
Bisimulation in model-changing modal logics:
An algorithmic study

Sujata Ghosh, Indian Statistical Institute, Chennai, India.
Shreyas Gupta, Indian Institute of Science, Bangalore, India.

Lei Li, Tsinghua University, Beijing, China.

Abstract

We discuss the notion of bisimulation in various model-changing modal logics and provide an algorithmic study
of the same. We provide a general algorithm which gives an overall procedure to check whether two models are
bisimilar in all these logics. Through our algorithmic analyses we provide a PSPACE upper bound of the bisimulation
/ model comparison problem of all these modal logics. We also provide some insight into the higher complexity of
the model comparison problem for these logics compared to that for the basic modal logic.

1 Introduction
Various model-changing modal logics have been introduced over the years to capture the model dynamics in many
relevant areas, from mathematical systems to machine intelligence, from economic theories to philosophical queries
as well as other important phenomena. For example, these logical systems deal with dynamical systems, knowledge
and belief dynamics, graph dynamics, game dynamics, social network updates, memory updates and many others.

This whole study started with the introduction of Public Announcement Logic (PAL) that deals with information
updates brought about by public communication. In PAL, as studied in [39, 40], the evaluation of the announcement
formulas ⟨𝜑⟩𝜓 (read as ‘there is an announcement of 𝜑 after which 𝜓 holds’) involves deleting all the ¬𝜑−worlds
in the Kripke models and all relations on those worlds, while in [19], the evaluation of the formula [𝜑]𝑎𝜓 involves
deleting all arrows in the Kripke models that are related to ¬𝜑−worlds, with the domain remaining the same. Dynamic
Epistemic Logic (DEL)[10, 9, 54, 47], a generalization of PAL, characterizes such announcements in more subtle
communications. Model-transforming operators like lexicographic upgrade [⇑], elite change [↑] and suggestion [#]
capture plausibility relation updates under soft information [49, 46] involving relational changes without changes in
the domain. Similar to DEL, Arrow Update Logic (AUL) [28] is a theory of epistemic access elimination that can be
used to reason about multi-agent belief change, and furthermore, GAUL, a generalized version of AUL, characterizes
similar dynamic changes as in DEL. In addition, factual changes are captured by updating valuations in Kripke models
[41, 53, 52, 26].

Model-changing logics have also played a significant role in describing strategic reasoning in games on graphs,
which have received a lot of attention in diverse domains, e.g., computer science, logic, linguistics, economics,
mathematics, philosophy, biology and others. As the name indicates, such a game is played on directed or undirected
graphs, and the players’ actions are assigned based on the designer’s research objectives. One can also consider different
variants of such graph games where such variations can arise from different winning conditions (e.g., reachability,
parity [20]), independent moves of players (e.g., cop and robber game [36]), one player obstructing moves of the others
(e.g., sabotage game [45], poison game [14]) and others. In the interplay between game theory, logic and computer
science, these graph games provide exploratory models for reactive systems that need to interact with the uncertain
environment.

From the perspective of link/edge deletion in graphs, sabotage games [45] are natural examples where one player
is concerned with a reachability objective and the other player is involved in obstructing her opponent’s moves by

1

deleting edges from the graph. Model-changing logics related to sabotage-style graph games with edge deletions are
presented in [50, 42, 30, 8, 48]. For example, the language of Definable Modal Sabotage Logic (S𝑑ML) in [30] is a
direct extension of basic modal language with additional operator [−𝜓]. Intuitively, [−𝜓]𝜑 expresses the condition that
after local deletion/sabotage of all arrows from the current point, whose end points satisfy 𝜓, 𝜑 still holds. The Modal
Logic of Supervised Learning (SLL) [8] is equipped with even more advanced sabotage operators that are introduced
to characterize relation changes in multi-relation models. Moreover, there is a generalized sabotage operator in [48],
denoted by ♦𝛼

𝛽
that is used to capture an arrow deletion whose end-points satisfy 𝛼 and 𝛽, respectively.

A game that is close to the spirit of games describing point/vertex deletion on graphs is the poison game[14]:
One player is concerned with moving indefinitely in the game graph, and her opponent is involved in obstructing
her moves by poisoning certain vertices whose effect is analogous to that of ‘point deletion’ from the perspective of
the former player. To reason about poison games, model-changing logics PSL and PML[56, 22] use operators for
changing valuations in and/or domains of models, which are inspired by memory logics[56, 34, 4]. Operators involving
such changing of valuations are also mentioned in [43, 50]. Moreover, point-deletion style operators are proposed in
[45, 15, 51, 2]. For example, the operator ⟨−𝜓⟩ in the language of Modal Logic of Stepwise Removal (MLSR) [51]
involves deleting 𝜓−worlds in the models.

In general, these logics aim to capture three mechanisms of model transformation, namely, those describing domain-
changes, relation-changes and valuations-changes in models and their combinations. In this work, we concentrate on
various extensions of basic modal logic with the new operator ⟨𝑢𝑝⟩, which we call MCML(𝑢𝑝), where ⟨𝑢𝑝⟩ reflects
various mechanisms of model transformation. In particular, we deal with the bisimulation / model comparison
problems of such model-changing logics. We provide a uniform algorithmic study of the model comparison problem
to shed some light on the complexity of these problems. For our purposes, we consider the operators ⟨𝑠𝑏⟩ and ⟨𝑔𝑠𝑏⟩
[2, 5, 15, 48, 42] to model edge deletion in models, ⟨𝑏𝑟⟩ and ⟨𝑔𝑏𝑟⟩ [15] to model edge addition in models, and ⟨𝑠𝑤⟩
and ⟨𝑔𝑠𝑤⟩ [3, 2, 15] to model arrow swap in models. In addition, we consider ⟨𝑑𝑒⟩ [45] and ⟨𝑐ℎ⟩ [43] for point deletion
and valuation change in models, respectively. Such a study provides insight into the complexity of the bisimulation
problems of these modal logics which have not been studied before.

There is a strand of literature exploring technical properties of these logics. MCML(⟨𝑔𝑠𝑏⟩) was first introduced
in [45], and complete proof systems for MCML(⟨𝑔𝑠𝑏⟩) have been discussed in [5, 15]. For the decidability and
complexity questions, we have the following results from [33, 15, 43]: (i) for ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑐ℎ⟩},
the satisfiability problem for MCML(⟨𝑢𝑝⟩) is undecidable, and (ii) for ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑔𝑏𝑟⟩},
the model-checking problem for MCML(⟨𝑢𝑝⟩) is PSPACE-complete. A result that is missing in this picture is the
complexity of bisimulation or the model comparison problem, and in this work we investigate this issue by providing
a uniform algorithmic study. The model comparison problem has been in the radar of researchers for a long time. In
addition to the development of verification algorithms [13, 18, 21], model comparison problem also holds fundamental
importance in the field of concurrency theory and related areas of computer science [24, 1]. It is well-known that
deciding bisimilarity over finite labelled transition systems is in deterministic polynomial time [38, 25, 6]. To the best
of our knowledge, complexity study of the bisimulation problems concerning these model-changing logics is still open.
Solving this problem will, on one hand, provide us with a finer understanding of the practical applicabilities of these
logics, and on the other hand, provide us with better insights about their expressive powers. In this work, we provide
PSPACE upper bounds for the bisimulation problems for all these model-changing logics mentioned. Finding lower
bounds for these problems are left as open questions.

The rest of the paper can be summarized as follows: In section 2, we introduce the relevant logic frameworks
together with their respective notions of bisimulations. Section 3 gives us a detailed algorithmic study together with
providing upper bounds of the complexity of the relevant problems. Section 4 provides some further related results
and concludes the paper with a discussion on the lower bound.

2 Model-changing modal logics
In this section, we first describe the various model-changing logics that we are going to base our study on. We will
also recapitulate the corresponding notions of bisimulation. The main focus will be on the logics describing relation
updates where the domains remain fixed. In addition, we will also look into domain updates as well as valuation
updates. To have a uniform description of these logics, we start with a general framework followed by the specific ones.

2

2.1 A uniform language
Given a countable, infinite set of propositional variables P, The syntax of the general model-changing modal logic
MCML(𝑢𝑝) is given as follows:

𝜑 B 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | ♢𝜑 | ⟨𝑢𝑝⟩𝜓,

where 𝑝 ∈ P, ⟨𝑢𝑝⟩ is a model-update modality. The dual [𝑢𝑝]𝜓 formula is defined as usual: ¬⟨𝑢𝑝⟩¬𝜓.
The models for MCML(𝑢𝑝) are given by usual relational models M = (𝑊, 𝑅,𝑉) for modal logics, where, 𝑊 is a

non-empty set, 𝑅 ⊆ 𝑊 ×𝑊 , and 𝑉 : 𝑊 → 2P . A pair (M, 𝑤), where 𝑤 ∈ 𝑊 is called a pointed model. Let 𝔐 denote
the class of all pointed models, and 𝑟𝑢𝑝 be a subset of 𝔐 ×𝔐 corresponding to the operator ⟨𝑢𝑝⟩. Given a pointed
model (M, 𝑤), the set {(M ′, 𝑤′) | ((M, 𝑤), (M ′, 𝑤′) ∈ 𝑟𝑢𝑝} collects all the updated pointed models from (M, 𝑤)
that we get with respect to the operator ⟨𝑢𝑝⟩. The truth definition of the formulas of MCML(𝑢𝑝) in pointed models
are as usual for the boolean and the modal formulas, and for the operator ⟨𝑢𝑝⟩, it is given as follows:

- (M, 𝑤) |= ⟨𝑢𝑝⟩𝜓 iff there is a pointed model (M ′, 𝑤′) with ((M, 𝑤), (M ′, 𝑤′)) ∈ 𝑟𝑢𝑝 and (M ′, 𝑤′) |= 𝜓.

With the syntax and semantics out of the way, we now focus on the following question which forms the backbone
of this work: When do two pointed models satisfy the same formulas under the language MCML(𝑢𝑝)? The definition
of the relevant bisimulation concept, that is, 𝑢𝑝-bisimulation is given as follows.

Let M1 = (𝑊1, 𝑅1, 𝑉1) and M2 = (𝑊2, 𝑅2, 𝑉2) be two relational models. A non-empty relation 𝑍 over a set
of pointed models is an 𝑢𝑝-bisimulation between (M1, 𝑤1) and (M2, 𝑤2), denoted by (M1, 𝑤1)𝑍 (M2, 𝑤2), if the
following conditions are satisfied:

(1). Atom: If (M1, 𝑤1)𝑍 (M2, 𝑤2), then (M1, 𝑤1) |= 𝑝 iff (M2, 𝑤2) |= 𝑝 for all atomic propositions 𝑝 ∈ P.
(2). Zig♢: If (M1, 𝑤1)𝑍 (M2, 𝑤2), and there exists 𝑣1 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, then there is a 𝑣2 ∈ 𝑊2 such that

𝑤2𝑅2𝑣2 and (M1, 𝑣1)𝑍 (M2, 𝑣2).
(3). Zag♢: Same as above in the converse direction.
(4). Zig𝑢𝑝: If (M1, 𝑤1)𝑍 (M2, 𝑤2), and there exists (M ′

1, 𝑢1) such that ((M1, 𝑤1), (M ′
1, 𝑢1)) ∈ 𝑟𝑢𝑝 , then there

exists (M ′
2, 𝑢2) such that ((M2, 𝑤2), (M ′

2, 𝑢2)) ∈ 𝑟𝑢𝑝 and (M ′
1, 𝑢1)𝑍 (M ′

2, 𝑢2).
(5). Zag𝑢𝑝: Same as above in the converse direction.

Note that the definition above is given in a generalized way, we shall make changes below according to the specific
operators. Generally speaking, there are three cases.

• We do not need to make any adjustments, the definition may fit well for the operator ⟨𝑢𝑝⟩ under consideration.
• The dynamics of the models, that the operator ⟨𝑢𝑝⟩ reflects, may be quite complicated. Then, an abundant

amount of information may be wrapped up in the respective definitions of 𝑟𝑢𝑝 that we shall process further
with respect to the items (4) and (5). For example, in the item (4), “((M1, 𝑤1), (M ′

1, 𝑤
′
1)) ∈ 𝑟𝑢𝑝" may

involve complex formulas being satisfied at certain points, which shall be translated into additional conditions
for bisimulation. In such cases, we shall restate the items (4) and (5) in the terms of the specific forms of the
operator ⟨𝑢𝑝⟩.

• Alternatively, the operator ⟨𝑢𝑝⟩ may not increase the expressivity of the logic, which means that for any formula
with ⟨𝑢𝑝⟩, there is an equivalent formula without it. In such cases, items (4) and (5) become redundant, and we
shall not consider them.

Thus, we treat the definition of bisimulation above in a broader perspective and many specific instances will be
taken up later where we will delve into the minute details. Based on this definition, we can prove that bisimulation
implies modal equivalence which we claim formally in the following. For simplicity, if there is an 𝑢𝑝-bisimulation
between two pointed models (M1, 𝑤1) and (M2, 𝑤2), we call them 𝑢𝑝-bisimilar.

Proposition 1. If two pointed models (M1, 𝑤1) and (M2, 𝑤2) are 𝑢𝑝-bisimilar, then they satisfy the same formulas of
the logic MCML(𝑢𝑝).

3

Proof. We can prove this by applying induction on the structure of formulas, and we only focus on the formula of the
form ⟨𝑢𝑝⟩𝜓. Suppose that (M1, 𝑤1) |= ⟨𝑢𝑝⟩𝜓. Then there is (M ′

1, 𝑢1) such that ((M1, 𝑤1), (M ′
1, 𝑢1)) ∈ 𝑟𝑢𝑝 , and

(M ′
1, 𝑢1) |= 𝜓. According to the definition of 𝑢𝑝-bisimulation, there exists (M ′

2, 𝑢2) such that ((M2, 𝑤2), (M ′
2, 𝑢2)) ∈

𝑟𝑢𝑝 and (M ′
1, 𝑢1)𝑍 (M ′

2, 𝑢2). we have (M ′
2, 𝑢2) |= 𝜓 by I.H., it follows that (M2, 𝑤2) |= ⟨𝑢𝑝⟩𝜓.

2.2 On specific ones
We have proposed the language 𝑀𝐶𝑀𝐿 (𝑢𝑝) for describing certain model-changing logics in a uniform way and the
corresponding notion of bisimulation. Next we will demonstrate the specific notions of bisimulations with respect to
the specific logics.

A number of model-changing operators have been proposed over the years which are basically modelling different
dynamic mechanisms. We now investigate some of these modal operators characterizing basic mechanisms of model-
changing. The operators ⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩ and ⟨𝑔𝑏𝑟⟩ are proposed to capture relation-changing in
models, while ⟨𝑑𝑒⟩ is proposed to characterize domain-changing in models (followed by relation-changes), and ⟨𝑐ℎ⟩
for valuation-changing. We have chosen these operators as representatives for expressing the three different kinds
of model-changing operations: (i) domain-changing, (ii) relation-changing (with domain remaining fixed) and (iii)
valuation-changing (with domain and relation remaining fixed). The intuitive meaning of these operators are as follows:

• ⟨𝑠𝑏⟩𝜓 can be read as ‘it is the case that 𝜓, after we sabotage some arrow starting at the present point’.
• ⟨𝑔𝑠𝑏⟩𝜓 can be read as ‘it is the case that 𝜓, after we sabotage some arrow in the model’.
• ⟨𝑠𝑤⟩𝜓 can be read as ‘it is the case that 𝜓, after we swap some arrow starting at the present point’.
• ⟨𝑔𝑠𝑤⟩𝜓 can be read as ‘it is the case that 𝜓, after we swap some arrow in the model’.
• ⟨𝑏𝑟⟩𝜓 can be read as ‘it is the case that 𝜓, after we add a new arrow at the present point’.
• ⟨𝑔𝑏𝑟⟩𝜓 can be read as ‘it is the case that 𝜓, after we add a new arrow in the model’.
• ⟨𝑑𝑒⟩𝜓 can be read as ‘it is the case that 𝜓, after some point is deleted from the model’.
• ⟨𝑐ℎ⟩𝜓 can be read as ‘it is the case that 𝜓, after the valuation at the present point is updated’.

All these operators have been studied extensively in the literature. The operators ⟨𝑠𝑏⟩, ⟨𝑏𝑟⟩ appear in [2, 15], ⟨𝑔𝑠𝑏⟩
appears in [2, 5, 15, 48, 42], ⟨𝑠𝑤⟩ appears in [3, 2, 15], ⟨𝑔𝑠𝑤⟩, ⟨𝑔𝑏𝑟⟩ are proposed in [15], ⟨𝑑𝑒⟩ occurs in [45] and
⟨𝑐ℎ⟩ is proposed in [43] (with ⃝ expressing the same). We now define the corresponding 𝑟𝑢𝑝’s.

Let M1 = (𝑊1, 𝑅1, 𝑉1) and M2 = (𝑊2, 𝑅2, 𝑉2) be two models with 𝑤 ∈ 𝑊1, 𝑣 ∈ 𝑊2. We give the specific
definitions of 𝑟𝑢𝑝 , where ⟨𝑢𝑝⟩ can be the operators we mentioned above. We have that ((M1, 𝑤), (M2, 𝑣)) ∈ 𝑟𝑢𝑝 if
the following holds:

• ⟨𝑠𝑏⟩: 𝑊2 = 𝑊1, (𝑤, 𝑣) ∈ 𝑅1, 𝑅2 = 𝑅1\{(𝑤, 𝑣)}, and 𝑉2 = 𝑉1.
• ⟨𝑔𝑠𝑏⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1\{(𝑤1, 𝑤2)} for some (𝑤1, 𝑤2) ∈ 𝑅1, 𝑉2 = 𝑉1, and 𝑤 = 𝑣.
• ⟨𝑠𝑤⟩: 𝑊2 = 𝑊1, (𝑤, 𝑣) ∈ 𝑅1,𝑅2 = 𝑅1\{(𝑤, 𝑣)} ∪ {(𝑣, 𝑤)}, and 𝑉2 = 𝑉1.
• ⟨𝑔𝑠𝑤⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1\{(𝑤1, 𝑤2)} ∪ {(𝑤2, 𝑤1)} for some (𝑤1, 𝑤2) ∈ 𝑅1, 𝑉2 = 𝑉1, and 𝑤 = 𝑣.
• ⟨𝑏𝑟⟩: 𝑊2 = 𝑊1, (𝑤, 𝑣) ∉ 𝑅1, 𝑅2 = 𝑅1 ∪ {(𝑤, 𝑣)}, and 𝑉2 = 𝑉1.
• ⟨𝑔𝑏𝑟⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1 ∪ {(𝑤1, 𝑤2)} for some (𝑤1, 𝑤2) ∉ 𝑅1, 𝑉2 = 𝑉1, and 𝑤 = 𝑣 .
• ⟨𝑑𝑒⟩: 𝑊2 = 𝑊1\{𝑤1} for some 𝑤1 ≠ 𝑤 in 𝑊1, 𝑅2 = {(𝑢, 𝑣) ∈ 𝑅1 | 𝑢 ≠ 𝑤1 𝑎𝑛𝑑 𝑣 ≠ 𝑤1}, 𝑉2 (𝑢) = 𝑉1 (𝑢) for all
𝑢 ∈ 𝑊2, and 𝑤 = 𝑣.

• ⟨𝑐ℎ⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1, 𝑉2 (𝑤) = 𝐴 and 𝑉2 (𝑢) = 𝑉1 (𝑢) for 𝑢 ≠ 𝑣, where 𝐴 is a set of proposition letters, and
𝑤 = 𝑣.

Intuitively, the truth conditions of the above operators can be displayed in Fig1-8. For example, in Fig1, ⟨𝑠𝑏⟩𝜑 is
true at (M1, 𝑤), if and only if there exists pointed model (M2, 𝑣) with ((M1, 𝑤), (M2, 𝑣)) ∈ 𝑟 ⟨𝑠𝑏⟩ such that 𝜑 is true
at (M2, 𝑣). It is worth mentioning that when ⟨𝑢𝑝⟩ is ⟨𝑐ℎ⟩, we have a single item to replace the items 4 and 5 as follows:

4

• If (𝑊1, 𝑅1, 𝑉1, 𝑤1)𝑍 (𝑊2, 𝑅2, 𝑉2, 𝑤2), then (𝑊1, 𝑅1, 𝑉1
𝑤1
𝐴
, 𝑤1)𝑍 (𝑊2, 𝑅2, 𝑉2

𝑤2
𝐴
, 𝑤2) for every 𝐴 ⊆ P, where for

𝑖 = 1, 2, 𝑉𝑖𝑤𝑖

𝐴
is almost 𝑉𝑖 , except 𝑉𝑖𝑤𝑖

𝐴
= 𝐴.

Figure 1: ⟨𝑠𝑏⟩𝜑 Figure 2: ⟨𝑔𝑠𝑏⟩𝜑

Figure 3: ⟨𝑠𝑤⟩𝜑 Figure 4: ⟨𝑔𝑠𝑤⟩𝜑

Figure 5: ⟨𝑏𝑟⟩𝜑 Figure 6: ⟨𝑔𝑏𝑟⟩𝜑

Figure 7: ⟨𝑑𝑒⟩𝜑 Figure 8: ⟨𝑐ℎ⟩𝜑

Meanwhile, Proposition 1 still works when we unfold the definitions of 𝑢𝑝-bisimulation for different operators.

5

With these distinct notions of bisimulation, we are now all set to investigate the complexity of the following decision
problem: Given two relational models, are they bisimilar?

3 An algorithmic study
Let us now provide algorithms to check whether two pointed models are 𝑢𝑝-bisimilar - we have eight distinct notions
of bisimilarity based on different logics. Natural questions would be as follows: Do we need to have eight distinct
algorithms or can we have a generalized one? How are these algorithms connected to each other? Can one be reduced
to the other? We will first provide a general algorithm to check for bisimulation among models in all these logics and
then move on to provide the same for the specific ones for a better understanding of the inherent connections/differences
between various model-changing phenomena.

3.1 The Algorithm
In what follows, we provide a general algorithm (Algorithm 1). We define a function gen-Bisimilar that takes as
input two pointed relational models, (M1, 𝑤1), (M2, 𝑤2) and a list 𝐿 ⊆ 𝑊1 × 𝑊2, where M1 = (𝑊1, 𝑅1, 𝑉1) and
M2 = (𝑊2, 𝑅2, 𝑉2), and a state variable to specify the notion of bisimilarity that is to be checked. It outputs "Yes" if the
two models are bisimlar, in the notion specified, and the function is called with 𝐿 = ∅. All the notions of bisimilarity
that we considered have 5 conditions to check. In the algorithm, we write a function to check these 5 conditions. Across
different notions, conditions (1), (2) and (3) remain same. Therefore the only difference in the run of the algorithm for
different notions comes in implementation of conditions (4) and (5). Now, one of the main problems that may come
in implementation is when the given models have cycles. We have to check the successors for the (gen) bisimilarity
too. This process may not terminate if the given model is pointed at a node that is part of a cycle. We take care of this
problem by maintaining a list of edges we have traveled. We initialize the algorithm with this list being empty, and
keep adding edges that we have traveled before changing the models. We again make the list empty after the model
changing step.

Another way to think about writing this algorithm might be to use the existing algorithm for modal bisimulation
(which is a poly-time algorithm) and add on to it to take care of the extra conditions. This type of approach does not
directly work as it is not enough to check the satisfaction of the extra conditions for the two bisimliar models. Take
the following example (cf. Figure 9). The models (M1, 𝑤1) and (M2, 𝑤2) are bisimilar in the basic modal logic
sense. Moreover, the pointed models (M1, 𝑤1) and (M2, 𝑤2) also satisfy the (4) and (5) condition of the definition of
⟨𝑔𝑠𝑏⟩-bisimilarity. But these models are not ⟨𝑔𝑠𝑏⟩-bisimilar. To see this, assume on the contrary that (M1, 𝑤1) and
(M2, 𝑤2) are indeed ⟨𝑔𝑠𝑏⟩-bisimilar. Then, (M1, 𝑢1) and (M2, 𝑢2) must be ⟨𝑔𝑠𝑏⟩-bisimilar as well. But if we delete
𝑒1 from M1, there is no edge in M2 such that (M1, 𝑢1) and (M2, 𝑢2) are even bisimilar.

Figure 9: counterexample for ⟨𝑔𝑠𝑏⟩-bisimilar

The Algorithm 1 takes input and passes the information, according to the value of 𝑠𝑡𝑎𝑡𝑒, to different algorithms for
different checks. The first 3 conditions in the definition of 𝑢𝑝−bisimilarity remains same and hence algorithms 4 and
14 are always called. The 4th and 5th conditions change and accordingly different algorithms are called.

6

Algorithm 1 Algorithm to check whether two models are bisimilar in some model changing modal logic
Require: ((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝑠𝑡𝑎𝑡𝑒

1: function gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝑠𝑡𝑎𝑡𝑒)
2: if (state = ⟨𝑔𝑠𝑏⟩-bisimilar OR ⟨𝑔𝑠𝑤⟩-bisimilar) then
3: if (checkEdges(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
4: return No
5: end if
6: end if
7: if (state = ⟨𝑑𝑒⟩-bisimilar OR ⟨𝑔𝑏𝑟⟩-bisimilar) then
8: if (checkNodes(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
9: return No

10: end if
11: end if
12: if (checkAtomicPropositionInCurrentWorlds((((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
13: return No
14: end if
15: if (state = ⟨𝑠𝑏⟩-bisimilar) then
16: if (checkEdgeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
17: return No
18: end if
19: end if
20: if (state = ⟨𝑔𝑠𝑏⟩-bisimilar) then
21: if (checkGeneralizedEdgeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
22: return No
23: end if
24: end if
25: if (state = ⟨𝑠𝑤⟩-bisimilar) then
26: if (checkSwap(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
27: return No
28: end if
29: end if
30: if (state = ⟨𝑔𝑠𝑤⟩-bisimilar) then
31: if (checkGeneralizedSwap(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
32: return No
33: end if
34: end if
35: if (state = ⟨𝑏𝑟⟩-bisimilar) then
36: if (checkBridge(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
37: return No
38: end if
39: end if
40: if (state = ⟨𝑔𝑏𝑟⟩-bisimilar) then
41: if (checkGeneralizedBridge(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
42: return No
43: end if
44: end if
45: if (state = ⟨𝑑𝑒⟩-bisimilar) then
46: if (checkNodeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
47: return No
48: end if
49: end if

7

50: if (state = ⟨𝑐ℎ⟩-bisimilar) then
51: if (checkValuationChange(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
52: return No
53: end if
54: end if
55: if (checkSuccessors(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝑠𝑡𝑎𝑡𝑒) = No) then
56: return No
57: end if
58: return Yes
59: end function

Now we will give a brief explanation of the different functions followed by the functions themselves. The function
𝑐ℎ𝑒𝑐𝑘𝐸𝑑𝑔𝑒𝑠 returns No if the input models do not have equal number of edges. This check makes the proof in section
3.2 a little easier.

Algorithm 2 checkEdges
1: if |𝑅1 | ≠ |𝑅2 | then
2: return No
3: end if
4: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝑁𝑜𝑑𝑒𝑠 returns No if the input models do not have equal number of nodes.

Algorithm 3 checkNodes
1: if |𝑊1 | ≠ |𝑊2 | then
2: return No
3: end if
4: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐴𝑡𝑜𝑚𝑖𝑐𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑜𝑟𝑙𝑑𝑠 returns No if the nodes at which the input models are
pointed, do not satisfy same set of atomic propositions. To do this, the algorithm checks that 𝑤1 ∈ 𝑉1 (𝑝) if and only if
𝑤2 ∈ 𝑉2 (𝑝), for all atomic propositions 𝑝.

Algorithm 4 checkAtomicPropositionInCurrentWorlds
1: for atomic propositions 𝑝 do
2: if (((𝑤1 ∈ 𝑉1 (𝑝)) & (𝑤2 ∉ 𝑉2 (𝑝))) OR ((𝑤1 ∉ 𝑉1 (𝑝)) & (𝑤2 ∈ 𝑉2 (𝑝)))) then
3: return No
4: end if
5: end for
6: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 returns No, if there is no pair of models related to input models by relation
𝑟 ⟨𝑠𝑏⟩ that are ⟨𝑠𝑏⟩-bisimilar. To do this, the algorithm recursively calls the algorithm 1 on new models after delet-
ing one edge from each (pointing from 𝑤1). If all such instances of algorithm 1 return No, then by recursion, there
is no pair of edges that can be deleted from given models that satisfies the conditions 4 and 5 in ⟨𝑠𝑏⟩-bisimilar definition.

8

Algorithm 5 checkEdgeDeletion
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: if (𝑤1, 𝑢1) ∈ 𝑅1 then
4: for 𝑢2 ∈ 𝑊2 do
5: if (𝑤2, 𝑢2) ∈ 𝑅2 then
6: if gen-Bisimilar(((𝑊1, 𝑅1\{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2\{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
7: Found++
8: break
9: end if

10: end if
11: end for
12: if Found = 0 then
13: return No
14: end if
15: end if
16: end for
17: for 𝑢2 ∈ 𝑊2 do
18: Found = 0;
19: if (𝑤2, 𝑢2) ∈ 𝑅2 then
20: for 𝑢1 ∈ 𝑊1 do
21: if (𝑤2, 𝑢2) ∈ 𝑅2 then
22: if gen-Bisimilar(((𝑊1, 𝑅1\{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1), ((𝑊2, 𝑅2\{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
23: Found++
24: break
25: end if
26: end if
27: end for
28: if Found = 0 then
29: return No
30: end if
31: end if
32: end for
33: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 returns No, if there is no pair of models related to the input
models by relation 𝑟 ⟨𝑔𝑠𝑏⟩ that are ⟨𝑔𝑠𝑏⟩-bisimilar. This algorithm works very similar to the previous one with the only
difference being as follows - instead of deleting edges pointed from 𝑤1, it runs over all edges. This is in accordance
with the difference in definitions of ⟨𝑠𝑏⟩-bisimilarity and ⟨𝑔𝑠𝑏⟩-bisimilarity.

Algorithm 6 checkGeneralizedEdgeDeletion
1: for 𝑒1 ∈ 𝑅1 do
2: Found = 0
3: for 𝑒2 ∈ 𝑅2 do
4: if gen-Bisimilar(((𝑊1, 𝑅1\{𝑒1}, 𝑉1), 𝑤1),((𝑊2, 𝑅2\{𝑒2}, 𝑉2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
5: Found++
6: break
7: end if
8: end for

9

9: if Found = 0 then
10: return No
11: end if
12: end for
13: for 𝑒2 ∈ 𝑅2 do
14: Found = 0
15: for 𝑒1 ∈ 𝑅1 do
16: if gen-Bisimilar(((𝑊1, 𝑅1\{𝑒1}, 𝑉1), 𝑤1), ((𝑊2, 𝑅2\{𝑒2}, 𝑉2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
17: Found++
18: break
19: end if
20: end for
21: if Found = 0 then
22: return No
23: end if
24: end for
25: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝑆𝑤𝑎𝑝 returns No, if there is no pair of models related to the input models by relation 𝑟 ⟨𝑠𝑤⟩ that
are ⟨𝑠𝑤⟩-bisimilar. To do this, it runs over all the edges from 𝑤1 and 𝑤2, swaps their directions, and calls algorithm 1
recursively.

Algorithm 7 checkSwap
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: if (𝑤1, 𝑢1)∈ 𝑅1\𝐿 ′ then
4: for 𝑢2 ∈ 𝑊2 do
5: if (𝑤2, 𝑢2)∈ 𝑅2\𝐿 ′ then
6: if gen-Bisimilar(((𝑊1, 𝑅1∪{(𝑢1, 𝑤1)}\{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2∪{(𝑢2, 𝑤2)}\{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2),

𝐿 ′ ∪ {(𝑤1, 𝑢1), (𝑤2, 𝑢2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
7: Found++
8: break
9: end if

10: end if
11: end for
12: if Found = 0 then
13: return No
14: end if
15: end if
16: end for
17: for 𝑢2 ∈ 𝑊2 do
18: Found = 0
19: if (𝑤2, 𝑢2)∈ 𝑅2\𝐿 ′ then
20: for 𝑢1 ∈ 𝑊1 do
21: if (𝑤1, 𝑢1)∈ 𝑅1\𝐿 ′ then
22: if gen-Bisimilar(((𝑊1, 𝑅1∪{(𝑢1, 𝑤1)}\{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2∪{(𝑢2, 𝑤2)}\{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2),

𝐿 ′ ∪ {(𝑤1, 𝑢1), (𝑤2, 𝑢2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
23: Found++
24: break
25: end if

10

26: end if
27: end for
28: if Found = 0 then
29: return No
30: end if
31: end if
32: end for
33: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑤𝑎𝑝 returns No, if there is no pair of models related to the input models by
relation 𝑟 ⟨𝑔𝑠𝑤⟩ that are ⟨𝑔𝑠𝑤⟩-bisimilar. Again, this is very similar to the previous algorithm with the only difference
being that it now runs over all edges.

Algorithm 8 checkGeneralizedSwap
1: for (𝑢1, 𝑢2) ∈ 𝑅1\𝐿 ′ do
2: Found = 0;
3: for (𝑣1, 𝑣2) ∈ 𝑅2\𝐿 ′ do
4: if gen-Bisimilar(((𝑊1, 𝑅1∪{(𝑢2, 𝑢1)}\{(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2∪{(𝑣2, 𝑣1)}\{(𝑣1, 𝑣2)}, 𝑉2), 𝑤2), 𝐿 ′∪

{(𝑢1, 𝑢2), (𝑣1, 𝑣2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
5: Found++
6: break
7: end if
8: end for
9: if Found = 0 then

10: return No
11: end if
12: end for
13: for (𝑣1, 𝑣2) ∈ 𝑅2\𝐿 ′ do
14: Found = 0;
15: for (𝑢1, 𝑢2) ∈ 𝑅1\𝐿 ′ do
16: if gen-Bisimilar(((𝑊1, 𝑅1∪{(𝑢2, 𝑢1)}\{(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2∪{(𝑣2, 𝑣1)}\{(𝑣1, 𝑣2)}, 𝑉2), 𝑤2), 𝐿 ′∪

{(𝑢1, 𝑢2), (𝑣1, 𝑣2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
17: Found++
18: break
19: end if
20: end for
21: if Found = 0 then
22: return No
23: end if
24: end for
25: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐵𝑟𝑖𝑑𝑔𝑒 returns No, if there is no pair of models related to the input models by relation 𝑟 ⟨𝑏𝑟 ⟩
that are ⟨𝑏𝑟⟩-bisimilar. To do this, the algorithm adds new edges from 𝑤1 and 𝑤2 and calls algorithm 1 recursively.

Algorithm 9 checkBridge
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: for 𝑢2 ∈ 𝑊2 do

11

4: if (((𝑤1, 𝑢1) ∉ 𝑅1) & ((𝑤2, 𝑢2) ∉ 𝑅2) then
5: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2 ∪ {(𝑤2, 𝑢2)}, 𝑉2), 𝑢2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
6: Found++
7: break
8: end if
9: end if

10: end for
11: if Found = 0 then
12: return No
13: end if
14: end for
15: for 𝑢2 ∈ 𝑊2 do
16: Found = 0
17: for 𝑢1 ∈ 𝑊1 do
18: if (((𝑤1, 𝑢1) ∉ 𝑅1) & ((𝑤2, 𝑢2) ∉ 𝑅2) then
19: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2 ∪ {(𝑤2, 𝑢2)}, 𝑉2), 𝑢2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
20: Found++
21: break
22: end if
23: end if
24: end for
25: if Found = 0 then
26: return No
27: end if
28: end for
29: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑟𝑖𝑑𝑔𝑒 returns No, if there is no pair of models related to the input models by
relation 𝑟 ⟨𝑔𝑏𝑟 ⟩ that are ⟨𝑔𝑏𝑟⟩-bisimilar. This algorithm adds one new edge to both the models and calls algorithm 1
recursively.

Algorithm 10 checkGeneralizedBridge
1: for (𝑢1, 𝑢2) ∈ 𝑊1 ×𝑊1 do
2: Found = 0
3: for (𝑣1, 𝑣2) ∈ 𝑊2 ×𝑊2 do
4: if (((𝑢1, 𝑢2) ∉ 𝑅1) & ((𝑣1, 𝑣2) ∉ 𝑅2) then
5: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪ {(𝑣1, 𝑣2)}, 𝑉2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
6: Found++
7: break
8: end if
9: end if

10: end for
11: if Found = 0 then
12: return No
13: end if
14: end for
15: for (𝑣1, 𝑣2) ∈ 𝑊2 ×𝑊2 do
16: Found = 0
17: for (𝑢1, 𝑢2) ∈ 𝑊1 ×𝑊1 do
18: if (((𝑢1, 𝑢2) ∉ 𝑅1) & ((𝑣1, 𝑣2) ∉ 𝑅2) then

12

19: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪ {(𝑣1, 𝑣2)}, 𝑉2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
20: Found++
21: break
22: end if
23: end if
24: end for
25: if Found = 0 then
26: return No
27: end if
28: end for
29: return Yes

The previous algorithms were the implementations of the model-changing step for the six relation-changing logics
that we have described. We now move on to implement the model-changing step for domain-changing logic and
valuation-changing logic. The next algorithm is a precursor to the case of domain-changing logic. Specifically, it
computes the new model after a node has been deleted from it.

Algorithm 11 algorithm to compute new relational model after point deletion
Require: ((𝑊, 𝑅,𝑉), 𝑤), 𝑢

1: function successor(((𝑊, 𝑅,𝑉), 𝑤), 𝑢)
2: 𝑊 ′ = 𝑊\{𝑢}
3: 𝑅′ = 𝑅\({(𝑢, 𝑣) ∈ 𝑊 | 𝑣 ∈ 𝑅} ∪ {(𝑣, 𝑢) ∈ 𝑅 | 𝑣 ∈ 𝑊})
4: for 𝑝 ∈ P do
5: 𝑉 ′(𝑝) = 𝑉 (𝑝) ∩𝑊 ′

6: end for
7: return ((𝑊 ′, 𝑅′, 𝑉 ′), 𝑤)
8: end function

The function 𝑐ℎ𝑒𝑐𝑘𝑁𝑜𝑑𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 returns No, if there is no pair of models related to the input models by relation
𝑟 ⟨𝑑𝑒⟩ that are ⟨𝑑𝑒⟩-bisimilar. To do this, the algorithm makes a recursive call to 𝑔𝑒𝑛 − 𝐵𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟 with new pair of
models that have one node deleted in each.

Algorithm 12 checkNodeDeletion
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: for 𝑢2 ∈ 𝑊2 do
4: if (𝑢1 ≠ 𝑤1) & (𝑢2 ≠ 𝑤2) then
5: if gen-Bisimilar((𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ((𝑊1, 𝑅1, 𝑉1), 𝑢1), 𝑤1),(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes

then
6: Found++
7: break
8: end if
9: end if

10: end for
11: if Found = 0 & (𝑢1 ≠ 𝑤1) then
12: return No
13: end if
14: end for
15: for 𝑢2 ∈ 𝑊2 do

13

16: Found = 0
17: for 𝑢1 ∈ 𝑊1 do
18: if (𝑢1 ≠ 𝑤1) & (𝑢2 ≠ 𝑤2) then
19: if gen-Bisimilar((𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ((𝑊1, 𝑅1, 𝑉1), 𝑢1), 𝑤1),(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝑤2), ∅, 𝑠𝑡𝑎𝑡𝑒) = Yes

then
20: Found++
21: break
22: end if
23: end if
24: end for
25: if Found = 0 & (𝑢2 ≠ 𝑤2) then
26: return No
27: end if
28: end for
29: return Yes

The function 𝑐ℎ𝑒𝑐𝑘𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑔𝑒 returns No, if there is no pair of models related to the input models by
relation 𝑟 ⟨𝑐ℎ⟩ that are ⟨𝑐ℎ⟩-bisimilar. To do this, the function changes valuation of the current node and then calls
𝑔𝑒𝑛 − 𝐵𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟 recursively.

Algorithm 13 checkValuationChange
1: for 𝐴 ⊂ P do
2: 𝑉1 (𝑤1) = 𝑉1 (𝑤)
3: end for
4: for 𝑤 ∈ 𝑊1\{𝑤1} do
5: 𝑉1 (𝑤) = 𝑉1 (𝑤)
6: end for
7: for 𝐴 ⊂ P do
8: 𝑉2 (𝑤2) = 𝐴

9: end for
10: for 𝑤 ∈ 𝑊2\{𝑤2} do
11: 𝑉2 (𝑤) = 𝑉2 (𝑤)
12: end for
13: if gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑤1),((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝑠𝑡𝑎𝑡𝑒) = No then
14: return No
15: end if
16: return Yes

The following algorithm checks for the existence of successors to the node, at which the input models are pointed,
for the specific bisimulation according to the state. Specifically, it checks if conditions 2 and 3 in the definition of
𝑢𝑝−bisimilarity are true. To do this, it changes the node where the models are pointed to one of the successors of
initial nodes at which the models were pointed, and then makes a recursive call to 𝑔𝑒𝑛 − 𝐵𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟 .

Algorithm 14 checkSuccessors
1: if (𝑤1, 𝑤2) ∉ 𝐿 then
2: for 𝑢1 ∈ 𝑊1 do
3: Found = 0
4: for 𝑢2 ∈ 𝑊2 do
5: if ((𝑤1𝑅1𝑢1) & (𝑤2𝑅2𝑢2)) then

14

6: if ((𝑢1, 𝑢2) ∉ 𝐿) then
7: if gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑢1), ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
8: Found++
9: end if

10: else
11: Found++
12: end if
13: end if
14: end for
15: if (Found = 0) & (𝑤1𝑅1𝑢1) then
16: return No
17: end if
18: end for
19: for 𝑢2 ∈ 𝑊2 do
20: Found = 0
21: for 𝑢1 ∈ 𝑊1 do
22: if ((𝑤1𝑅1𝑢1) & (𝑤2𝑅2𝑢2)) then
23: if ((𝑢1, 𝑢2) ∉ 𝐿) then
24: if gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑢1), ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, 𝑠𝑡𝑎𝑡𝑒) = Yes then
25: Found++
26: end if
27: else
28: Found++
29: end if
30: end if
31: end for
32: if (Found = 0) & (𝑤2𝑅2𝑢2) then
33: return No
34: end if
35: end for
36: end if
37: return Yes

3.2 On ⟨𝑔𝑠𝑏⟩-bisimulation
We will now give a detailed proof that the algorithm works when 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. The other cases can be
proved in a similar manner. Before going into the main proof, we have the following lemma.

Lemma 2. If ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠 ((𝑊2, 𝑅2, 𝑉2), 𝑤2) and |𝑅1 | and |𝑅2 | are finite, then |𝑅1 | = |𝑅2 |.

Proof. Suppose on the contrary, |𝑅1 | ≠ |𝑅2 |. Without loss of generality, assume |𝑅1 | < |𝑅2 |.
Proof by induction on 𝑛 = |𝑅1 |

• Base case: 𝑛 = 0
By assumption |𝑅1 | = 0 and |𝑅2 | > 0. So ∃𝑒 ∈ 𝑅2. Now, since ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠 ((𝑊2, 𝑅2, 𝑉2), 𝑤2), they
satisfy condition (5) of the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity. Therefore, there must exist an edge 𝑓 ∈ 𝑅1 such
that ((𝑊1, 𝑅1\{ 𝑓 }, 𝑉1), 𝑤1)↔𝑠 ((𝑊2, 𝑅2\{𝑒}, 𝑉2), 𝑤2). But, since |𝑅1 | = 0, no such 𝑓 can exist. Contradiction.

• Induction hypothesis: Suppose the claim holds good for 𝑛 ≤ 𝑘 , 𝑖.𝑒., |𝑅1 | = |𝑅2 |, whenever |𝑅1 | ≤ 𝑘 .
• Induction step: 𝑛 = 𝑘 + 1

Suppose min(|𝑅1 |, |𝑅2 |) = |𝑅1 | = 𝑘+1. Let 𝑒1 ∈ 𝑅1 be any edge. Since, ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠 ((𝑊2, 𝑅2, 𝑉2), 𝑤2),
they satisfy condition (4) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity, so ∃𝑒2 ∈ 𝑅2 such that ((𝑊1, 𝑅1\{𝑒1}, 𝑉1), 𝑤1)
↔𝑠 ((𝑊2, 𝑅2\{𝑒2}, 𝑉2), 𝑤2). But then by induction hypothesis, we have |𝑅1\{𝑒1}| = 𝑅2\{𝑒2}| =⇒ |𝑅1 | − 1 =

|𝑅2 | − 1 =⇒ |𝑅1 | = |𝑅2 | .

15

This completes the proof.

Theorem 3. Given two models (M1, 𝑤1) and (M2, 𝑤2), where M1 = (𝑊1, 𝑅1, 𝑉1), M2 = (𝑊2, 𝑅2, 𝑉2), 𝑤1 ∈ 𝑊1 and
𝑤2 ∈ 𝑊2; (M1, 𝑤1)↔𝑠 (M2, 𝑤2) iff the function gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2), ∅, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes.
Here, by (M1, 𝑤1)↔𝑠 (M2, 𝑤2) we will denote that (M1, 𝑤1) and (M2, 𝑤2) are ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

Proof. Suppose M1 and M2 have different number of edges, then the function returns No at line 2 in algorithm 2,
and (M1, 𝑤1)↔𝑠

(M2, 𝑤2). So, let us consider that both models have equal number of edges (say n). We prove by
induction on n:

> Base case: 𝑛 = 0.
To prove (M1, 𝑤1)↔𝑠 (M2, 𝑤2) iff the function returns yes when 𝑅1 = ∅ = 𝑅2. We will first prove, by
contrapositivity, that if the function returns yes, then (M1, 𝑤1)↔𝑠 (M2, 𝑤2).

> > Suppose (M1, 𝑤1)↔𝑠
(M2, 𝑤2). Then they violate one of the five conditions in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity

(in Section 2.1).
> > > Suppose they violate condition (1). Then there is some atomic proposition 𝑝 such that either (M1, 𝑤1) |= 𝑝

and (M2, 𝑤2) ̸|= 𝑝; or (M1, 𝑤1) ̸|= 𝑝 and (M2, 𝑤2) |= 𝑝. From truth definitions, we have 𝑤1 ∈ 𝑉1 (𝑝) but
𝑤2 ∉ 𝑉2 (𝑝); or 𝑤1 ∉ 𝑉1 (𝑝) but 𝑤2 ∈ 𝑉2 (𝑝). In this case, the function returns No at line 3 in algorithm 4.

> > > Suppose they violate condition (2). Then, there is a successor 𝑣1 of 𝑤1, i.e. ∃𝑣1 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, but ∀𝑣2
such that 𝑤2𝑅2𝑣2, we do not have (M1, 𝑣1)↔𝑠 (M2, 𝑣2). But since 𝑛 = 0, 𝑤1𝑅1𝑣1 does not hold for any 𝑣1 as
𝑅1 = ∅. Therefore, condition (2) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity cannot be violated in this case.

> > > Suppose that they violate condition (3). Again by similar argument as last point, we can not have 𝑣2𝑅2𝑤2 and
hence condition (3) can not be violated when 𝑛 = 0.

> > > Suppose they violate condition (4). Then there is an edge 𝑒1 ∈ 𝑅1 such that for any edge 𝑒2 ∈ 𝑅2, it is not the
case that (M1\{𝑒1}, 𝑤1)↔𝑠 (M2\{𝑒2}, 𝑤2). But again since 𝑛 = 0, 𝑅1 = ∅, hence no such 𝑒1 exists. So this
case cannot arise.

> > > By similar argument as in previous point, the models cannot violate condition (5).
> > Now we will prove the other side. Therefore, suppose that the function returns No, Then one of the following

cases occur:
> > > The function returns No at line number 3 in algorithm 4. This can only happen when the If condition at line 2

in algorithm 4 is true. Therefore, there exists an atomic proposition 𝑝 such that, 𝑤1 ∈ 𝑉1 (𝑝) but 𝑤2 ∉ 𝑉2 (𝑝);
or 𝑤1 ∉ 𝑉1 (𝑝) but 𝑤2 ∈ 𝑉2 (𝑝). From truth definitions, we have either (M1, 𝑤1) |= 𝑝 and (M2, 𝑤2) ̸|= 𝑝; or
(M1, 𝑤1) ̸|= 𝑝 and (M2, 𝑤2) |= 𝑝. But then (M1, 𝑤1)↔𝑠

(M2, 𝑤2) as they violate condition (1) of the definition
of ⟨𝑔𝑠𝑏⟩−bisimilarity.

> > > The function returns No at line number 10 or 22 in algorithm 6. But since 𝑅1 = ∅ and 𝑅2 = ∅, This can not
happen as the function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 will not execute any for loop.

> > > Suppose the function returns No from line 16 or 33 in algorithm 14. Again, this can not happen because 𝑤1 and
𝑤2 do not have any successors.
This completes both sides of the base case.

> Induction Hypothesis 1: Suppose the theorem holds for 𝑛 ≤ 𝑘 . That is, (M1, 𝑤1)↔𝑠 (M2, 𝑤2) iff the function
gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2), ∅, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes when |𝑅1 | = |𝑅2 | ≤ 𝑘 .

> Induction Step: Let 𝑛 = 𝑘 + 1
We will first prove that if (M1, 𝑤1)↔𝑠 (M2, 𝑤2) then the function returns yes. Again we will prove this by
contrapositivity.

> > Suppose the function returns No in algorithm 1. Then it executes one of the 4 return No statements, that are
reachable when 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. But it can not return No at line 2 in algorithm 2, as we have assumed
|𝑅1 | = |𝑅2 |. So the following cases can occur:

16

> > > The function returns No at line number 13 in algorithm 1. This can only happen when the If condition at line 2
in algorithm 4 is true. But then, by argument similar to that in base case, (M1, 𝑤1)↔𝑠

(M2, 𝑤2) as they violate
condition (1) of the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity.

> > > The function returns No at line number 22 in algorithm 1. Then condition in line 21 is true. This happens
if the function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 returns No at line 10 or 22. If the function returns No at
line 10 in function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛, there is an 𝑒1 ∈ 𝑅1 such that for all 𝑒2 ∈ 𝑅2, we have
gen-bisimilar((M1\{𝑒1}, 𝑤1), (M2\{𝑒2}, 𝑤2), ∅, ⟨𝑔𝑠𝑏⟩ −𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No. But the model M ′

1 = M1\{𝑒1}
and M ′

2 = M2\{𝑒2} have k edges. Therefore, by induction hypothesis 1, (M1\{𝑒1}, 𝑤1)↔𝑠
(M2\{𝑒2}, 𝑤2)

for all 𝑒2 ∈ 𝑅2. This is violation to condition (4) in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity. Therefore,
(M1, 𝑤1)↔𝑠

(M2, 𝑤2). The case is similar if No is returned at line 22 in function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛.
> > > The function returns No at line 56 in algorithm 1. Then condition at line 15 or 32 in algorithm 14 in the function

𝑐ℎ𝑒𝑐𝑘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 is true for some 𝑢1 ∈ 𝑊1 or 𝑢2 ∈ 𝑊2 respectively. Suppose the function returns No at line 16.
Therefore, following cases arise (following line numbers are in function 𝑐ℎ𝑒𝑐𝑘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠):

> > > > For a successor 𝑢1 of 𝑤1, condition at line 5 is false for all 𝑢2 ∈ 𝑊2, 𝑖.𝑒., 𝑤2𝑅2𝑢2 is not true for any 𝑢2 ∈ 𝑊2.
This is a violation of condition (2) in definition of ⟨𝑔𝑠𝑏⟩−bisimilarity and hence (M1, 𝑤1)↔𝑠

(M2, 𝑤2)
> > > > Condition at line 5 and 6 are true but condition at line 7 is false, 𝑖.𝑒., ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such

that 𝑤2𝑅2𝑢2 and 𝐿 is such that (𝑢1, 𝑢2) ∉ 𝐿 (and (𝑤1, 𝑤2) ∉ 𝐿 because line 7 can be executed only if condition
in line 1 is true); we get gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No.
To prove:(M1, 𝑤1)↔𝑠

(M2, 𝑤2).
Proof by induction on 𝑚 = |𝑊1 ×𝑊2 | − |𝐿 ∪ {(𝑤1, 𝑤2)}|

> > > > > Base case: |𝑊1 ×𝑊2 | = |𝐿 ∪ {(𝑤1, 𝑤2)}|
We need to prove that if ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2 and 𝐿 is such that
(𝑢1, 𝑢2) ∉ 𝐿 (and (𝑤1, 𝑤2) ∉ 𝐿 because line 5 can be executed only if condition in line 1 is true) and
|𝑊1 ×𝑊2 | − |𝐿 ∪ {(𝑤1, 𝑤2)}| = 0; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟)
returns No, then (M1, 𝑤1)↔𝑠

(M2, 𝑤2).
But since |𝑊1 ×𝑊2 | − |𝐿 ∪ {(𝑤1, 𝑤2)}| = 0, we have (𝑢1, 𝑢2) ∈ 𝐿 ∪ {(𝑤1, 𝑤2)}. This is in contradiction with
condition in line 6 being true. So the antecedent is false and hence base case is true vacuously.

> > > > > Induction Hypothesis 2: Suppose the claim holds for 𝑚 ≤ 𝑙, 𝑖.𝑒.,
Suppose whenever ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2 and 𝐿 is such that (𝑢1, 𝑢2) ∉ 𝐿

(and (𝑤1, 𝑤2) ∉ 𝐿 because line 7 can be executed only if condition in line 1 is true) and |𝑊1 × 𝑊2 | − |𝐿 ∪
{(𝑤1, 𝑤2)}| ≤ 𝑙; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No, then
(M1, 𝑤1)↔𝑠

(M2, 𝑤2)
> > > > > Induction step: Suppose 𝑚 = 𝑙 + 1.

In this case, suppose condition in line 6 true and condition in line 7 is false. Therefore, we have, ∃𝑢1 ∈ 𝑊1
such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2 and 𝐿 is such that (𝑢1, 𝑢2) ∉ 𝐿 (and (𝑤1, 𝑤2) ∉ 𝐿 be-
cause line 6 can be executed only if condition in line 1 is true) and |𝑊1 × 𝑊2 | − |𝐿 ∪ {(𝑤1, 𝑤2)}| =

𝑙 + 1; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No. Now, gen-
Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)}, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) can return No either at one of 6 , reachable
return No statements in gen-bisimilar. If it returns No at first 4, then by above cases, we have already proved that
(M1, 𝑢1)↔𝑠

(M2, 𝑢2) because they violate conditions (1) or (4) or (5) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity.
Suppose it returns No at line 56 in gen-bisimilar, then the function 𝑐ℎ𝑒𝑐𝑘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 returns No at line 16 or
33. Assume it returns No at line 16. Then if condition at line 5 is always false, then (M1, 𝑢1)↔𝑠

(M2, 𝑢2)
because they violate condition (2) of definition of ⟨𝑔𝑠𝑏⟩−bisimilarity. So suppose condition at line 6 is true
but at line 7 is false. Therefore, ∃𝑣1 ∈ 𝑊1 such that 𝑢1𝑅1𝑣1 and ∀𝑣2 ∈ 𝑊2 such that 𝑢2𝑅2𝑣2, 𝐿 is such that
(𝑣1, 𝑣2) ∉ 𝐿∪{(𝑤1, 𝑤2)}, we have gen-Bisimilar((M1, 𝑣1), (M2, 𝑣2), 𝐿∪{(𝑤1, 𝑤2), (𝑢1, 𝑢2)}, ⟨𝑔𝑠𝑏⟩−𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟)
returns No. Now by induction hypothesis 2, (M1, 𝑣1)↔𝑠

(M2, 𝑣2) which implies (M1, 𝑢1)↔𝑠
(M2, 𝑢2) and

hence (M1, 𝑤1)↔𝑠
(M2, 𝑤2).

> > > The function returns No at line 33 in algorithm 14, then by argument similar to last case, (M1, 𝑤1)↔𝑠
(M2, 𝑤2).

We will now prove the remaining side by contrapositivity.

17

> Suppose (M1, 𝑤1)↔𝑠
(M2, 𝑤2). Then these models must violate one of the 5 conditions in definition of

⟨𝑔𝑠𝑏⟩−bisimilarity.
> > Suppose they violate condition (1). There there is some atomic proposition 𝑝 such that either (M1, 𝑤1) |= 𝑝

and (M2, 𝑤2) ̸|= 𝑝; or (M1, 𝑤1) ̸|= 𝑝 and (M2, 𝑤2) |= 𝑝. From truth definitions, we have 𝑤1 ∈ 𝑉1 (𝑝) but
𝑤2 ∉ 𝑉2 (𝑝); or 𝑤1 ∉ 𝑉1 (𝑝) but 𝑤2 ∈ 𝑉2 (𝑝). In this case the function returns No in line 13.

> > Suppose they violate condition (4). Then there is an edge 𝑒1 ∈ 𝑅1 such that for any edge 𝑒2 ∈ 𝑅2,
(M1\{𝑒1}, 𝑤1)↔𝑠

(M2\{𝑒2}, 𝑤2). In this case for 𝑒1, condition in line 4 in algorithm 6 is never true. By
induction hypothesis 1 (M1\{𝑒1} and M2\{𝑒2} have k edges, hence we can use induction hypothesis). There-
fore, return No is executed in line 10 in function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛.

> > Suppose they violate condition (5), by similar argument as previous case, by induction hypothesis, function
returns No.

> > Suppose they violate condition (2) and/ or (3). We must prove if (M1, 𝑤1)↔𝑠
(M2, 𝑤2) because they violate con-

dition (2) and/or (3), but not (1), (4) or (5) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity, then gen-Bisimilar(((M1, 𝑤1),
(M2, 𝑤2), ∅, ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No.
Since (M1, 𝑤1)↔𝑠

(M2, 𝑤2) because they violate condition (2) and/or (3), therefore ∃𝑢11 ∈ 𝑊1, 𝑤1𝑅1𝑢11, such
that∀𝑢21 ∈ 𝑊2, 𝑤2𝑅2𝑢21, (M1, 𝑢11)↔𝑠

(M2, 𝑢21) (if condition (2) is violated); or∃𝑢12 ∈ 𝑊2, 𝑤2𝑅2𝑢12, such that
∀𝑢11 ∈ 𝑊1, 𝑤1𝑅1𝑢11, (M1, 𝑢11)↔𝑠

(M2, 𝑢21). Now if (M1, 𝑢11)↔𝑠
(M2, 𝑢21) because they violate conditions

(1), (4) or (5), then by previous cases, the function returns No and we will be done. Let us pick a general such pair
(𝑣11, 𝑣21). So, assume (M1, 𝑣11)↔𝑠

(M2, 𝑣21) because they violate condition(s) (2) and/or (3). Therefore, again,
∃𝑢12 ∈ 𝑊1, 𝑣11𝑅1𝑢12, such that∀𝑢22 ∈ 𝑊2, 𝑣12𝑅2𝑢22, (M1, 𝑢12)↔𝑠

(M2, 𝑢22) (if they violate (2)); or ∃𝑢22 ∈ 𝑊2,
𝑣12𝑅2𝑢22, such that ∀𝑢12 ∈ 𝑊1, 𝑣11𝑅1𝑢12, (M1, 𝑢12)↔𝑠

(M2, 𝑢22) (if they violate condition (3). Again, choose
a general such pair (𝑣12, 𝑣22) from above such that 𝑣11𝑅1𝑣12 and 𝑣21𝑅2𝑣22 and (M1, 𝑣12)↔𝑠

(M2, 𝑣22). Again,
we are done if (M1, 𝑣12)↔𝑠

(M2, 𝑣22) because they violate condition (1), (4) or (5). So, again, we can assume
that they violate condition (2) and /or (3). This can go on until we reach a leaf node, 𝑖.𝑒., there is some 𝑘 such that
exactly one of the following is true: 𝑣1𝑘𝑅1𝑣1(𝑘+1) for some 𝑣1(𝑘+1) ∈ 𝑊1 or 𝑣2𝑘𝑅2𝑣2(𝑘+1) for some 𝑣2(𝑘+1) ∈ 𝑊2.
Again the function returns No, from function 𝑐ℎ𝑒𝑐𝑘𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 in both cases. The only case
that remains is when there is no leaf nodes and there is some 𝑘 such that 𝑣1𝑘 = 𝑣1𝑙 or 𝑤1 and 𝑣2𝑘 = 𝑣2𝑙 or 𝑤2 for
some 𝑙 < 𝑘 . In this case, since 𝑣1𝑖 and 𝑣2𝑖 were some general node in the reachable part from 𝑤1 and 𝑤2, such
that they do not violate condition (1), (4) or (5) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity, we have the following:

> > > (M1, 𝑤1) and (M2, 𝑤2) satisfy conditions (1), (4) and (5) in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity.
> > > For every n, ∃𝑣1 ∈ 𝑊1 such that 𝑤1𝑅

𝑛
1 𝑣1 iff ∃𝑣2 ∈ 𝑊2 such that 𝑤2𝑅

𝑛
2 𝑣2; and (M1, 𝑣1) and (M2, 𝑣2) satisfy

condition (1), (4) and (5) from the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity. But these conditions are same as the
conditions in definition of ⟨𝑔𝑠𝑏⟩−bisimilarity. Hence, (M1, 𝑤1)↔𝑠 (M2, 𝑤2) and the function does not return
No in this this case.

This completes the proof.

3.2.1 An example

Below is an example run of the algorithm for gen-Bisimilar for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. Proposition 𝑝 is true in
all the worlds of both the models. The recursion graph shows all the important nodes. The diagram shows calls to
function "checkGeneralizedEdgeDeletion".

18

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝑤2𝑤1

𝑤1 𝑤1 𝑤1 𝑤1 𝑤1𝑤2 𝑤2 𝑤2 𝑤2 𝑤2

𝑣1

𝑣1 𝑣1 𝑣1
𝑣1 𝑣1

𝑣2

𝑣2 𝑣2 𝑣2 𝑣2 𝑣2

𝐿
=
∅

𝐿
=
∅

𝐿
=
∅

𝐿 = {(𝑤1 , 𝑤2) }

𝐿
=
{(𝑤

1
,
𝑤

2) }

𝐿
=
{(𝑤

1
,
𝑤

2) }

𝐿
=
{(𝑣1

,
𝑣2) }

𝑌
𝑒
𝑠

𝑌
𝑒
𝑠

𝑌
𝑒
𝑠 𝑌
𝑒
𝑠

𝑌
𝑒
𝑠

𝑌
𝑒
𝑠

𝑌
𝑒
𝑠 𝑌
𝑒
𝑠

𝑌
𝑒
𝑠

𝑁
𝑜

𝑁
𝑜

𝑁0

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

𝑤1 𝑤2

𝑣1 𝑣2

In the above run of the algorithm, not all children of the root returns ‘Yes’, and hence the input models are not
⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

3.2.2 On complexity

Theorem 4. Function gen-Bisimilar terminates and is in PSPACE for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

Proof. We will form a recursion tree to see whether the function gen-Bisimilar terminates for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩−𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟

and analyze the space complexity of the function.

19

|𝑅 | = 𝑛

|𝐿 | = 0

|𝑅 | = 𝑛

|𝐿 | = 1
|𝑅 | = 𝑛

|𝐿 | = 1
|𝑅 | = 𝑛 − 1
|𝐿 | = 0

|𝑅 | = 𝑛 − 2
|𝐿 | = 0

|𝑅 | = 𝑛 − 1
|𝐿 | = 1

|𝑅 | = 0
|𝐿 | = |𝑊1 ×𝑊2 |

|𝑅 | = 𝑛 − 1
|𝐿 | = 0

- When the input models have different number of edges, the algorithm terminates without any recursion. The
algorithm takes the space required in one instance of the function. The function defines constant number of
variables that need to be accounted for in terms of space in addition to the input. So, an instance of the function
takes O(1) space.

- When the two models have same number of edges, algorithm checkGeneralizedEdgeDeletion is called. The
number of edges in the models for each successive call to checkGeneralizedEdgeDeletion is strictly less than 𝑛

(namely, 𝑛 − 1). Another algorithm that is called is checkSuccessors. In this algorithm, |𝐿 | strictly increases.
Next it should be noted that the function call is not made if |𝐿 | = |𝑊1 ×𝑊2 |. With these observations, we can
bound the depth of recursion tree by |𝑅1 | × |𝑊1 ×𝑊2 |. This shows that the algorithm terminates.

With the above observations, we see that the depth of the recursion tree is bounded by |𝑅1 | × |𝑊1 ×𝑊2 |. Therefore,
the space used by the algorithm is 𝑠 × |𝑅1 | × |𝑊1 ×𝑊2 |, where 𝑠 is the space used by one instance of the algorithm
gen-Bisimilar. The algorithm defines constant number of variables, which take space other than the input. So, once
again, one instance of the function takes O(1) space. Therefore, space used by whole run of the algorithm 1 is
|𝑅1 | × |𝑊1 ×𝑊2 | which is a polynomial function in the size of the input.

3.3 Bisimulation for other states
The main difference in the run of the algorithm 1, based on the different values of 𝑠𝑡𝑎𝑡𝑒, is that it calls different
functions, namely, 𝑐ℎ𝑒𝑐𝑘𝐸𝑑𝑔𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 in case of ⟨𝑠𝑏⟩-bisimilar, 𝑐ℎ𝑒𝑐𝑘𝑁𝑜𝑑𝑒𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 in case of ⟨𝑑𝑒⟩-bisimilar, and
so on. These functions check the analogous conditions (4) and (5) for different notions of bisimilarity. The rest of the
algorithm remains same. Therefore the correctness proofs for other notions of bisimilarity are very similar to that of
the case of 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. And, the complexity for all bisimilarity problems remains to be in PSPACE.
So, we have the following main theorem of this work.

Theorem 5. Given two pointed relational models, (M1, 𝑤1) and (M2, 𝑤2), the problem to decide whether they are
bisimilar in any of the eight notions described in section 2.2, is in PSPACE.

4 Further remarks
Till now, we have presented several existing logics concerning model-changing and studied the notion of model
comparison or bisimulation for these logics from the algorithmic point of view, and in process we have also shed some

20

light into the complexity of these problems. We now provide some discussions on lower bounds of these complexity
problems which are the next natural questions to answer.

The complexity for checking whether given two pointed models are bisimilar, in basic modal logic, is known
to be in polynomial time [38]. What exactly makes the problem of 𝑢𝑝-bisimilarity more complex (strictly more
complex if PTIME is different than PSPACE)? The additional conditions (4) and (5) in the definition of 𝑢𝑝-bisimilarity,
compared to that of basic modal logic bisimilarity, requires a function that assigns a sequence of model-changing
actions corresponding to one model to a sequence of model-changing actions in the other model. Formally, it requires
a bijection 𝑓 : 𝑁 (𝐶1) → 𝑁 (𝐶2) with 𝑁 (𝐶) denoting the set of sequences of actions corresponding to the model-
changing operator 𝐶. The function 𝑓 should additionally satisfy the condition that any sequence of length 𝑛 is mapped
to a sequences of length 𝑛, for every 𝑛 in N. If |𝐶1 | = |𝐶2 | = 𝑚, then there are 2𝑚2𝑚 such functions. Given such a
function, we need to check whether it satisfies the corresponding conditions for 𝑢𝑝-bisimilarity on top of the models
being bisimilar in the sense of basic modal logic. These conditions are what makes this problem of up-bisimilarity
more complex. If we can show that every such function that satisfies the conditions for 𝑢𝑝-bisimilarity is generated
by a function 𝑔 : 𝐶1 → 𝐶2, then we believe that the complexity of 𝑢𝑝-bisimilarity drops to the class NP. To draw an
analogy, deciding whether given two graphs are isomorphic is in NP, but finding the isomorphism mapping may be
more complex. This is equivalent to saying that given a small (with number of elements bounded by a polynomial in
the size of the input models) candidate generator of the relation 𝑢𝑝-bisimilar, it may be efficient to check whether such
a candidate can be extended to a full 𝑢𝑝-bisimilar relation.

References
[1] Luca Aceto, Anna Ingólfsdóttir, and Jirí Srba. The algorithmics of bisimilarity. In Davide Sangiorgi and Jan

J. M. M. Rutten, editors, Advanced Topics in Bisimulation and Coinduction, volume 52 of Cambridge tracts in
theoretical computer science, pages 100–172. Cambridge University Press, 2012.

[2] Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Moving arrows and four model checking results. In
International Workshop on Logic, Language, Information, and Computation, pages 142–153. Springer, 2012.

[3] Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Swap logic. Logic Journal of IGPL, 22(2):309–332,
2014.

[4] Carlos Areces, Diego Figueira, Santiago Figueira, and Sergio Mera. Expressive power and decidability for
memory logics. In Proceedings of the 15th International Workshop on Logic, Language, Information and
Computation, WoLLIC 2008, page 56–68, Berlin, Heidelberg, 2008. Springer.

[5] Guillaume Aucher, Johan van Benthem, and Davide Grossi. Modal logics of sabotage revisited. Journal of Logic
and Computation, 28(2):269–303, 2018.

[6] José Luís Balcázar, Joaquim Gabarró, and Miklos Santha. Deciding Bisimilarity is P-Complete. Formal Aspects
Comput., 4:638–648, 1992.

[7] Alexandru Baltag, Zoé Christoff, Rasmus Kræmmer Rendsvig, and Sonja Smets. Dynamic epistemic logics of
diffusion and prediction in social networks. Studia Logica, 107, 07 2018.

[8] Alexandru Baltag, Dazhu Li, and Mina Young Pedersen. On the right path: A modal logic for supervised learning.
In Patrick Blackburn, Emiliano Lorini, and Meiyun Guo, editors, Logic, Rationality, and Interaction, pages 1–14,
Berlin, Heidelberg, 2019. Springer Berlin Heidelberg.

[9] Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese, 139:165–224, 2004.

[10] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public announcements and common
knowledge and private suspicions. In TARK, 1998.

[11] Zoé Christoff. Dynamic Logics of Networks: Information Flow and the Spread of Opinion. PhD thesis, University
of Amsterdam, 2016.

21

[12] Zoé Christoff and Jens Ulrik Hansen. A logic for diffusion in social networks. Journal of Applied Logic,
13(1):48–77, 2015.

[13] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency workbench: a semantics-based tool
for the verification of concurrent systems. ACM Transactions on Programming Languages and Systems, 15:36 –
72, 1993.

[14] Pierre Duchet and Henry Meyniel. Kernels in directed graphs: a poison game. Discrete Mathematics, 115(1-
3):273–276, 1993.

[15] Raul Fervari. Relation-changing modal logics. PhD diss., Facultad de Matemática Astronomía y Física, Univer-
sidad Nacional de Córdoba, Argentina, 2014.

[16] Aviezri S. Fraenkel and Edward R. Scheinerman. A deletion game on hypergraphs. Discrete Applied Mathematics,
30:155–162, 1991.

[17] Dov M. Gabbay. Reactive Kripke Semantics. Springer, 2013.

[18] Hubert Garavel, Frédéric Lang, Radu Mateescu, Gwen Salaün, and Wendelin Serwe. CADP: A Toolbox for the
Construction and Analysis of Distributed Processes. In World Congress on Formal Methods, 2012.

[19] Jelle Gerbrandy and Willem Groeneveld. Reasoning about information change. Journal of Logic, Language and
Information, 6:147–169, 1997.

[20] Erich Grädel. Back and forth between logic and games. In Krzysztof R. Apt and Erich Grädel, editors, Lectures
in Game Theory for Computer Scientists, pages 99–145. Cambridge University Press, 2011.

[21] Jan Friso Groote, Jeroen Keiren, Aad Mathijssen, Bas Ploeger, Frank Stappers, Carst Tankink, Yaroslav Usenko,
Muck van Weerdenburg, Wieger Wesselink, Tim Willemse, et al. The mCRL2 toolset. In Proceedings of the
International Workshop on Advanced Software Development Tools and Techniques (WASDeTT 2008), page 53,
2008.

[22] Davide Grossi and Simon Rey. Credulous acceptability, poison games and modal logic. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems, pages 1994–1996, 2019.

[23] Sten Grüner, Frank G. Radmacher, and Wolfgang Thomas. Connectivity games over dynamic networks. Theo-
retical Computer Science, 493:46–65, 2013.

[24] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and
computation. Sigact News, 32(1):60–65, 2001.

[25] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three problems of
equivalence. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing,
page 228–240, New York,USA, 1983. Association for Computing Machinery.

[26] Barteld Kooi. Expressivity and completeness for public update logics via reduction axioms. Journal of Applied
Non-Classical Logics, 17:231 – 253, 2007.

[27] Barteld Kooi and Bryan Renne. Arrow update logic. The Review of Symbolic Logic, 4(4):536–559, 2011.

[28] Barteld Kooi and Bryan Renne. Generalized arrow update logic. In Proceedings of the 13th Conference on
Theoretical Aspects of Rationality and Knowledge, TARK XIII, page 205–211, New York, 2011.

[29] Dmitriy Kvasov. On sabotage games. Operation Research Letters, 44(2):250–254, 2016.

[30] Dazhu Li. Losing connection: the modal logic of definable link deletion. Journal of Logic and Computation,
30(3):715–743, 04 2020.

22

[31] Fenrong Liu, Jeremy Seligman, and Patrick Girard. Logical dynamics of belief change in the community.
Synthese, 191(11):2403–2431, 2014.

[32] Christof Löding and Philipp Rohde. Model checking and satisfiability for sabotage modal logic. In Pandya
Paritosh and Jaikumar Radhakrishnan, editors, Foundations of Software Technology and Theoretical Computer
Science. FSTTCS 2003, number 2914 in Lecture Notes in Computer Science, pages 302–313. Springer Berlin
Heidelberg, 2003.

[33] Christof Löding and Philipp Rohde. Solving the sabotage game is pspace-hard. In Branislav Rovan and Peter
Vojtáš, editors, Mathematical Foundations of Computer Science 2003, number 2914 in Lecture Notes in Computer
Science, pages 531–540. Springer Berlin Heidelberg, 2003.

[34] Sergio Fernando Mera. Modal memory logics. PhD thesis, Université Henri Poincaré-Nancy 1, 2009.

[35] Richard Nowakowski and Paul Ottaway. Vertex deletion games with parity rules. Integers: Electronic Journal of
Combinatorial Number Theory, 5(2), 2005.

[36] Richard Nowakowski and Peter Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics, 43(2-
3):235–239, 1983.

[37] Cormac O’Sullivan. A vertex and edge deletion game on graphs. ArXiv, abs/1709.01354, 2018.

[38] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

[39] Jan A. Plaza. Logics of public communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, and Z. W.
Ras, editors, Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems (ISMIS
1989), Poster Session Program, page 201–216, Charlotte, North Carolina, 1989. Oak Ridge National Laboratory,
ORNL/DSRD-24.

[40] Jan A. Plaza. Logics of public communications. Synthese, 158:165–179, 2007.

[41] Gerard R Renardel De Lavalette. Changing modalities. Journal of Logic and Computation, 14(2):251–275, 2004.

[42] Philipp Rohde. On games and logics over dynamically changing structures. PhD thesis, Aachen, Techn. Hochsch.,
Diss., 2005.

[43] Declan Thompson. Local fact change logic. In Fenrong Liu, Hiroakira Ono, and Junhua Yu, editors, Knowledge,
Proof and Dynamics, pages 73–96, Singapore, 2020.

[44] Johan van Benthem. Dynamic odds and ends. Technical report, Technical Report ML-1998-08, University of
Amsterdam, 1998.

[45] Johan van Benthem. An essay on sabotage and obstruction. In Dieter Hutter and Werner Stephan, editors,
Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th
Birthday, pages 268–276. Springer, Heidelberg, 2005.

[46] Johan van Benthem. Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17:129–155,
01 2007.

[47] Johan van Benthem. Logical Dynamics of Information and Interaction. Cambridge University Press, 2011.

[48] Johan van Benthem, Lei Li, Chenwei Shi, and Haoxuan Yin. Hybrid sabotage modal logic. Journal of Logic and
Computation, 03 2022. exac006.

[49] Johan van Benthem and Fenrong Liu. Dynamic logic of preference upgrade. Journal of Applied Non-Classical
Logics, 17:157–182, 01 2007.

23

[50] Johan van Benthem and Fenrong Liu. Graph games and logic design. In Fenrong Liu, Hiroakira Ono, and Junhua
Yu, editors, Knowledge, Proof and Dynamics, pages 125–146. Springer, Singapore, 2020b.

[51] Johan van Benthem, Krzysztof Mierzewski, and Francesca Zaffora Blando. The modal logic of stepwise removal.
The Review of Symbolic Logic, page 1–28, 2020.

[52] Johan van Benthem, Jan van Eijck, and Barteld P. Kooi. Logics of communication and change. Inf. Comput.,
204:1620–1662, 2006.

[53] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic logic with assignment. In
Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pages
141–148, 2005.

[54] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic logic, volume 337. Springer
Science & Business Media, 2007.

[55] Hans van Ditmarsch, Wiebe van der Hoek, Barteld Kooi, and Louwe B. Kuijer. Arbitrary arrow update logic.
Artificial Intelligence, 242:80–106, 2017.

[56] Francesca Zaffora Blando, Krzysztof Mierzewski, and Carlos Areces. The modal logics of the poison game. In
Knowledge, Proofs and Dynamics. Springer, March 2020.

[57] Tianwei Zhang. Solution complexity of local variants of sabotage game. In Fenrong Liu, Hiroakira Ono, and
Junhua Yu, editors, Knowledge, Proof and Dynamics, pages 3–23, Singapore, 2020.

24

	Introduction
	Model-changing modal logics
	A uniform language
	On specific ones

	An algorithmic study
	The Algorithm
	On gsb-bisimulation
	An example
	On complexity

	Bisimulation for other states

	Further remarks

