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Abstract. We discuss a simple logic to describe one of our favourite
games from childhood, hide and seek, and show how a simple addition
of an equality constant to describe the winning condition of the seeker
makes our logic undecidable. There are certain decidable fragments of
first-order logic which behave in a similar fashion with respect to such
a language extension, and we add a new modal variant to that class.
We discuss the relative expressive power of the proposed logic in com-
parison to the standard modal counterparts. We prove that the model
checking problem for the resulting logic is P-complete. In addition, by
exploring the connection with related product logics, we gain more in-
sight towards having a better understanding of the subtleties of the
proposed framework.
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1 From games to logic

Everyone remembers the pleasure of playing hide and seek in her or his child-
hood. After calling out “I am ready, you can come to find me”, the fun part
is to stay at your secret spot, not making any noise, and to expect that the
other player would not discover you. Once you are found, the other wins. Let
us consider a setting with two players, hider and seeker. Following the research
program of [10], the game of hide and seek is naturally seen as a graph game,
where seeker and hider are located at two different nodes, and are allowed to
move around. The goal of seeker is to meet hider, while the goal of hider is
to avoid seeker. For the game that many of us played in childhood, the hider
basically stays at one place, whereas seeker moves from one node to another.
We can describe such graph games using the basic modal logic. However, if
we consider a simple modification by allowing moves for both players (akin to
the game of cops and robber [34]), the setting becomes quite diverse. On the
one hand, these graph games are natural candidates for modelling computa-
tional search problems, on the other hand, the nuanced interaction between the
players playing hide and seek is a showcase of interactive players having their
goals entangled, which is a popular phenomenon in social networks. In other
words, the graph game of hide and seek provides us with an ideal arena where
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we can study reasoning about social interaction and challenges therein arising
from such intertwined objectives of players. In the following we will make these
games more precise and provide a language to express strategic reasoning and
winning conditions of players.

However, before going into the logic details, let us first get a feel about the
hide and seek game regarding the information available to the players. That
will also lead us to understand the kind of reasoning that we plan to explore for
such games. Essentially, it is an imperfect information game where the seeker is
not aware of the position of hider, whereas the hider may or may not know the
exact position of the seeker. Both players know the game graph where they move
about and are aware of their own positions and moves. Now, the modification
that we talk about makes the setting even more interesting information-wise,
as then we can consider different levels of information available to both the
players. However, to keep things simple we start off from a high-level modeller’s
perspective, that is, we reason about such games. Thus, we reason about players’
observations and moves with the assumption that the whole graph and the
players’ positions at each stage of the game are available to us. We leave the
players’ perspectives for future work.

Coming back to the game proper, we have the two players located at two
different nodes. To model their moves we consider a pair of states as an evalu-
ation point rather than a single state in a Kripke model, and consider distinct
modalities to express the moves of the players. The evaluation of these two
different modalities, one for each player, can then be assessed coordinate-wise
with respect to the pair of states.

In addition, a winning condition for the hide and seek game correspond-
ing to the seeker finding the hider can be modelled by considering a pair of
states whose first and second elements are the same. This basically gives us
the identity relation which can be expressed by introducing a special identity
proposition. We first note that one can show the decidability of the satisfia-
bility problem of the two-dimensional modal logic mentioned above, without
the special proposition. Interestingly enough, such a simple addition, viz. in-
corporating the identity proposition, transforms a decidable modal logic into
an undecidable one. In fact, there are various elegant examples of logics that
suggest that taking this identity relation into account may change previously
decidable logics (without equality) into undecidable ones, e.g., the Godel class
of first-order formulas with identity (cf. [24]). A more recent example is the
logic of functional dependence with function symbols (see [6, 35]). We add one
more logic to this class. This result also refutes a conjecture mentioned in [10]
which stated that the extended logic with the identity proposition will remain
decidable. The related notion of expressive power of the proposed logic is also
discussed here.

We note that this modified version of the hide and seek game played on
graphs is a special case of the cops and robber game [34], a classic pursuit-
evasion game played on graphs, where several cops attempt to catch a robber.
The hide and seek game corresponds to the game having a single cop chasing
a robber. Thus, this study opens up the possibility of a logical analysis of
these cops and robber games with all their generality (cf. [34]) which have been
well-studied from algorithmic and combinatorial perspectives.
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Before going any further we would like to mention that this work is an
extension of our conference proceedings version [31]. In comparison to the pro-
ceedings version, the article has been strengthened in the following ways: with
respect to the original results (e.g., relation between modal equivalence and
bisimulation, undecidability of the proposed logic), we have added proof de-
tails as well as explanations about the ideas involved, so as to provide a better
understanding of these technical results that were presented in [31]. Further-
more, we have also provided new results and discussion with respect to our logic
in terms of (i) a number of interesting validities, (ii) computational complex-
ity of the model checking problem of the logic, and (iii) several representation
results to provide a new research direction that links logics of our style with
the well-developed field of product logics. Finally, several open problems are
proposed for interested researchers.

In Section 2 we introduce a logic (LHS) to reason about plays and winning
conditions in the hide and seek game. Section 3 deals with the relative expressive
power of the language and relevant notions of bisimulation are introduced to
facilitate the discussion. Section 4 explores the computational behavior of the
resulting logic showing that the satisfiability problem for LHS is undecidable,
whereas the (finite) model checking problem for LHS is P-complete. Section 5
opens up a new direction by embedding LHS into the framework of product
logics. Finally, Section 6 provides a discussion on related work, and Section 7
gives pointers to further research.

2 Logic of hide and seek (LHS)

Let us first introduce a logic to describe the game of hide and seek, LHS, followed
by some typical validities and an informal discussion about the expressivity of
the proposed logic.

Definition 1 (Language L£). Let Py denote a countable set of propositional
variables for player Hider, and Ps for player Seeker. The language L of LHS is
given as follows:

pu=pu|ps|I|-p|(@Ap)|(Hpl (S

where py € Py, ps € Ps, and I is a propositional constant. Other Boolean

connectives are defined in the usual way, and so are the corresponding box
modalities [H] and [S].

Without loss of generality, the modal operator representing hider’s moves
is given by (H) and that representing seeker’s moves is given by (S). Formulas
are evaluated in standard relational models M = (W, R,V), where W is a non-
empty set of vertices, R C W x W is a set of edges, and V : Py UPg — 2V
is a valuation function. Moreover, for any s,t € W, we call (M, s,t) a pointed
graph model for two players (for simplicity, graph model): intuitively, s and
t represent respectively the positions of players Hider and Seeker. To simplify
notations, we also employ M, s, t for (M, s,t). As usual, we call (W, R) a frame.
Semantics for LHS is given by the following:
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Definition 2 (Semantics). Let M = (W, R,V) be a model and s,t € W.
Truth of formulas ¢ € L at the graph model (M, s,t), written as M, s,t F ¢, is
defined recursively as follows:

M,s,tEpy < s€V(pr)
M,s,tEps & teV(ps)
M,s,tFI & s=t
M,s,tE—-p < M,s tHp
M;s,tEpAYp < M;s,tFEpand M,s,tE
M,s,tE(Hyp < 35 €W st Rss and M, s’ tE ¢
M,s,tE(S)p & It €W st Rtt' and M,s,t’' E ¢

As mentioned earlier, the above language has two modalities, one for each
player. Accordingly, all the formulas are evaluated in a graph model. The con-
stant I denotes the identity relation in a game graph to describe the meeting
of two players, signifying the fact that the seeker has found the hider. Let us
denote LHS_; to be the fragment of LHS without the constant I.

Given a model M and a set U C W of states, define R(U) := {t € W |
there is s € U with Rst}, denoting the set of successors of the points in U. For
simplicity, we write R(s) for R({s}) when U is a singleton {s}. Also, given a
model M, [p]M := {(s,t) | M, s,t F ¢} is the truth set of formula ¢ in M.
We can introduce the logical notions such as satisfiability, validity and modal
equivalence in the usual way, and we omit the details.

Here are some principles that are useful to see the basic features of logic.
In what follows, the notation & refers to either H or S. First, we have

[l(p = ) = ([l — [&]1) (1)

It says that both [H] and [S] can be distributed over an implication, which
may be expected. What is more interesting is the interaction between different
Boolean connectives with respect to the constant I, e.g.,

(B (LA p) = (&I = @) (2)

capturing the uniqueness of the state that is identical to a given one. Moreover,
involving constant I, we have

I= (BT < (5T) 3)
I = ([SKHIT A HIS)T) (4)

where principle (3) states the ‘symmetry’ of the structure w.r.t. I-pairs, while
principle (4) expresses a kind of ‘closure’ property. Finally, validities of LHS
are not closed under substitution, say, both validities

ps — [Hlps  pa — [Slpr (5)

may fail after replacing ps/py with some py /ps.

Going back to the hide and seek game itself, one can consider different
variants played on the game graph model, e.g., the players can move simul-
taneously or sequentially. In a sequential play, one can also consider different
orders of play. In this paper, we assume that the players move sequentially, and
that Hider starts the game. Local one-step winning positions (pairs of states
describing the current positions of the players) for each player can be expressed
in our language as follows:
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- Hider: (H)[S]-1
- Seeker: [H|(S)I
More generally, winning positions for Hider and Seeker can be described as:

- Hider: ¥n((H)[S])"—I
- Seeker: In([H](S))"I

Note that the above conditions involve countable conjunction/disjunction
of finite iterations of interactions between two players. The interactions (H)[S]/
[H](S) are expressed with two separate modalities, but they are considered
as a single unit. These are not expressible in our language. As mentioned in
the introduction, we are currently exploring an extension of this language with
modal substitution operators which would also provide a finitary way to express
such countable Boolean operations.

Remark 1. There are other ways to give suitable logics capturing the hide and
seek game. For instance, one can replace identity constant I with C, denoting
‘catching’: M, s,t = C iff R(s) C R(t). From the perspective of the game,
constant C' describes that all states accessible to the hider are accessible to the
seeker as well. In contrast to I which states that the seeker has already won,
C indicates that she can win in the next round. They amount to the same
condition for games of perfect information: if the seeker has the ability to meet
the hider she will actually do that, if she is rational. However, from a logi-
cal perspective, their interpretations are entirely different, leading to distinct
expressive features. For an illustration, let us note that C' can be defined as
[H](S)T in LHS, but I is not definable in the logic extending LHS _; with C.5
The constant proposition C' with the given interpretation may also useful in
describing cop-win graphs in the cops and robber game involving a single cop
[34], we leave it for future work.

In the next two sections we will explore some logical properties of LHS
regarding its expressiveness, the satisfiability, and model checking problems.

3 Bisimulation and expressive power

The notion of bisimulation is an important tool for studying the expressive
power of modal logics. We are now going to explore a suitable notion tailored
to our logic. We usually need to be careful when introducing the conditions:
on the one hand, the definition should ensure that the logic cannot distinguish
bisimilar models (i.e., the desired notion is strong enough), but on the other
hand, it should also hold between two models whenever they cannot be distin-
guished by the logical language (thus, it is weak enough). In what follows, we
take the standard bisimulation (see e.g., [14]) as the benchmark and investigate
the relations between expressiveness of basic modal logic M, LHS_; and LHS.
Let us start by comparing that for LHS_; and M.

5 To prove this, we need a notion of bisimulation for the language with constant
C, which can be defined as usual. Then, with the help of this notion, one can
find two models that cannot be distinguished by the language with C but can be
distinguished by the language of LHS. We leave the details to the readers.
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The standard bisimulation, denoted by «+>°, provides us a semantic charac-
terization of the expressiveness of the basic modal language L. And at a first
glance, the semantic design of logic LHS_; is similar to that of the basic modal
logic, except that we now need to consider two states simultaneously when
evaluating formulas. So, is logic LHS_; invariant under the standard notion?
First, we provide a positive answer in the following sense:

Proposition 1. If (M, w) «&° (M, w’) and (M, v) &* (M’',v'), then (M, w,v)
and (M, w',v") satisfy the same formulas of LHS_;.

Proof. The proof is straightforward by applying induction on formulas ¢ of
LHS_;. We omit the cases for Boolean connectives = and A, and only consider
pr and (S)4), since pg and (H)p can be proved similarly.

(1). First, formula ¢ is py. The following sequence of equivalences holds:

M,w,vEpy iff weV(py) iff w' €V (py) it M ,w', v Epy

The first equivalence holds directly by the semantics of LHS_;. Next, since
(M, w) <* (M’ w") and the fact that truth of basic modal formula is invariant
under standard bisimulation [14], we have the second equivalence. Finally, the
last one follows again from the semantics of LHS_.

(2). Formula ¢ is (S)1. It suffices to show just one direction from M, w, v F
¢ to M, w',v' E ¢. By M,w,v E ¢, there is some s € W with Rvs and
M, w, s E 9. From (M, v) <° (M’ v'), it follows that there exists s’ € W’ such
that R'v's" and (M, s) «° (M, s’). By the inductive hypothesis, it holds that
M’ w’, s’ E 1. Consequently, M, w’,v" E (S)1). The proof is completed. O

Therefore, the standard bisimulation is strong enough to measure the ex-
pressive power of LHS_;. But, is it also weak enough? Unfortunately, we have
the following negative result:

Proposition 2. There are (M, w,v) and (M/,w’,v") s.t. they satisfy the same
LHS_;-formulas but at least one of (M, w) +° (M, w'), (M,v) <° (M',v")
may not hold.”

Proof. We show this by giving a counterexample. Consider the models M and
M’ depicted in Figure 1. It holds that (M, wy,ws) and (M, vy, v9) satisfy the
same LHS-formulas, and hence, the same LHS_;-formulas, but we do not have
(Mawl) ﬁs (M/avl)' O

Intuitively, the failure originates from the ‘evaluation-gap’ between the two
worlds in our graph models (M, s, t): when considering atomic properties of s,
both LHS_; and LHS can only describe those in Py, but not the ones in Pg.®

7 Strictly speaking, a negative result holds even for the basic modal logic (see [14]).

However, it is still ideal if the notion of bisimulation can behave well in a large class
of models (e.g., image-finite models). But, as illustrated by the counterexample
used to show the result, the standard notion even excludes situations that are very
simple but cannot be distinguished by LHS_;.
From the perspective of games, the evaluation-gap suggests a way to handle sit-
uations where the two players have different observations even when they are at
the same position. For example, the gap might allow us to consider further enrich-
ments so that the states in the playing arena can encode different properties for
the players: a crowded street reducing the possible moves of the escaping robber is
helpful for a chasing cop, meanwhile, it is definitely a disaster to the robber.

oo
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PH,PS ps PH ps
o—0 o——0
w1 w2 U1 V2

Fig. 1. Two graph models (M, w1, ws2) and (M, v1, v2) satisfying same LHS-formulas.

Now, it is time to introduce the notion of bisimulation for LHS, from which
we can easily obtain that for LHS_;. Here is the definition:

Definition 3 (Bisimulation for LHS models). Let M = (W, R,V), M/

(W', R',V') be two models and let s,t € W and s',t' € W'. We say, (M, s,t

is bisimilar to (M, s',t') (denoted by (M, s,t) & (M, s, t')) if

Atom: (M, s,t) and (M, s, t') satisfy the same propositional letters.

Meet: s=t iff s’ =1t

Zigy: if there exists u € W such that Rsu, then there exists ' € W' such that
R's'v’ and (M, u,t) & (M, t).

Zigs: if there exists v € W such that Rtv, then there exists v/ € W’ such that
R't'v and (M, s,v) & (M/,s',v').

Zagy, Zags: those analogous clauses in the converse direction of Zigy and
Zigs, respectively.

~—

With this definition, it is now easy to check that (MM, w1, we) and (M, v1, v9)
in Figure 1 are bisimilar. Although the clauses above look rather routine, it
is instructive to notice some subtle aspects of the definition that are in line
with our previous observation: the condition Atom in effect just requires that
V(s) NPy =V'(s) NPy and V(¢) N Ps = V'(t') N Ps, but s and s’ may satisfy
different properties pg and p’, say, from Ps, and ¢t and ¢’ may satisfy different
properties py and p'y, say, from Py. Moreover, the clause Meet aims to deal
with the constant I, and the others are analogous to the zigzag conditions in
standard situations.

By dropping the clause Meet above, we get the notion for LHS_;, and by
(M, s,t) &~ (M',s',t') we denote the case that (M, s,t) and (M’,s',¢') are
LHS_;-bisimilar. With Definition 3, it holds that:

Proposition 3. If (M, s,t) & (M, s',t'), then (M, s,t) and (M’ s',t') satisfy
the same LHS-formulas. Also, if (M, s,t) <= (M, s',t'), then they satisfy the
same LHS _j-formulas.

It can be proved by induction on the structure of LHS-formulas and LHS_ ;-
formulas, respectively. Therefore, the language £ cannot distinguish between
bisimilar models. However, our previous discussion indicates that having a very
strong notion is never the final goal: it is equally important to ask whether the
notion is also weak enough. This time we are going to present a positive result
w.r.t. a class of models that are LHS-saturated:

Definition 4 (LHS-saturation). A model M = (W, R, V) is said to be LHS-
saturated, if for any set @ of formulas and states w,v € W, it holds that:

o If & is finitely satisfiable in R(w) x {v}, then the whole set & is satisfiable
in R(w) x {v}, and
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o If @ is finitely satisfiable in {w} x R(v), then the whole set @ is satisfiable
in {w} x R(v).

The notion is essentially obtained by adapting the so-called m-saturation
[14] to fit into our logics. As usual, any finite model is LHS-saturated. Further-
more, in terms of infinite M, it intuitively requires that M contains ‘enough’
states: for instance, if every finite subset of @ can be satisfied by some pairs in
R(w) x {v}, then there must also be a pair satisfying & itself. By restricting @ to
the fragment without I, we have a notion for LHS_, called LHS_ j-saturation.
Now we have enough background to show that:

Proposition 4. For all M and M’ that are LHS-saturated, if (M, s, t) and
(M, ', t') satisfy the same formulas of LHS, then (M, s,t) « (M',s',t'). More-
over, when M and M’ are LHS _-saturated, if (M, s,t) and (M',s',t') satisfy
the same formulas of LHS_p, then (M, s,t) &~ (M, s, t).

Proof. Assume that M and M’ are LHS-saturated, and (M, s,t) and (M, ', )
satisfy the same formulas of LHS. We show that the modal equivalence relation
itself is a bisimulation relation for LHS. Clause Atom holds immediately by the
fact that (M, s,t) and (M, s',t) are modally equivalent w.r.t. LHS. In what
follows, we just show Meet and Zigy are satisfied.

(1). Meet. We have the following equivalences: s = ¢ iff M,s,¢ F I iff
M, s’ .t/ ETiff s =t'. So, the condition is satisfied.

(2). Zign. Assume that v € W with Rsu. Let @ denote the set of LHS-
formulas that are true at M, u,¢. For each finite I' C ¢, M,s,t E (HY AT
Thus, M, s',t' & (H) AI'. So, @ is finitely satisfiable w.r.t. R'(s’) x {t'}. Since
M’ is LHS-saturated, there exists v’ € W’ such that R's’u’ and each formula
of @ is true at M',u/,t'. Thus, (M, u,t) and (M, v, ') satisfy the same LHS-
formulas.

So, it concludes that (M,s,t) < (M’,s',t"). Moreover, by dropping the
consideration on I, we can prove the case involving logic LHS_;. a

Therefore, w.r.t. LHS/LHS_j-saturated models, our notion of bisimulation
coincides with the corresponding notion of modal equivalence.

Having shown that our novel notions behave well, we end this section with
the following result concerning the relations among aforementioned varieties of
bisimulations:

Proposition 5. With respect to the three varieties of bisimulations <°, <
and <, we have the following:

(1). Both <* and < are strictly stronger than <~ :
(1.1). If (M,w) <°* (M w'") and (M,v) <° (M',v"), then it holds that
(M, w,v) &~ (M, w’,v"). But the converse does not hold.
(1.2). If (M, w,v) & (M, w',v"), then it holds that (M, w,v) <~ (M/,w’,v’).
But the converse direction does not hold.
(2). &° and < are incomparable:
(2.1). When (M,w) <°* (M',w') and (M,v) ©° (M/,v), it does not neces-
sarily hold that (M, w,v) & (M, w',v").
(2.2). When it holds that (M, w,v) & (M',w’,v"), each of (M, w) < (M/,w’)
and (M, v) ©° (M’,v") can fail.
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Proof. We show the two claims one by one.

(1). The relation between +* and <>~ follows from Propositions 1, 2 and
4. Also, it is obvious that « is stronger than <> ~. For an example, consider
the two models given in Figure 2: it holds (M, w1y, w;) £~ (M’,v1,v1), but
M, wy,w; E (H){(S)—I and M’ v1,v; = (H)(S)—I. Now, by Proposition 3, we
do not have (M, wy,w;) < (M, v1,v1).

(2). Consider the models in Figure 2. It is not hard to see that the states
wy and v; cannot be distinguished by the basic modal language, but this would
not be the case when we consider LHS. Thus, standard bisimulations need not
be bisimulations of LHS. On the other hand, using the models in Figure 1, it is
not hard to see that bisimulations of LHS may also be excluded by the notion

of standard bisimulation. This completes the proof. O
@ V2
w2 w3 l
w1 V1
M M’

Fig. 2. (M, w1, w1) <~ (M',v1,v1), but not (M, w1, w1) & (M',v1,v1).

Properties of LHS- and LHS_ ;- bisimulation explored here are very basic,
and several further questions are worth studying. For instance,

Open problem. What is the computational complexity of checking for bisim-
ulation of LHS or LHS_;? Are they as complex as each other?

4 Computational behavior of LHS

Essentially, LHS introduces a propositional constant to deal with equality in
a modal logic framework. This universally accepted relation of indiscernibility
is simple in nature. However, as we mentioned in Section 1, there are various
elegant examples of logics that suggest that taking this relation into account
may change previously decidable logics (without equality) into undecidable
ones. In this section, we are going to contribute one more instance to this class:
in what follows, we first show that LHS does not have the tree model property
or the finite model property, and then prove that the satisfiability problem for
LHS is undecidable. Then, by considering the relations between LHS and other
relevant logics, we identify the complexity of the model checking problem for
our logic, and it turns out that there is a huge gap between the complexity
of these two problems: as we shall see, the model checking problem for LHS
is P-complete, which would also give us an upper bound for determining the
winner in a given game of hide and seek (with a finite graph).®

9 Given a hide and seek game over a finite graph (W, R), where hider and seeker are
at s, t, respectively, and the cardinality of W is denoted by |W|, one can check that
seeker can win iff she can win in |[W|? rounds. So, determining the winner in the

game equates to checking whether the formula \/ ([H](S))"I is true at (s,t) in
n<|W|?
the model (W, R, V'), where V is an arbitrary valuation function.
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Usually, the tree model property and the finite model property are positive
signals for the computational behavior of a logic (cf. e.g., [14]). However, in
what follows, we will show that LHS lacks both the properties. Let us begin
with a simple result concerning the tree model property:

Proposition 6. LHS does not have the tree model property.
Proof. Consider the following formula:
or =T ANHT A[H]|I

It is easy to see that it is satisfiable. Also, let M = (W, R,V) and u,v € W
such that M, u,v E ¢,. From [ it follows that v = v. Also, the conjunct (H)T
indicates that the state u has successors, i.e., R(u) # (. Moreover, for all
s € R(u), we have s = v. Therefore, R(u) = {u}. Consequently, the model M
cannot be a tree. The proof is completed. a

Moreover, by constructing a ‘spy-point’ [15], i.e., all states that are reachable
from w in n-steps can also be reached in one step, we can also prove:

Theorem 1. LHS lacks the finite model property.

Proof. Let ps be the conjunction of the following formulas:

Let us briefly comment on the intuition with these formulas. First, (F'1)
shows that the two states in the current graph model are the same and the
point is irreflexive. Also, formula (F'2) states that the point can reach a state
that is a dead end having no successors. Additionally, (F'3), motivated by [28],
indicates that the point has more than one successor and for all its successors
i, there is also another successor j such that j has 7 as its only successor.

After presenting the basic ideas of those formulas, we show that the formula
Yoo s satisfiable. Consider the model M, = (W, R, V) that is defined as follows:

° W::{S}UN
e R:={(s,4) | i e N}U{(i+1,4) | i € N}
e For all p € Ps UPy, V(p) := 0.

See Figure 3 for an illustration. By construction, it can be easily checked
that the formula holds at (s, s), i.e., Mo, 8,8 F ¢uo.

Next, let M = (W, R,V) be an arbitrary model such that v € W and
M, u,u E ¢po. We are going to show that W is infinite. To do so, we claim that
the model contains the following sequence of states of M:

Wo, W1, W2, W3, Wy, . ..
such that for all i € N, the following conditions hold:

P1. M, Wi, Wi41 E-IA <S>T N [S]I
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Fig. 3. The model M.

P2. (u,w;) € R
P3. R(wp) =0, and for 1 < i, R(w;) = {w;—1}

By making an induction on i € N, we show that there is always such a sequence
of those w;’s.

First, let us consider the basic case that i = 0. As M,u,u E (F2), we
know that there is wg € W such that Ruwy and M, wq,u F [H] L. Therefore,
R(wo) = 0, i.e., we have already obtained the dead end. Moreover, by formula
(F'3), it holds M, wg, u E (SY(=I A(S)T A[S]I). Therefore, there exists wy € W
such that Ruw;, wg # w; and R(w;) = {we}. Now, it is not hard to see that
the clauses P1-P3 hold for both wg and wy.

Now, suppose that we have already had all those states w;<,, and we pro-
ceed to show that there exists w,41 satisfying the conditions P1-P3. By the
induction hypothesis, we have Ruw,. Now, from the formula (F'3), it follows
that M, wp,u E (S)(=I A(S)T A[S]I). So, there is a state wy,+1 € W such that
Ruwy 41 and M, wy,, wyy1 E =T A (SYT A [S]I. This indicates that w1 satis-
fies the requirements P1 and P2. Also, as —I, w,, # wy+1. Furthermore, from
M, wy,, wp41 E (S)T A [S]I, we know that R(wp41) = {wy}, which indicates
that the node satisfies P3 as well.

Moreover, from properties P1 and P3, we can infer that whenever i # j,
w; # w;. To be more specific, we have M, w;, w; E (H)*T A [H]"F! L for each .
Thus, we have infinitely many states w;. So, the model M is infinite. O

4.1 Undecidability of the satisfiability problem for LHS

Now, by encoding the N x N tiling problem with the satisfiability problem
for our logic, we show that LHS is undecidable. A tile t is a 1 x 1 square, of
fixed orientation, with colored edges right(t), left(t), up(t) and down(t). The
N x N tiling problem is: given a finite set T = {t!,...,t"} of tile types, is
there a function f : N x N — T such that right(f(n,m)) = left(f(n+1,m)) and
up(f(n,m)) = down(f(n,m+1))? The problem is known to be undecidable [13].

Theorem 2. The satisfiability problem of LHS is undecidable.

Proof. Let T = {T*,...,T"} be a finite set of tile types. For each T% € T we
use u(T%),d(T),1(T%),r(T") to represent the colors of its up, down, left and
right edges, respectively. We are going to define a formula ¢y such that:

rile is satisfiable iff T tiles N x N.

To do so, we will use three relations in models (W, R*, R", R*) in the proof
to follow. In line with this, syntactically we have six operators [H]* and [S]*
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for x € {s,r,u}. Intuitively, all the relations describe the transitions of the
left evaluation point and the right evaluation point of a graph model: in what
follows, we are going to construct a spy point over relation R*, and the relations
R" and R" representing moving up and to the right, respectively, from the
corresponding tile to the other.

These three relations are useful to present the underlying intuitions of the
formulas that will be constructed. Also, they are helpful in making these formu-
las short and readable, facilitating a better understanding of the frame. Cru-
cially, this does not change the computational behavior of the original LHS: the
three relations can be reduced to one relation as that of our standard models.'®
However, due to page-limit constraints, we forego those details here. Now, we
proceed to present the details of ¢ye, whose components will be divided into
four groups. Let us begin with the first one.

Group 1: Infinite many states induced by R’ and their ‘scope’

(U1)  IA[HP=I

(U2)  (H)*HPL

(U3)  [HPS)* (=T A(S)*T A[S]°I)
(U4)  [HP[SP(HPLA[SPL = 1)
(Us)  HPSPH ST = 1)

Notice that formulas (U1)-(U3) are just the R®-version of the formulas used
in the proof for Theorem 1, which were proposed to create infinite models.
Immediately, we know that there exists an infinite sequence of states, say,

Wo, W1, W2 - - -

such that R*(w;1+1) = {w;} and R*(wg) = 0. Also, for the current evaluation
pair (e.g., (s,$)), we have {w; | i € N} C R*(s).

Now let us spell out what formulas (U4) and (U5) express. Essentially, both
the formulas establish a ‘border’ for the scope of nodes that are (directly or
indirectly) reachable from s via the relation R*. Specifically, the formula (U4)
shows that R®(s) contains only a dead end that is exactly the state wq listed
above, and moreover, the formula (U5) indicates that for any w;, w; € R*(s), if
they can reach the same state in one R®-step, then they must be the same point,
i.e., w; = wj. See Figure 4 for two counterexamples without the properties of
(U4) or (U5). From the two formulas, we know that R*(s) = {w; | i € N}, i.e.,
the R*-successors of s are exactly those w;.

Intuitively, we will use these w; to represent tiles. To make this precise,
beyond the simple linear order of R® among those states, we still need to
structure them with the two relations R"” and R* in a subtler way. Our next
group of formulas concerns some basic features of the two relations:

Group 2: Basic features of R* and R"

U6)  [HP[H](S)®

I tefur}
U7 HPCH)*T AH)T)

10 For examples of encoding the N x N tiling problem with a single relation, we refer
to, e.g., [3].
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wy w wh wh wy

Fig. 4. Two impossible cases of the R’-structure of R°(s): the case on the left cannot
satisfy (U4), while the other case cannot satisfy (U5).

U8)  [HPSIP(I = [HI*~I A[H]"™=)
(U9)  [HP[S]( — [H)T=(H)"1) te{ur}

Before listing more formulas, let us briefly comment on these properties.

For all ¢ € N, the formulas of (UG6) essentially give R"(w;) and R*(w;) a
‘scope’. Specifically, they guarantee that R" (w;), R*(w;) C {wg,w1,...}. There-
fore, when considering the two relations, we only need to consider those w;, and
there do not exist other states that are involved.

The formula (U7) states that every w; has successors via R* and R", i.e.,
R*(w;) # 0 and R"(w;) # 0. Intuitively, this expresses that every tile has at
least one tile above it and at least one tile to its right.

Also, the formula (U8) indicates that for all ¢ € N, we do not have R"w;w; or
R“w;w;. Thus, with respect to tiles {wg, w1, ...}, both the relations R* and R"
are irreflexive. That is, a tile cannot be above or to the right of itself. Moreover,
formulas in (U9) show that both the relations R™ and R* are asymmetric. So,
for instance, in terms of the relation R", a tile cannot be to the right as well
as to the left of another tile.

Except those basic features captured by formulas of Group 2, what might
be more important is our next group of formulas, which structure the states in
a grid with R"™ and R™:

Group 3: Grid formed by R" and R"

(U10)  [HP[S]P((H)TT — [H)T) iefur}
(U1 [HP[SIP(I — [H]“[S]"~1)

(U12) - [HP[S](1 — [H]“[H]"=I A [H]"[H]*=I)

(U13)  [HP[SIP(I = [HI*[HI"[H]"~1)

(U14)  [HPP[S]*(1 — [H]“[S]"(H)"(S)"])

Whereas (UT) tells us that all those w; have R"- and R"-successors, formulas
in (U10) state that every w; has at most one R"-successor and at most one R¥-
successor. Thus, both (U7) and (U10) ensure that the transitions between those
w; via R* and R" are essentially functions: precisely, for all i € Nand € {u,r},
RT(w;) is a singleton. Therefore, every tile has exactly one tile above, and has
exactly one tile to its right.

Moreover, formula (U11) suggests that given a tile, its R"-successor and
R*-successor are always different: for all ¢ € N, R"(w;) N R*(w;) = 0. That is,
a tile cannot be above as well as to the right of another tile.

Additionally, (U12) shows that no tile can be both above/below and to the
right /left of another tile, and (U13) disallows cycles following successive steps
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of the R*, R" and R" relations, in this order. Formula (U14) states the property
of ‘confluence’: for all tiles w;, wj, wy, if R*w;w; and R"w;wy, then there exists
another tile w, with R"w;w, and R*w,w,. Now, tiles are arranged in a grid.

Now, it remains to set a genuine tiling, which can be achieved by our fourth
group of formulas. In usual cases this work is often routine when we have an
infinite grid-like model (cf. e.g., [14]), but in our case we still should be careful.

Group 4: Tiling the model

W1s)  HPCN thn N\ At A t)

I<i<n  1<ici<n

(U16) [sr(K\é tgA1<</\< (s A )

1) M \/ (;; Ats)

w18 W /\ (3{:<H>"1<4< \(4) dmtzq))

(U19) [Hm_/\_ (t — (H)" \/_ Jtz{))
1<i<n 1<j<n,r(T3)=U(Ty)

Formulas (U15)-(U16) indicate that a node can be occupied by ‘two’ tiles
tt, and ¢%. As one node can only be occupied by exactly one tile, the statement
here may look a bit strange. However, we would like to argue that essentially
there exists no problem, see our discussion on formula (U17) below.

By formula (U17), for every fixed i € N, when both t%; and ¢ hold at
a node, then we have ¢ = j, i.e., they are of the same tile type 7". In this
sense, we can say that the subscripts ‘H’ and ‘S’ are just ‘position-labels’ to
refer to the evaluation nodes in the current graph model, and a node in the
model is essentially occupied by exactly one tile. Moreover, for the same reason,
although for each 7%, we have different propositional atoms tfg and ti;, all types
of tiles we use are exactly those given by the original T', but not any extra ones.

Based on the analyze above, when tiling the model, taking one of the parts
for Hider and Seeker into account is enough, which explains why only those t&;
are involved in formulas (U18) and (U19): the former one states that colors of
tiles match going up, while the latter expresses that they match going right.

Now, let @iile be the conjunctions of all formulas listed in the four groups.
Based on our analyses above, any model satisfying e is a tiling of N x N.

On the other hand, it remains to show the other direction. Now suppose
that a function f : Nx N — T is a tiling of N x N. Then, we can define a model
M; = (W, R*, R*, R",V) in the following;:

e W:={s}U(NxN)

e R? consists of the following:
e Forallz e Nx N, (s,x) € R*
e For all (n,0) e Nx Nwith 1 <n, ((n+1,0),(0,n)) € R®
e For all other (n,m+1) e NxN, ((n,m+1),{n+1,m)) € R®

e R¥:={{(n,m),(n,m+ 1)) | n,m € N}
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ORT::{<<n,m> (n+1,m)) | n,m € N}
oV(lH) V(ty) = {(nm)eNxN|f(<nm>)=Ti} for alli e {1,...,n}
V(pg) = V(gs) = 0, for all other py,qs € Py U Ps.

Figure 5 presents a crucial fragment of the structure. By construction, one
can check that My, s, s E @yje. This completes the proof. O

Fig. 5. The restriction of the structure of M to N x N, where the resulting R, R*, R"
are represented by dotted-, dashed- and solid-arrows respectively. To obtain the whole
structure, we just need to add a new state s and draw a dotted-arrow from s to every
member of N x N.

Remark 2. It is worth noting that the proof for Theorem 2 essentially indicates
that in the presence of the constant I, the logical device for the hide and seek
games with two players is already undecidable. Based on the undecidability
proof, one can infer the undecidability of the class of logics generalizing our
framework to capture the games with 3 < n € N players.

4.2 Complexity of the model checking problem for LHS

To identify the complexity of the model checking problem for LHS, in this
section we are going to establish the bounds for the same. We focus on the
lower bound result for now. In Section 3, we have already seen that the notions
of bisimulation for logics M, LHS_; and even LHS are closely related. Now, we
continue to introduce a translation t : £ — £ from the basic modal language
into the language of LHS. Here are the details:

e t(p) := ppy, for each propositional letter p.
e The function preserves Boolean connectives = and A.
* t(0p) == (H)t(p)
In line with the translation, a model M = (W, R, V) for the basic modal
logic gives rise to a model M+ = (W, R,VT) for LHS, where
e VT (pg) = V(p) for each propositional letter of the basic modal language
V*(ps) =
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Now we claim the following:

Proposition 7. For any basic modal formula ¢, M = (W, R, V) and s,t € W,
M,sE @ iff MT,s,tEt(p).

Proof. By induction on the formulas ¢ of the basic modal language. a

The translation t in effect turns M into the part for hider in LHS, i.e.,
a fragment of LHS without pg € Ps, (S) or I, but definitely, one can also
treat M as the fragment for seeker containing no py € Py, (H) or I. Having
established a translation from M to LHS, our next step is to embed LHS into
FOL to come up with an upper bound result. Unlike the basic modal logic,
our logic is not contained in the two-variable fragment of FOL, as illustrated
by the undecidability result. In what follows, we proceed to show that LHS
can be reduced into the fragment of FOL with 3 variables. Let £; be the first-
order language with countable many unary predicate symbols P, Pé, a binary
relation R and equality =.

Definition 5 (First-order translation with 3 variables). Let 1, x5, 23 be
three variables, and i,j € {1,2,3} be distinct from each other. The translation
Ti.;, carried out with respect to variables x;, x;, is recursively defined as follows:

= 3w g1 230 (0, (BEiz 12,30 (051 A T{1,230 40,515 (9)
= 3x{1,273}\{i7j}(szx{172,3}\{i,j} A 7;,{1,2,3}\{1‘4}(80))

Some comments about these clauses are in order. First, the order of the
subscript 7, j in 7; ; matters, and in general T; ;(¢) is not the same as T; ;(¢).
Next, Definition 5 essentially gives us six functions: one for each ordered pair
(@i, xj), with {z;,z;} C {z1, 22,23} and ¢ # j. Finally, except for {z1,z2, z3},
the formula 7; ;(¢) does not contain any other variables, and for the free vari-
ables, we have Free(T; ;(¢)) C {x;,x;}. Here is an example to illustrate how
the translation works.

Ezample 1. Consider the formula (H)(pg A (S)(—=ps AT)). Its translation w.r.t.
z1 and x5 is as follows:

Ti2((H)(pa A (S)(=ps A 1))
= Jxz(Rr123 A T32(pa) A T3,2((S)(—ps A 1)))
= Jz3(Rr12s A Pyas A Jz1(Rzaxs A Tz 1(—ps A 1))
= Jzz(Rx1x3 A Pgaxs A Jzi (Rxoxy A —Psxy Az = 1))

The formula intuitively states that the left state in question has a ppg-
successor that is also accessible from the right evaluation state, and the suc-
cessor is not pg. Starting from 7; o, the example illustrates how we move to
the translation carried out w.r.t. other pairs of variables. Now, let us show the
correctness of the translation:
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Proposition 8. Let M = (W, R,V) be a model, s,t € W, and ¢ a formula of
LHS. Then, for all distinct i,j € {1,2,3}, M, s, tF ¢ iff M E T; j(¢)[s, t].11

Proof. By induction on formulas ¢ of LHS. O

As a corollary, we have the following:

Corollary 1. LHS can be reduced into the 3 variable fragment of FOL, with a
function having a polynomial size increase.

Now, we proceed to show the complexity of the model checking problem:
Theorem 3. Model checking for LHS is P-complete.

Proof. A lower bound is provided by Proposition 7: the model checking for LHS
is P-hard, since model checking for M is P-complete (see, e.g., [8]). On the other
hand, as proved by [40], the model checking for every finite variable fragments
of FOL, with a fixed number of variables, is in P. So, Corollary 1 establishes
an upper bound for us: the model checking for LHS is in P. Thus, it can be
concluded that the model checking problem for LHS is P-complete. a

Remark 3. Similar to the case of Theorem 2, the complexity result of the model
checking problem applies to the generalizations with more players. Given such
a logic L with n > 3 evaluation states, here are two observations. On the one
hand, one can embed the basic modal logic into a fixed part of L. On the other
hand, we can also generalize Corollary 1: by adapting Definition 5, one can
translate L into a n + 1 variable fragment of FOL.

In line with the complexity result of the model checking problem, Algorithm
1 presents a method to obtain the truth set of a formula ¢ in a given model M
in O(|¢| x |W|?) time, where || is the length of ¢ defined as follows:

* pul=lps|=1|I]=1
o |-l = [(H)el = [{S)p| = |e| +1
o o AY| = ol + Y] +1

It might be useful to point out that || is no less than the cardinality of the
set of all sub-formulas of ¢.

Digression: expressivity once more. So far, we have already established a notion
of bisimulation and a first-order translation for our logic. With these results in
hand, a natural next step is as follows:

Open problem. Show a van Benthem style characterization theorem for LHS.!2

5 Zoom out: LHS as a product logic

Those who are familiar with product logics may wonder its precise connection
with our work. We will now put LHS in the landscape of product logics (see,
e.g., [33,20-22,29]). More concretely, we will first identify the counterpart of
LHS in product logics based on a sub-class of the so called ‘extended product

N ByME Ti,; (©)[s, t], we mean that when values of z; and z; in @ are s, t respectively,
T:,; (o) is satisfied by M.
!2 [18] is an ongoing project to solve this problem and several related issues.
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Algorithm 1: LHS model checking, where a syntactic-growing se-
quence is a sequence of formulas (g1, ,¢,) such that the size of
©; is no larger than that of ¢; whenever i < j.

Input: ¢: a formula, M = (W, R,V): a model

Output: The truth set of ¢ in M
1 function Truth(p, M)

2 Record all sub-formulas of ¢ with a syntactic-growing sequence S(¢p)
3 Record all truth sets of formulas in S(¢), one by one, in a table truth as
follows:

4 forall ¢y € S(p) do

5 truth(i) < 0

6 if ¢» € Py then

7 | truth(yp) < V(i) x W

8 if ¢ € Ps then

9 | truth(y) < W x V()
10 if ¢ = I then

11 | truth(yp) < {(s,s) | s € W}
12 if ¢ = —-x then

13 ‘ truth(¢) < W x W\ truth(x)
14 if ¢ = 11 A2 then

15 | truth(y) < truth(yr) N truth(ys)
16 if ¢ = (H)x then

17 forall (s',t) € truth(x) and s € W do
18 if Rss’ then

19 L ‘ truth(vy) < truth(y) U{(s,t)}
20 if ¢ = (S)x then
21 forall (s,t') € truth(x) and t € W do
22 if Rtt' then

23 L ‘ truth(y) < truth(y) U {(s,t)}

24 return truth(p)

models’. The formulation is natural, but restrictions are imposed on the sub-
class that cannot be captured by the logic. Some restrictions are relaxed to build
the logic on a larger class of models. We will relate LHS with product logics
by showing representation results for our models in terms of certain product
models. Although this is just a first step, these results may help to obtain other
results for LHS, e.g., a complete Hilbert style proof system.

5.1 General setting: product models

First of all, to interpret the language £ properly, let us build a class of models
on product models. Given two frames F; = (W7, R;y) and Fy = (Wa, Rs), their
product frame is (W x Wa, R!, R") with the following:

RYu,v)(s,t) iff Ryusandv=t
R™(u,v)(s,t) iff Rovtand u=s

With this, we define the following enrichment:
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Definition 6 (Extended product models). An extended product model
M = (S x U, R, R",1,V) for LHS is a tuple such that

(1). (S x U, R, R") is a product frame,

(2). I={(s,s)|seSNU}, and

(3). V:PyUPs — 29%U js q valuation function satisfying the following:

(s,t) € V(ps) & S x{t} CV(ps)
(s,t) € V(pu) & {s} xU C V(pn)

As observed, the extended product models with a new component I, aiming
to tackle the propositional constant, and their valuation functions are restricted
with further clauses that are crucial to ensure an appropriate transition between
these valuation functions and those of standard relational models.!® We call
tuples (S x U, R', R",T) without valuation functions extended product frames.
Truth conditions w.r.t. extended product models are straightforward:

M, (s,t) Ep < (s,t) € V(p), for each p € PyUPs

M, (s,t) FI < (s,t) €1
M, (s,t) F (H)p < (s, t') € S x U s.t. Ri{s,t)(s',t') and M, (s/,¢') F ¢
M, (s,t) F (S)p < (s, ¢y € S x U s.t. R"(s,t)(s',¢'y and M, (s',t') F ¢

In the remainder of this section, we are mainly interested in those extended
product models with certain properties. Having LHS in mind, a natural and
direct class of such models, denoted by G, is as follows:

e S=U, and
(] Rl<81,t><82,t> iff R7‘<t,81><t,82>.

Thus, an extended product model (S x U, R', R™,1,V) belongs to G if, and
only if, the part (S x U, R!, R") is the product frame of some (S, R) and itself.
Essentially, there is a precise match between our original models and G.

From standard models to G. A standard model M can give rise to an
extended product model, denoted by MM in the following way:

Definition 7 (MM). Let M = (W, R, V) be a standard model. The correspond-
ing extended product model MM is a tuple (W x W, R, R",1,V) where
o (W x W, R R") is the resulting product frame of (W, R) and itself,
o I={(w,w)|weW},
o (s,t) € V(pn) iff s € V(pu),
(s,t) € V(ps) iff t € V(ps).
It is easy to check that {MM™ | M is a standard model} C G. Now, by
induction on formulas, we are able to show that:

Proposition 9. Let M = (W, R,V) be a standard model and s,t € W. Then,
for all formulas ¢ € L, M, s,t = ¢ iff MM, (s,t) E .

We leave this as an exercise, and now proceed to show the other direction:
From G to standard models. Every extended product model of G is asso-

ciated with a standard one in the following:

13 It would be instructive to see the connection between the clauses and formulas
given by (5) in Section 2.
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Definition 8 (M™). Let M = (W x W, R, R",1,V) be a G-model. Then, we
can obtain a standard model MM = (W, R,V) such that:

o Rsysy iff RY(sy,t)(s2,t) and R™(t,s1)(t,s2) for allt € W,
o s € V(pu) iff (s,t) € V(pu) for allt € W, and
s € V(pg) iff (t,s) € V(pg) for allt € W.

It is simple to see that the resulting MM is well-defined. With the above
definition, we have:

Proposition 10. Let M = (W x W, R!, R",1,V) € G. For all ¢ € L, it holds
that M, (s, t) E ¢ iff MM, s t E .

Proof. We prove by induction on formulas. We merely show the case for (H)¢.

Assume that M, (s,t) F (H)p. Then, there exists (s',t) € W x W with
Rl{(s,t)(s',t) and M, (s',t) F . Moreover, for all t; € W, Rl(s,t)(s’,t;) and
R"(t1,s)(t1,s"). With Definition 8, it holds Rss’. By the inductive hypothesis,
M, (s, t) E ¢ is followed by MM s’ t E . Therefore, MM s, E (H)p.

For the other direction, suppose that MM, s, ¢ E (H)¢. By the semantics
(w.r.t. standard models), there exists s’ € W such that Rss’ and MM s’ ¢t F .
By the inductive hypothesis, the latter is followed by M, (s, t) E . Moreover,
Rss' implies that R'(s,t)(s’,t) (recall Definition 8). So, M, (s, t) F (H)¢p. O

From Propositions 9 and 10, it follows directly that

Theorem 4. The logic given by G is exactly LHS.

In the sense above, the class of standard models is equivalent to G. Thus,
the product framework provides us a new angle to view our logic.

5.2 ‘Asymmetrizing’ domains: rectangle frames

However, it is important to notice that w.r.t. LHS, the class G has many features
that cannot be defined by the logic, e.g., the system cannot define the property
that the domain is a product of a set with itself. Thus, we propose the following
notion of ‘rectangle frames’:'4

Definition 9 (Rectangle frames). Let frames F1 = (S,R1) and Fo =
(U, Ry) be two frames and (S x U, R", R!) be their product frame. A rectan-
gle frame F = (S x U, R', R",1) is an estended product frame satisfying the
following restriction:

For allw e SNU, Ri(w) = Re(w) CSNU.
We denote by R the class of rectangle frames.

Notice that a point-generated frame of an R-frame is in R as well, and we
in effect can identify R with their point-generated frames. So, in what follows,
we just work with the latter class.

Theorem 5. The logic captured by G-frames is the same as that of R.

14 . . . . . . .
To simplify the discussion, in this section we focus on frames.
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Proof. 1t is easy to see that each G-frame is an R-frame. The crucial part is to
show that each R-frame is a point-generated frame of some G-frame.

To prove this, we need to present a method illustrating how to construct a
G-frame G = (W x W, Rl R",T) from a given R-frame R = (S x U, R}, R5,T').
Details are as follows:

e W . =SUU
e For all (s1,t1), (s2,t2) € W x W,
Rl<81,t1><827t2> iff tl = t2 and (R18182 or R28182).
R"™(s1,t1)(s2,t2) iff 51 = 9 and (Rytits or Ratqts).
° <81,t1> cliff s; =¢4.

One can check that the resulting frame is a G-frame. Now we denote by
(m,n) the root of R, and let us proceed to show that R is a point-generated
frame of G. To achieve our goal, we just need to show that a state (s,t) € G
that can be reached from (m,n) in one step is a state of R as well: repeating
the reasoning, we can show that all states of G that are reached from (m,n) in
i steps are also states of R. We just show the case for R'(m,n)(s,t), and that
for R” is similar.

Immediately, n = t. Also, we have Ryms or Roms. If Roms is the case,
then from (m,n) € S x U it follows m € S NU. Thus, by the definition of R,
Roms implies that Ryms. So, it suffices to consider Rims only. Now, by the
definition of R, it holds R} (m,n)(s,n). This completes the proof. O

We end this part by noting that many earlier notions and results for LHS
can be transferred into this new setting easily, including those involving bisim-
ulation and first-order translation. Conversely, we note that there are a large
number of general results and techniques for product logics, and it is interesting
to investigate which ones can transfer to our logic. We believe the connections
established in this section may shed light on further study of LHS, e.g., its
axiomatization, that is left as future work:

Open problem. Is LHS finitely axiomatizable?

A possible way to answer this might be to analyze the counterpart of LHS in
product logic, in which the notion of rectangle frames and its possible further
generalizations might be a starting point [18].

6 Related works

Graph games and modal logics. Motivated by a simple graph game of hide
and seek, this work belongs to a broader program [10] that promotes a study
of graph game design in tandem with matching new modal logics. As stated
earlier, this paper is an extension of [31]. In recent years, several interesting
graph games have been studied. For instance, in sabotage games [9], a player
moves along a link available to her on a graph to reach some fixed goal region,
while her opponent removes an arbitrary link in each round to prevent her
from reaching her goal. The games are captured by the sabotage modal logic
(SML), which was presented first in [11], since then its logical properties have
been studied. [2,4] provided a first-order translation for SML, which together
with [1] proposed a notion of bisimulation for the logic. [1,2,32] showed that
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SML has a PSPACE-complete model checking problem and an undecidable
satisfiability problem. Also, [12] provided a Hilbert-style calculus for the logic
extending SML with formulas of hybrid logic [15]. Sabotage games and its logic
also have many variants that were studied in-depth (see, e.g., [36]), and we refer
the readers to [5] for extensive references to modal logics for graph changes.
Games in which links are removed locally according to certain conditions
which were expressed explicitly in the language have been studied in [30]. More-
over, several variants of sabotage games were applied to the learning/teaching
scenarios [23], and their computational behaviors were analyzed. Following this
direction, a new game setting allowing both link deletion and link addition was
developed in [7] to capture some interesting features of the learning process.
Closely related to [7], a class of relation-changing logics, containing operators
to swap, delete or add links, was explored in [3,1]. Instead of modifying links,
in poison games [19], a player can poison a node to make it unavailable to the
opponent. These games have been studied with diverse modal approaches in
[16,25]. Additionally, by updating valuation functions of models, a dynamic
logic of local fact change was studied in [38], which captures a class of graph
games in which properties of states might get affected by those of others.

Product logics with diagonal constant. As illustrated in the previous sec-
tions, technically our framework is close to many-dimensional modal logics [33,
20]. In particular, a class of product logics was studied in [27,28,26] with the
diagonal constant §.'> We focus on K x? K, which has been used to denote
different logics in the literature: [28,26] use it for a product logic augmenting
K x K with §, while [27] uses it for a product logic whose frame (W x W, R", R!)
is the product of a frame (W, R) with itself. A crucial difference between our
logic and K x° K in [27] (and, in [28, 26]) is that propositional variables in LHS
are two-sorted. This seemingly innocent feature may have interesting conse-
quences, which we leave for future work. In what follows, we will compare our
logic with K x° K as presented in [28,26]: it was shown that the logic K x? K
lacks the finite model property and is undecidable, which seem very similar
to our results at a first glance. However, our logic differs from this one both
conceptually and technically.

First, our formulas are evaluated at pairs of states, where each of the states
can occur by itself (and, not just as a constituent of an ordered pair), which
makes it possible for us to study the relationship between two states directly.
In K x? K, even though formulas are evaluated at pairs of states, these pairs
themselves form nodes in the domain. As a result, product logic cannot express
the more fine-grained relation (i.e., identity) between the two components form-
ing a pair. In [28,26], 0 is interpreted as a special subset of the domain, not
necessarily consisting of pairs formed by the same components from those di-
mensions. Therefore, we can say that constant I works at a meta level while § in
[28,26] is a notion of the object level. Notice that this is essentially a difference
between our original proposal and those explored in Section 5. But definitely,
this does not exclude a possible ‘mixture’ of the two frameworks. As suggested
in Section 5, technically LHS can be reduced to product logics with 4. On the
other hand, product models themselves can also be viewed as special models
(with two relations) for LHS (and then I denotes the identity of two pairs).

5 In two dimensional models & holds at a state (s, t) just in the case that s = t.
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Next, techniques adopted to establish the undecidability of LHS are very
different. Similar to all other product logics, various relations representing tran-
sitions of states in different dimensions are considered in [28, 26]. Moreover, the
product nature endows the relations with possible interactions: say, commu-
tativity and confluence. With such interactions, product logics obtain grid-like
structures automatically. However, as illustrated in our proofs, a crucial step
in proving undecidability of LHS was exactly to build such a shape. In other
words, these extra efforts make our proof technically non-trivial.

7 Conclusion and future work

Summary. Motivated by the hide and seek game, this paper studies a modal
logic LHS that allows us to talk about moves for each player, as well as the
situation of meeting. Specifically, formulas in this logic are evaluated at two
states of the domain, representing positions of different players. A constant I
expressing the meeting of two players is explored in depth, which adds a natural
and novel treatment of equality in modal logics. We establish a series of results
concerning its expressive power and computational behavior. A new notion of
bisimulation for LHS is proposed, and is compared systematically with those of
related logics. The model checking problem for LHS is proved to be P-complete.
We have also shown that the logic does not enjoy the tree model property or
the finite model property, and its satisfiability problem is undecidable, which
refutes a conjecture made by van Benthem and Liu in their recent paper [10].
Finally, we looked into the connections between our logic and the framework
of product logics, which shed light on further study of LHS.

Further directions. We mention a few directions that are worth pursuing
further. Several open problems have been formulated along the way, including
the axiomatization of LHS, and issues regarding its expressive power. Regarding
the language, the constant I seems rather simple and innocent, but surprisingly,
our logic turned out to be undecidable. It makes sense to understand this
phenomenon better, and possibly by investigating some alternative logics (e.g.,
the logic mentioned in Remark 1). In Sections 5 and 6, we have seen certain
similarities/differences between our work and product logics, but many more
issues remain to be explored along this direction. We are aware that product
logics have various extensions with promising applications, e.g., hybrid product
logics [37], and it would be interesting to consider some natural extensions of
LHS, too. As stated earlier, we have taken a high-level modeller’s perspective
to study the hide and seek game. We reason about players’ observations and
moves with the assumption that the whole graph and the players’ positions at
each stage of the game are available to us. Pursuing strategic reasoning from
the players’ perspectives in the game would be a natural next step.

Finally, as mentioned in various places, our work has a natural connection
with the game of cops and robber in the vast literature of graph games (see,
e.g., [17,34]). We are exploring richer versions of these games, focusing on
different characterization results of cop-win graphs, mostly from the players’
perspectives. We have extended these logical frameworks of games on graphs
with modal substitution operators [39] which enable us to express winning
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positions of players in the general sense that we discussed in Section 2. We will
continue this line of research in the future.
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