)}. The
set prefizes((g*ar*a)*) contains garaga. However, garg is
not in prefizes((g*ar*a)*) and (g*ar*a)*\(garg) is empty.

2.2 Models

Epistemic expectation models [van Ditmarsch et al., 2014]
capture the expected observations of agents. They can be
seen as epistemic models [Fagin et al., 1995] together with,
for each world, a set of potential or expected observations.
Recall that an epistemic model is a tuple (S, ~, V') where S
is a non-empty set of worlds, ~ assigns to each agent in I
an equivalence relation ~;C S x S,and V : S — 2P is a
valuation function.

Definition 2 (Epistemic expectation model). An epistemic
expectation model M is a quadruple (S, ~,V, Exp), where
(S, ~, V) is an epistemic model and Exp : S — L s is an
expected observation function assigning to each world an ob-
servation expression T such that L(7t) # (0 (non-empty set of
finite sequences of observations). A pointed epistemic expec-
tation model is a pair (M, s) where M = (S, ~,V, Exp) is
an epistemic expectation model and s € S.

Intuitively, Ezp assigns to each world a set of potential
or expected observations. We now provide the model defi-
nitions of the examples mentioned in the introduction. The
traffic light example where only one agent (the traveller) is
involved can be depicted by the model My; (cf. Figure 2).
Unless the traveller (") observes the respective sequences of
traffic signals, she would not know whether she is in France
(f) or not (—f). Her uncertainty is represented by the (bi-
directional) link between the two worlds s and ¢. For the sake
of brevity, we do not draw the reflexive arrows. Similar rep-
resentations are used in the message-passing example as well
(cf. Figure 3). Here, the receiver would get to know about
the decision depending on the message he receives, whereas,
the attacker would be ignorant of the fact irrespective of the
message (m or m’) she receives.

The main idea for introducing this logic was to reason
about agent knowledge via the matching of observations and
expectations. In line of public announcement logic [Plaza,
2007], it is assumed that when a certain phenomenon is ob-
served, people delete some impossible scenarios where they

3For a more detailed explanation of these concepts, see the sup-
plementary materials.
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would not expect that observation to happen. To this end, the
update of epistemic expectation models according to some
observation w € X* is defined below. The idea behind an
updated expectation model is to delete the worlds where the
observation w could not have been happened.

Definition 3 (Update by observation). Let w be an observa-
tion over X and let M = {(S,~,V, Exp) be an epistemic
expectation model. The updated model M|, = (S’ ~'
V’ Exp'y is defined by: S" = {s € S'| L(Exzp(s)\w) # 0},
~=~ilers, VI = Vg, and for all s € S, Exp'(s) =
Exp(s)\w.

In Definition 3, S’ is the set of worlds s in S where the
word w can be observed, i.e., L(Fzp(s)\w) # . The defini-
tions of ~" and V' are given by usual restrictions to .S’. The
expectation at each world in S’ gets updated by observing the
word w: finite strings of actions that are of the form wu are
replaced by u while strings that are not of the form wu get
removed because they do not match the expectation.

Example 2. Consider the model My of Figure 2 and w =
garga. The updated model My|, = (S',~', V' Exp') is
such that 8" = {s}: world t is removed because garga
is not a prefix of any word in L((g*ar*a)*). The expecta-
tion Exp(s) is replaced by Exp’(s) = (g*ar*)*\(garga) =
r*(g* ar*)*.

2.3 Public Observation Logic (POL)

To reason about agent expectations and observations, the lan-
guage for POL is provided below.

Definition 4 (Syntax). The formulas ¢ of POL are given by:
e == Tlpl-pleAe|Kipl[rle,
wherep € P,i €1, and 7w € L yps.

Intuitively, K;¢ says that ‘agent ¢ knows that ¢’, and [r]¢
says that ‘after any observation in 7, ¢ holds’. The other
propositional connectives are defined in the usual manner.
We also define (m)¢ as —[r]—¢ and K@ as = K;—¢. We
will mostly use these modalities in our proofs. The Star-Free
fragment of POL is the set of formulas in which the 7’s do
not contain any Kleene star *. A much more restricted ver-
sion is the Word fragment of POL, where 7’s are words. The
Existential fragment of POL is the set of formulas for which
there is an odd number of negations in front of K; and [r]

modalities. Equivalently, it corresponds to formulas in neg-
ative normal form in which only the operators () and K;
appear. Finally, we have the Star-Free Existential fragment
of POL which is the Existential fragment with the extra guar-
antee that the 7’s do not contain any Kleene star .

Definition 5 (Truth definition). Given an epistemic expecta-
tion model M = (S, ~,V, Exp), aworld s € S, and a POL-
formula o, the truth of v at s, denoted by M, s E , is defined
by induction on ¢ as follows:

M,sEp < peV(s)
M,sE-p & M,sEp
M,;sEpAYy & M,sEpand M,sFE
M,sE K;po & forallt: (s~;timplies M,tF @)
M, sE[rle < forallw e L(rm) N prefizes(Exp(s))

we have M|y, s E ¢)

The truth of K;p at s follows the standard possible
world semantics of epistemic logic. The formula [r]¢
holds at s if for every observation w in the set £(7) that
matches with the beginning of (i.e., is a prefix of) some
expected observation in s, ¢ holds at s in the updated
model M|,,. Note that s is a world in M|, because w €
prefizes(Exp(s)). Similarly, the truth definition of (m)y
can be given as follows: M,s E (m)y iff there exists w €
L(7) N prefixes(Exzp(s)) such that M|,,, s E ¢. Intuitively,
the formula (7)p holds at s if there is an observation w in
L() that matches with the beginning of some expected ob-
servation in s, and ¢ holds at s in the updated model M.
For the examples described earlier, we have:

- My, s = [¢*]~(Krf VvV Kp—f). This example corre-
sponds to a safety property: there is no leak of infor-
mation when observing an arbitrary number of g’s be-
cause it is compatible with both the expectation g*ar*)*
of the French traffic light system, and the expectation
g*ar*a)* of the non-French one.

- My,s = ((garg)*)(Krf). This example in the
Existential fragment shows that we can express the exis-
tence of a sequence of observations that reveals that the
traveller is in France.

- My,s E (gar)~(Kpf V Kp—f). This example in
the Word fragment expresses that the sequence of ob-
servations gar would keep the traveller ignorant about
her whereabouts.

- My, s = (m)((Kgrd A =K 4d). This example, also
in the Word fragment, expresses that after receiving the
message m, the receiver gets to know about the decision
but the attacker remains ignorant.

Model Checking for POL:  Given a finite pointed epis-
temic expectation model M,s, and a formula ¢, does
M, s = ©? We are interested in knowing the complexity of
this problem. We will also consider restrictions of the model
checking when the input formula ¢ is restricted to be in one
of the syntactic fragments: Word, Star-Free, Existential and
Star-FreeExistential.



3 Complexity Results

The main complexity result that we prove in this paper is the
following:

Theorem 1. POL model checking is PSPACE-complete.

POL model checking is in PSPACE: For proving the upper
bound result, that is, showing that POL model checking is in
PSPACE, we design the algorithm mcPOL (Algorithm 1). It
takes as input a POL model M = (S, ~,V, Ezp), an initial
starting world s € S, and a POL formula ¢ and returns True
iff M, s = ¢. We also prove that the algorithm mcPOL uses
polynomial space.

The recursive algorithm mcPOL is divided into various
cases depending on the structure of ¢. The subtle case is the
observation modality (7)) (that is dealt with in lines 7 to 11).
It follows from the truth definition that M, s E (7)1 iff there
exists a w € L(m) such that M|, s F 1. Here we observe
that for any M and w the model M |,, can be represented by a
string of size polynomial in the size of M (This is because M
and M|, just differ by their expected observation functions
as follows: for any world t, Fzp’(t) = Fzp(t)\w and Ezp(t)
share the same NFA, just the set of initial states is different.).
Thus if we consider the set ™ = {M|,, | w € £*}, that is,
the set of every updated model M|,,, for a POL model M,
over all w € ©*, we realize that all the models in T has size
polynomial in the size of M. Thus, by using both the obser-
vations together, when mcPOL has to check if M, s E (m)y
(in the for loop in lines 8 to 10) it goes over all models M’ in
'™ and (in line 8) checks if M’ = M|,, for some w € L()
and finally (in line 10) calls mcPOL recursively to check if
My, s E .

Thus mcPOL needs to call a polynomial space subroutine
to check if M’ = M|, for some word w € L(w). To
prove that there exists such a polynomial space algorithm
we present a slightly convoluted argument. Algorithm 2
provides a non-deterministic procedure running in polyno-
mial space for deciding that M’ = M]|,, for some word
w € L(m). By Savitch’s theorem [Savitch, 1970] which states
that NPSPACE = PSPACE, we have that a polynomial space
algorithm also exists. Algorithm 2 starts by guessing a word
of exponential length, sufficiently long enough to explore all
subsets of current states for NFAs of Ezp(t) for all worlds ¢
in M and for the NFA of 7. Then the algorithm guesses the
word w letter by letter and it progresses in the NFAs (note that
it does not store the word w as it can be of exponential length).
Algorithm 2 accepts when w € L(7) (i.e., e € L(n’)) and
M = M'. Otherwise, it rejects.

Model checking for POL is PSPACE-hard: Interestingly,
there are two sources for the model checking to be PSPACE-
hard: Kleene star in observation modalities as well as alterna-
tions in modalities (sequences of nested existential and uni-
versal modalities). We prove the PSPACE-hardness of model
checking against the Existential fragment and the Star-Free
fragment of POL respectively.

Theorem 2. The model checking for the Existential fragment
of POL is PSPACE-hard.

Theorem 3. The model checking for POL is PSPACE-hard,
when the POL formulas are Star-Free.

Algorithm 1 mcPOL
Input: M = (S, ~,V, Ezp),s € S, ¢
Output: Trueiff M, sFE ¢
1: if o = pis a propositional variable then
2:  return Trueif p € V(s); False otherwise

if o = —) then

return not mcPOL(M, s, v)
if o =1’ V 1) then

return mcPOL(M, s, ) or mcPOL(M, s, ")
if o = (7)1 then

for all models M’ in T™ do

if s is a world in M’ and the oracle claims that
M' = M|, for some word w € L(r) then

10: return mcPOL(M’, s, 1))
11:  return False
12: if ¢ = K;¢ then
13:  if 3¢t € S such that ¢ ~; s and mcPOL(M, ¢, ) then
14: return True
15:  else
16: return False

R AR

Algorithm 2 Non-deterministic procedure to decides that
M' = M|, for some word w € L(m)

Input: M = (S, ~,V, Ezp), M' € '™ 7
Output: has an accepting execution iff M’ = M|, for some
w € L(m)
I =nm
2: for i = 11t02" x I;cg2!B(| do
ife € L(n') and M = M’ then
accept
guess a letter a from X
/

3
4
5
6: 7w :=7'\a
7
8
9

for each world ¢in .S do
Ezp(t) := Ezp(t)\a
: reject

/I we modify M locally

Model checking for Star-Free Existential and Word frag-
ment of POL: While Theorems 2 and 3 proved the PSPACE-
hardness of the model checking for the Existential fragment
and the Star-Free fragment of POL, respectively, if we con-
sider the Star-Free Existential fragment then we can show
that the model checking is NP-complete. Finally, we also
prove that the model checking for the Word fragment is in P.

Theorem 4. The model checking problem for the Star-Free
Existential fragment of POL is NP-complete.

Theorem 5. Model checking for the Word fragment is in P.

4 Application

Let us consider an automatic farming drone that is moving
in a field represented as a grid (see Figure 5). Two agents a
and b help the farming drone. The system is adaptive so the
global behaviour is not hard-coded but learned. We suppose
that the drone moves on a grid and agents a and b may observe
one of the four directions: X := {», «, A, ¥}. For instance,
observing « means that the drone moves one-step left. For



s | water
(» UA)* (YU € Ue)(» UA)" (€4 UY)" (AU > Ue)(a UV)*
Figure 4: Model describing the initial knowledge of the two agents a
and b about the expectation of the automatic farming drone.

power | ¢

0

[=)
D

Figure 5: Field and an automatic farming drone.

this example, we suppose that agent a has learned that there
are three possible expectations for the drone:

1. the drone may go up-right searching for water, but the
drone can make up to one wrong direction (V¥ or «).
The corresponding set of expectations is captured by the
regular expression (> UA)*(YU <« Ug)(» UA)* where
¢ stands for the empty word regular expression.

2. the drone may go down-left searching for power supply,
but the drone can make up to one wrong direction (A or
» ). The corresponding set of expectations is captured by
the regular expression: (€ UV)*(AU » Us) (€ UV)*.

3. the drone is patrolling making clockwise squares. The

expectation is: (> ¥ <« AT)*,

The regular expressions may be learned by the agents after
observing several executions (see for instance [Balcazar et al.,
1997]) or might be computed by planning techniques [Bonet
et al., 2009]. Agent b has more information and knows that
the behaviour of the drone would include either searching for
water or power supply. Agents a is programmed so that if she
knows that the drone is searching for water (K, water) then
she will turn on the valve, and if she knows that the drone is
searching for power (K ,power), she will prepare the power
supply. Agent b is programmed in the same way. The model
M, depicted in Figure 4, can be obtained by techniques de-
scribed in [van Ditmarsch et al., 2014] (they use a mechanism
from DEL for constructing the epistemic expectation model,
by assigning the expectations at each world).

Now, verification tasks related to epistemic planning
(e.g., verifying whether K, water, Kywater, K,power, or
Kypower is true after some observations) reduce to the POL
model checking problem. Let us now discuss the expressivity
of the fragments: Word, Existential, Star-Free — Existential
and Star-Free.

In the Word fragment, words are fixed sequences of ob-
servations. The fragment thus enables to write formulas of
the form (w)yp, meaning that ¢ holds after the sequence w
of observations (that can be considered as the observations
produced by the plan executed by the system). Thus, this
fragment enables to write formulas to verify properties after
the execution of a plan.

Example 3 (verification of a plan, Word fragment). Does
agent a know that the drone is searching for water after the
sequence »pp?

M, s E (»rr) K water

Epistemic planning is the general problem of verifying
whether there exists a plan leading to a state satisfying a given
epistemic formula. In our setting, it can be expressed by a for-
mula of the form (7) where 7 denotes the plan search space
(more precisely the search space of sequences of observations
produced by a plan).

Example 4 (epistemic planning, Existential fragment). Does
there exist a plan for the drone such that agent b would know
that the drone is searching for water while agent a would still
consider patrolling a possibility?

M, s = ((» UVU € UA)*) (Kywater A Kapatrolling)

In planning (and also in epistemic planning), we may ask
for the existence of a plan of bounded length, e.g., less than 4
actions. The Star-FreeExistential fragment is sufficiently ex-
pressive to tackle the so-called bounded epistemic planning.

Example 5 (bounded epistemic planning, Star-Free
Existential fragment). Does there exist a sequence of at
most 4 moves such that agent b would know that the drone
is searching for water while agent a would still consider
patrolling a possibility?

M, s = (> UYU €« UA U €)Y (Kywater A R’apatrolling)

Interestingly, the Star-Free fragment and the full lan-
guage are able to express properties, mixing existence and
non-existence of plans, in respectively the bounded and un-
bounded cases.

Example 6 (Star-Free fragment). Agent a would not gain the
knowledge that the drone will search for water with less than
or equal to 2 movements but it is possible with 3 movements:

M, s E[(» UYU < UA)?|=K water] A
(» UYU €4 UA)?) K water

Example 7 (full language). It is impossible for the agent a
to know that the drone is searching for water with only down
and left movements but there is a plan if all movements are
allowed:

M, s E[(YU €)*]-Kwater|A
((» UYU €4 UA)") K water

On implementation. The model checking for the Word
fragment can be implemented in poly-time with a bottom-up
traversal of the parse tree of the formula, as for CTL [Baier
and Katoen, 2008, Section 6.4]. The model checking for the
Star-FreeExistential fragment can be implemented via a re-
duction to SAT. The idea is to introduce propositional vari-
ables to model the Boolean values of the following state-
ments: (i) the ¢-th letter of the guessed word is equal to a,
(ii) a given automaton A is in state g after having read the
first ¢ letters of the guessed word, and, (iii) a subformula of
the formula ¢ to check is true at a given world u. The last type
of statements are combined in the spirit of the Tseitin trans-
formation [Ben-Ari, 2012, p. 91] (see Details in the Supple-
mentary Material). We leave the other cases for future work.



5 Related Work

Dynamic epistemic reasoning The model checking of
standard epistemic logic (EL) is PTIME-complete [Schnoe-
belen, 2002]. Public Observation Logic (POL) is quite simi-
lar to Public announcement logic (PAL) [Plaza, 2007]. When
public announcements are performed, the number of possible
worlds reduces, making the model checking of PAL still in
PTIME [van Benthem, 2011] as for standard epistemic logic.
When actions can be private, the model checking becomes
PSPACE-complete for DEL with action models [Aucher and
Schwarzentruber, 2013].

In PAL, a possible world is equipped with a valuation,
while in POL it is also equipped with a regular expression
denoting the expectation in that world. In PAL, the public
announcement is fully specified and its effect is determinis-
tic. In POL, we may reason on sets of possible observations
represented by regular expressions m. When these sets are
singletons, we again obtain a PTIME upper bound (Theo-
rem 5). In this sense, POL is close to Arbitrary PAL (APAL)
[French and van Ditmarsch, 2008] whose model checking is
also PSPACE-complete [Agotnes et al., 2010]. In APAL, any
epistemic formula can be announced: there are no expecta-
tions. However, in POL, we have to reason about the con-
straints between the possible expectations, and the set of ob-
servations (given by 7). Our contribution can be reformulated
as follows: we prove that (i) reasoning about these constraints
can still be done in PSPACE, and, (ii) this reasoning is suffi-
ciently involved for the model checking to be PSPACE-hard.

In POL, regular expressions are used to represent sets of
observations, while van Benthem et al. [van Benthem et al.,
2006] used regular expressions (actually, programs of Propo-
sitional dynamic logic (PDL) [Fischer and Ladner, 1979]) to
denote epistemic relations. Charrier et al. [Charrier et al.,
2019] considered a logic for reasoning about protocols where
actions are public announcements and not abstract observa-
tions as in POL.: in this sense, POL is more general.

Epistemic temporal reasoning It is natural to describe
computational behaviours with regular expressions. Finite-
state controllers, i.e., automata are used to describe policies
in planning [Bonet et al., 2009]. Interestingly, Lomuscio
and Michaliszyn [Lomuscio and Michaliszyn, 2016] studied
an epistemic logic where formulas are evaluated on intervals
and the language provides Allen’s operators on intervals: in
their setting, the model is an interpreted system, and a propo-
sitional variable p is true in an interval I if the trace of [
matches a given regular expression associated to p. In con-
trast, POL is not based on an already set-up model but relies
on updates in a model. Bozzelli et al. [Bozzelli et al., 2017]
studied the complexity of the model checking of that logic
depending on the restrictions on the allowed set of Allen’s
operators. Their framework is similar to ours because it re-
lies on regular expressions but the approach is orthogonal to
model updates and hence, to epistemic planning.

Epistemic planning As far as we know, epistemic planning
frameworks (based on DEL [Bolander et al., 20201, or the
so-called MEP for Multi-agent Epistemic Planning [Muise et
al., 2022]) all provide a mechanism for reasoning about pre-
conditions and effects of actions. Expectations about others

or about the world are not dealt with. However, Saffidine
et al. [Saffidine et al., 2018] propose a collaborative setup
for epistemic planning where each agent executes its own
knowledge-based policy/program (KBP) while agents com-
monly know all the KBPs that are being executed, meaning
that agents expect that the other agents follow their own KBP.
On the contrary, in POL, observations are public but expecta-
tions are in general not commonly known. Reasoning about
some epistemic properties that are true after the execution of
any kind of KBPs is undecidable, but is PSPACE-complete
for star-free KBPs. The complexity is high for different rea-
sons: the initial model is represented symbolically; observa-
tions are not already public, and KBPs may contain tests.

Strategic reasoning Usually in logics for strategic reason-
ing (e.g., alternating-time temporal logic [Alur et al., 2002],
and strategy logic [Chatterjee er al., 2010]), agents do not
have expectations: an agent may consider all possible strate-
gies for the others. Recently, Belnardinelli et al. [Belar-
dinelli ef al., 2021] propose a variant of strategy logic (SL)
where a player may know completely the strategy of another
player. In contrast, in POL agents may have partial informa-
tion about the expectations. In POL, agents also have higher-
order knowledge about these expectations. In SL, strategies
are abstract objects in the logical language whereas in POL,
observations are represented as composite structures that the
agents can reason about, similar to the work on games and
strategies presented in [Ghosh and Ramanujam, 2012]. In this
sense, POL can be seen as EL extended with PDL operators.

6 Conclusion

In this paper, we showed that the model checking for POL is
PSPACE-complete. Such complexity studies were left open
in [van Ditmarsch et al., 2014]. We also identified more
tractable fragments (see Figure 1) of POL. Finally, we dis-
cussed the applicability of our study in verifying various fea-
tures of interactive systems related to epistemic planning. A
discussion on implementation is also provided.

We leave the investigations on model checking for EPL,
an extension of POL, also proposed in [van Ditmarsch et al.,
2014], for future work. We also aim to study the satisfiability
problems of POL and EPL by adapting the techniques from
[Aucher and Schwarzentruber, 2013; Lutz, 2006].

Many interesting features of such interactive systems re-
main to be investigated : private observations, like in DEL
with action models [van Ditmarsch er al., 2008]; dynamic
aspects (e.g., changing expectations); richer languages of
expectations (e.g., context-free grammars for expectations),
among others. Symbolic model checking can be considered
as well following the trends of [van Benthem et al., 2018] and
[Charrier et al., 2019].

This paper also opens up a research avenue for developing
variants and extensions for reasoning about expectations and
observations that can be expressive enough with reasonable
complexities for the model checking problem.

To sum up, POL mixes epistemic logic and language theory
for modelling mechanisms of social intelligent agents, and the
current investigations on model checking set it up as a useful
tool in building social software for Al
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